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Nanofluid slip flow and heat transfer over themicrochannel with asymmetric wall heat fluxes are investigated theoretically.The local
thermal nonequilibriummodel in which there is a difference between the solid temperature and nanofluid temperature is modified
by considering the nonlinear velocity slip and temperature jump. Exact analytical solutions and homotopy series solutions for both
velocity and temperature of nanofluid and solid are first obtained. Two groups of solutions agree well with existing references and
residual errors are plotted. In addition, the effects of the physical factors on the heat transfer are graphically discussed. The results
show that the first velocity slip enhances Nusselt numbers while the second slip coefficient has a reverse effect on them. As expected,
the nanoparticle concentration enhances heat transfer on bottom wall.

1. Introduction

A nanofluid was put forward by Choi [1] of the U.S. Argonne
National Laboratory in 1995. Due to enhancing the original
fluid thermal physical property and strengthening the energy
exchange of media, nanofluids have been applied in many
fields. For example, the nanofluids were applied to the tidal
energy technology [2] and used as the heat conduction
medium [3]. Many researchers have also performed the-
oretical studies of heat transfer with nanofluids. Ghazvini
and Shokouhmand [4] discussed nanofluid flow through a
micropipeline and analyzed the effects of volume fraction
on dispersion and thermal conductivity. Hatami [5] et al.
subsequently found the influence of the size and type of
nanoparticles upon the thermal behavior. Hooseini et al. [6]
got the relationship between Nusselt number and the volume
fraction. In addition, these authors found that increasing
concentration of nanoparticles will improve the value of the
Nusselt number.

Transfers in porous media also are significant research
topics from engineering. Some works on nanofluid flow and
heat transfer in porous media were conducted. Chamkha
[7] et al. studied viscous dissipation and magnetic field
effects on a Non-Darcy Porous Medium Saturated under

Convective Boundary Condition. The temperatures of the
solid andfluid phases are considered to be the samewithin the
representative elementary volume based on the local thermal
equilibrium (LTE). But LTE model has a low coefficient
of Biot and people began to think that solid phase and
nanofluids phase cannot be ignored in the porous medium.
As a result, more and more scholars considered the Local
Thermal Non-Equilibrium (LTNE) model [8, 9] to perform
theoretical and experimental studies. Haddad et al. [10]
used the LTNE Forchheimer model to simulate the forced
convection porous in microchannel. Nojoomizadehet al. [11]
numerically investigated permeability and porosity effects
on heat transfer rate of Fe3O4/water nanofluid flow in a
microchannel.The LTNEmodel also is applied in some areas
such as electronics cooling, chemical and nuclear reactors,
solar collectors, and fuel cells [12].

In addition to heat transfer analysis of nanofluids under
the local thermal nonequilibrium condition, fluids exhibiting
slip is important in technological applications such as in
the polishing of artificial heart valves and internal cavities.
Therefore, better understanding of the phenomenon of slip
is necessary. Scientists have done an impressive account of
research on nanofluids slip flow problems [13]. To mention a
few of the active topics, forced convection in a parallel-plate
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Figure 1: Schematic diagram of present problem.

porous microchannel based on slip flow model has been
studied by Buonomo et al. [14]; slip flow forced convection
in rectangular microduct filled with porous media has been
studied by Hooman [15]; heat transfer through microfoams
in microchannels with asymmetric wall heat flux has been
studied by H. J. Xu et al. [16]. MHD mixed convection in
a two-sided lid-driven porous cavity has been studied by
Sivasankaran et al. [17]. In these investigations, the linear
Navier’s slip condition performs well at sufficiently low shear
rate. However, the Navier’s slip condition breaks down at
higher shear rates as the slip length increases rapidly. There-
fore, the concept of nonlinear slip boundary conditions is put
forward. Thompson [18] developed a nonlinear slip model
based on Maxwell’s first-order slip model. Some researchers
reported that Thompson’s model cannot predict the flow
in high Kn number and put forward a second-order slip
conditions [19]. Comparison between calculation result and
experimental data demonstrated that the values calculated by
using second-order slip boundary conditions are closer to the
experimental value. Zhu et al. [20] investigated analytically
the effects of second-order velocity slip and nanoparticles
migration on flow of Buongiorno nanofluid.

According to the literature and to the best knowledge
of the authors, very limited investigation was given to the
heat transfer with second-order slip velocity and temperature
jump under the LTNE model. Given these, the current
work aims to investigate theoretically a two-dimensional
laminar flow and heat transfer of nanofluids through the
microchannel with nonlinear velocity slip and temperature
jump. Besides, the effects of nanofluids particles are discussed
for nanofluids of porous media. Explicit analytical solutions
and the semianalytical solution of the homotopy analysis are
obtained.

2. Mathematical Modeling

Consider the slip flow and heat transfer in the porous
microchannel with asymmetric boundary heat fluxes, as
shown schematically in Figure 1. Distance between the two
parallel-plates is H. Asymmetric constant heat flux 𝑞1 and𝑞2 are imposed on the microchannel. For mathematically
describing this problem, the following assumptions are
invoked in the formulation of the model:The nanofluids flow
in the porousmedium are incompressible and corresponding
homogeneous then the flow and heat transfer are fully
developed. Heat generations due to viscous resistance are
considered. Flow is subjected to a constant applied magnetic

Table 1: Thermophysical properties of water with Cu, 𝐹𝑒3𝑜4
nanoparticles.

Physical properties Water Cu 𝐹𝑒3𝑜4𝜌 (kg/m3) 997.1 8954 5200
k (Wm−1 K−1) 0.613 400 6𝑐 (J/kg K) 4179 383 670𝜎 (Ωm)−1 0.05 1.75∗10-8 4∗10-5

field in the direction of y-axis. The velocity slip and temper-
ature jump are considered in the porous-solid boundary. In
addition, the temperature of the solid and fluid phases can be
different under the local thermal nonequilibriummodel.The
LTNE models are extended to nanofluids. Thermophysical
properties such as porosity, specific heat, and concentration
of nanoparticles and base fluid are constant. The ther-
mophysical properties are given in Table 1. Consequently,
the governing equations can be expressed in the following
manner:

𝜇𝑛𝑓𝜀 𝜕2𝑢𝜕𝑦2 =
𝑑𝑝𝑛𝑓𝑑𝑥 − 𝜇𝑛𝑓𝐾 𝑢 − 𝜌𝑛𝑓𝐶𝐼√𝐾 𝑢2 − 𝜎𝑛𝑓𝐵02𝑢 (1)

𝑘𝑠𝑒 𝜕2𝑇𝑠𝜕𝑦2 − ℎ𝑠𝑓𝑎𝑠𝑓 (𝑇𝑠 − 𝑇𝑛𝑓) + 𝑆𝑠 = 0 (2)

𝑘n𝑓𝑒 𝜕
2𝑇𝑛𝑓𝜕𝑦2 + ℎ𝑠𝑓𝑎𝑠𝑓 (𝑇𝑠 − 𝑇𝑛𝑓) + 𝑆𝑛𝑓 = 𝜌𝑛𝑓𝑐𝑛𝑓𝑢𝜕𝑇𝑛𝑓𝜕𝑥 (3)

Combined with second-order slip model, boundary con-
ditions are

𝑢 = 𝜂V 2 − 𝜎V𝜎V 𝜆𝜕𝑢𝜕𝑦 + 𝜂V 2 − 𝜎V𝜎V 𝜆2 𝜕2𝑢𝜕𝑦2 ,
𝑇𝑠 = 𝑇𝑤1,
𝑇𝑛𝑓 = 𝑇𝑤1 + 𝜂𝑇 2 − 𝜎𝑇𝜎𝑇

2𝛾𝛾 + 1 𝜆
Pr

𝜕𝑇𝑛𝑓𝜕𝑦
+ 𝜂𝑇 2 − 𝜎𝑇𝜎𝑇

2𝛾𝛾 + 1 𝜆
2

Pr
𝜕2𝑇𝑛𝑓𝜕𝑦2 ,

𝑦 = 0

(4)
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Table 2: Representative values based on different concentration rates.

𝜙 𝑅𝑢 𝑅𝑘 𝑅𝜌 𝑅𝑓 𝑅𝑢 𝑅𝑘 𝑅𝜌 𝑅𝑓
Cu 𝐹𝑒3𝑜4

0% 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2.5% 1.0653 1.07656 1.19950 1.00002 1.06534 1.05975 1.10538 1.00053
5% 1.1368 1.15714 1.39900 1.00004 1.13682 1.11616 1.21076 1.00111

𝑢 = −𝜂V 2 − 𝜎V𝜎V 𝜆𝜕𝑢𝜕𝑦
− 𝜂V 2 − 𝜎V𝜎V 𝜆2 𝜕2𝑢𝜕𝑦2 ,

𝑇𝑠 = 𝑇𝑤2,
𝑇𝑛𝑓 = 𝑇𝑤2 − 𝜂𝑇 2 − 𝜎𝑇𝜎𝑇

2𝛾𝛾 + 1 𝜆
Pr

𝜕𝑇𝑛𝑓𝜕𝑦
− 𝜂𝑇 2 − 𝜎𝑇𝜎𝑇

2𝛾𝛾 + 1 𝜆
2

Pr
𝜕2𝑇𝑛𝑓𝜕𝑦2 ;

𝑘𝑠𝑒 𝜕𝑇𝑠𝜕𝑦 + 𝑘𝑛𝑓𝑒 𝜕𝑇𝑛𝑓𝜕𝑦 = 𝑞2,
𝑦 = 𝐻

(5)

where 𝜂V and 𝜂𝑇 are corrective coefficients of velocity slip
and thermal slip at the wall surface. 𝜎V and 𝜎𝑇 are, respec-
tively, tangential momentum accommodation coefficient and
thermal accommodation coefficient. Their value ranges are,
respectively, about 0.6∼1.0 and 0.0109∼0.990[21].

In the fully developed area and constant boundary heat
fluxes, (3) results in

𝑘𝑛𝑓𝑒 𝜕
2𝑇𝑛𝑓𝜕𝑦2 + ℎ𝑠𝑓𝑎𝑠𝑓 (𝑇𝑠 − 𝑇𝑛𝑓) + 163 𝜎𝑠𝑇∞𝑘𝑒

𝜕2𝑇𝑛𝑓𝜕𝑦2 + 𝑆𝑛𝑓
= (𝑞1 + 𝑞2) 𝑢𝐻𝑢𝑚

(6)

The following nondimensional parameters are intro-
duced to normalize the governing equations and boundary
conditions:

𝑈 = 𝑢𝑢𝑚 ,
𝑌 = 𝑦𝐻,
𝑃 = 𝐾𝑢𝑛𝑓𝑢𝑚

𝑑𝑝𝑛𝑓𝑑𝑥 ,

𝑁 = 𝜎𝑛𝑓𝐵20𝐻2𝜌𝑛𝑓 ,
𝐷𝑎 = 𝐾𝐻2 ;

Re = 2𝐻𝜌𝑛𝑓𝑢𝑚𝑢𝑛𝑓 ,

𝜃 = 𝑘𝑠𝑒 (𝑇 − 𝑇𝑤1)𝑞2𝐻 ,
𝑠𝜀 = √ 𝜀𝐷𝑎,
𝜉 = 𝑞1𝑞2 ,

𝐶 = 𝑘𝑛𝑓𝑒𝑘𝑠𝑒 ,
𝑤𝑠 = 𝑆𝑠𝐻𝑞2 ,

𝑤𝑛𝑓 = 𝑆𝑛𝑓𝐻𝑐𝑛𝑓𝑞2 ,

𝐵𝑖 = ℎ𝑠𝑓𝑎𝑠𝑓𝐻2𝑘𝑠𝑒
(7)

We consider the heat transfer by using the thermophysical
properties of nanofluids. Thermal conductivity, dynamic
viscosity, density, andmagnetic conductivity of nanofluid can
be, respectively, correlated with the following formulas:

𝑅𝑘 = 𝑘𝑛𝑓𝑘𝑓 = 1 + 3𝜙 (𝑘𝑠/𝑘𝑓 − 1)
(𝑘𝑠/𝑘𝑓 + 2) − 𝜙 (𝑘𝑠/𝑘𝑓 − 1)

𝑅𝜇 = 𝜇𝑛𝑓𝜇𝑓 = 1
(1 − 𝜙)2.5

𝑅𝑓 = 𝜎𝑛𝑓𝜎𝑓 = 1 + 3𝜙 (𝜎𝑠/𝜎𝑓 − 1)
(𝜎𝑠/𝜎𝑓 + 2) − 𝜙 (𝜎𝑠/𝜎𝑓 − 1)

𝑅𝜌 = 𝜌𝑛𝑓𝜌𝑓 = 1 − 𝜙 + 𝜙𝜌𝑠𝜌𝑓 ,

(8)

By employing (8) and considering three different con-
centrations for nanoparticles, such as 𝜙 = 0%, 2.5%, 5%,
the obtained values for 𝑅𝑘, 𝑅𝑢, 𝑅𝜌, and 𝑅𝑓 are tabulated in
Table 2.
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The dimensionless form of the governing equations and
boundary conditions can be written as

𝜕2𝑈𝜕𝑌2 − 𝑠𝜀2𝑈 − 𝑅𝜌𝑅𝜇
𝜀𝐶𝐼Re
2√𝐷𝑎𝑈2 −

1𝑅𝜇 𝑠𝜀
2𝑃 − 𝑅𝑓𝑅𝜇 𝜀𝑁𝑈 = 0 (9)

𝜕2𝜃𝑠𝜕𝑌2 − 𝐵𝑖 (𝜃𝑠 − 𝜃𝑛𝑓) + 𝑤𝑠 = 0 (10)

𝑅𝑘𝐶𝜕
2𝜃𝑛𝑓𝜕𝑌2 + 𝐵𝑖 (𝜃𝑠 − 𝜃𝑛𝑓) + 𝑤𝑛𝑓 = (1 + 𝜉)𝑈 (11)

𝑌 = 0 : 𝑈 = 𝛽𝑉 𝜕𝑈𝜕𝑌 + 𝐴V
𝜕2𝑈𝜕𝑌2 ;

𝜃𝑆 = 0;
𝜃𝑛𝑓 = 𝛽𝑇 𝜕𝜃𝑛𝑓𝜕𝑌 + 𝐴𝑇 𝜕

2𝜃𝑛𝑓𝜕𝑌2 ;
(12)

𝑌 = 1 : 𝑈 = −𝛽𝑉 𝜕𝑈𝜕𝑌 − 𝐴V
𝜕2𝑈𝜕𝑌2 ,

𝜕𝜃𝑠𝜕𝑌 + 𝐶𝜕𝜃𝑛𝑓𝜕𝜃𝑠 = 1;

𝜃𝑛𝑓 = 𝜃𝑠 − 𝛽𝑇 𝜕𝜃𝑛𝑓𝜕𝑌 − 𝐴𝑇 𝜕
2𝜃𝑛𝑓𝜕𝑌2

(13)

and with the mass conservation equation:

∫1
0
𝑈𝑑𝑌 = 1 (14)

where

𝛽V = 𝜂V 2 − 𝜎V𝜎V 𝐾𝑛,
𝛽𝑇 = 𝜂𝑇 2 − 𝜎𝑇𝜎𝑇

2𝛾𝛾 + 1 𝐾𝑛Pr ,
𝐾𝑛𝛽V2 = 𝐴V,
𝐾𝑛𝛽𝑇2 = 𝐴𝑇.

(15)

3. Model Solution

For the LTNE model, heat transfer in microchannel with
the first-order slip boundary was considered by Xu [16]. The
present paper extends the results of previous authors and
investigates nanofluid flow and heat transfer with the second-
order slip velocity and temperature jump. The situation
became complex. In addition, little attention has been given
to use the homotopy analysis method to obtain the solution
of the LTNE model in all the above-mentioned studies. We
obtained explicit analytical solutions and the semianalytical
solution of the homotopy analysis in this paper.

3.1. Analytic Solutions. When the inertial constant 𝐶𝐼 in (9)-
(11) is omitted, dimensionless velocity and the temperature of
solid and nanofluidswith explicit expressions can be obtained
as

𝑈 = 1𝑅𝜇𝑃(𝐶1 cosh(√
𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2𝑌) + 𝐶2

⋅ sinh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2𝑌) − 𝑅𝜇𝑠𝜀2𝑅𝜇𝑠𝜀2 + 𝑅𝑓𝜀𝑁)
(16)

𝜃𝑠 = 1𝑅𝑘𝐶 + 1 { 𝑃 (1 + 𝜉)𝑅𝑓𝜀𝑁 + 𝑅𝜇𝑠𝜀2 (𝐶5 cosh (𝐴𝑌) + 𝐶6

⋅ sinh (𝐴𝑌)) − −𝑅𝜇
(𝑅𝑓𝜀𝑁 + 𝑅𝜇𝑠𝜀2) /𝐴2 − 𝑅𝜇 [𝐶1

⋅ cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2𝑌) + 𝐶2

⋅ sinh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2𝑌2)

+ 𝑅𝜇𝑠𝜀2
2 (𝑅𝑓𝜀𝑁 + 𝑅𝜇𝑠𝜀2) (𝑌

2 − 2𝐴2 )] − (𝑤𝑠 + 𝑤𝑛𝑓) (12
⋅ 𝑌2 − 1𝐴2 ) − 𝐶3𝑌 − 𝐶4} + 𝑤𝑠

(17)

𝜃𝑛𝑓 = 1𝑅𝑘𝐶 [−𝑤𝑠

+ (1 + 𝜉) 𝑃 (𝐶5 cosh (𝐴𝑌) + 𝐶6 sinh (𝐴𝑌))(𝑅𝑘𝐶 + 1) (𝑅𝑓𝜀𝑁 + 𝑅𝜇𝑠𝜀2)
+ 𝑅𝑘𝐶 + 2𝑅𝑘𝐶 + 1 (𝐶3𝑌 + 𝐶4)

+ (𝑅𝑘𝐶 + 1) ((𝑅𝑓𝜀𝑁 + 𝑅𝜇𝑠𝜀2) /𝐴2 − 𝑅𝜇) + 𝑅𝜇
((𝑅𝑓𝜀𝑁 + 𝑅𝜇𝑠𝜀2) /𝐴2 − 𝑅𝜇) (𝐶1

⋅ cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2𝑌2) + 𝐶2

⋅ sinh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2𝑌2)) − (𝑅𝑘𝐶 + 2𝑅𝑘𝐶 + 1𝑌2

+ 2𝐴2)
𝑅𝜇𝑠𝜀2

2 (𝑅𝑓𝜀𝑁 + 𝑅𝜇𝑠𝜀2) +
𝑌2𝐴2 (

(𝑤𝑠 + 𝑤𝑛𝑓)2
− 𝑠𝜀2 (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2))]

(18)

where 𝐴 = √𝐵𝑖(𝐶 + 1)/(𝐶 + 1).
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From themass conservation equation (14), the expression
of the dimensionless pressure can be obtained as

𝑃 = 𝑠𝜀2𝑠𝜀2 + 𝜀𝑁 + 1
√𝑠𝜀2 + 𝜀𝑁 (𝐵 + 𝑄𝐴1 ) (19)

This can also be expressed:

𝑃 = 𝐾𝜇𝑛𝑓𝑢𝑚
𝑑𝑝𝑛𝑓𝑑𝑥 = (△𝑃/𝐻)𝐾1/2𝜌𝑛𝑓𝑢2𝑚

𝜌𝑛𝑓𝑢𝑚𝐾1/2𝜇𝑛𝑓
= 𝑓𝐾 ⋅ Re𝐾;

(20)

where the parameters 𝑓𝐾 and Re𝐾 are, respectively, micro-
scopic friction factor and Reynolds number. There the con-
stant parameters 𝐴1, 𝐵, and 𝑄 are, respectively, as follows:

𝐴1 = 𝛽V𝐴V (√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)
3

+ 2𝛽V√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2

⋅ cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2) + (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)(1

+ 𝛽2V (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2) − 𝐴2V (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)
2)

⋅ cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)

𝐵 = (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)(−1 + cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2))

⋅ (−1 + 𝐴V (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)

+ cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2) + 𝐴V (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)

+ cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2)

+ 𝛽V√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2 sinh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠𝜀2))

𝑄 = (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2) sinh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2)

⋅ (sinh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2)

+ 𝐴V (𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2) sinh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2)

+ √𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2𝛽V
+ √𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2𝛽V cosh(√𝑅𝑓𝑅𝜇 𝜀𝑁 + 𝑠2))

(21)

According to the boundary condition (12), we can get

𝐶1 = 𝑠𝜀2(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2

⋅ 𝛽V√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2 cosh(√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + (𝐴V ((𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + 1) sinh(√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + 𝛽V√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2
cosh (√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + (−1 − 𝛽V2 ((𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + 𝐴V

2 ((𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2)2) sinh(√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2)
(22)

𝐶2 = 𝑠𝜀2(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2

⋅ cosh ((𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + 𝛽V√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2 sinh(√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + 𝐴V ((𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) cosh (√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + 𝐴V − 1
−2𝛽V√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2 cosh (√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + (−1 − 𝛽V2 ((𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2) + 𝐴V

2 ((𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2)2) sinh(√(𝑅𝑓/𝑅𝜇) 𝜀𝑁 + 𝑠𝜀2)
(23)

Surely, we can get other constant parameters 𝐶3, 𝐶4 𝐶5, and𝐶6 by the boundary condition (13). Due to the complex con-
ditions, we need to solve them with Mathematics software.

The constant parameters are too long to display in the article.
In addition, Nusselt numbers for porous media approach are
calculated
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𝑁𝑢1 = −2𝜉𝜃𝑛𝑓𝑏𝑅𝑘𝐶,
𝑁𝑢2 = 2

(𝜃𝑤2 − 𝜃𝑛𝑓𝑏) 𝑅𝑘𝐶
(24)

where the bulk mean fluid temperature 𝜃𝑛𝑓𝑏 is obtained with

𝜃𝑛𝑓𝑏 = ∫1
0
𝑈𝜃𝑛𝑓𝑑𝑌. (25)

3.2. Homotopy Solution [22]. From the boundary conditions
((12)-(14)), the initial solution of the equation can be obtained
in the following form:

𝑈0 = 𝑎1 (2𝐴𝑉 + 𝑌2 − 2𝛽𝑉 + 4𝐴𝑉 + 14𝛽𝑉 + 12𝐴𝑉 + 1𝑌
4) ,

𝑎1 is a real number;
𝜃𝑠0 = (4𝛽𝑇 + 2𝐶 + 8𝐴𝑇 + 1) 𝑌

+ (2𝐶 − 2𝛽𝑇 + 4𝐴𝑇) 𝑌2;
𝜃𝑓0 = 2𝐴𝑇 + 𝑌2;

(26)

According to the characteristics of the model, the auxil-
iary linear operators

𝐿𝑈 [𝜙 (𝑌; 𝑞)] = 𝜙󸀠󸀠,
𝐿𝜃𝑠 [𝜑 (𝑌; 𝑞)] = 𝜑󸀠󸀠,
𝐿𝜃𝑛𝑓 [𝜓 (𝑌; 𝑞)] = 𝜓󸀠󸀠

(27)

𝑞 ∈ [0, 1], Φ, 𝜑, 𝜓 are real functions.
According to the basic idea of the homotopy analysis

method, the zero-order deformation equations are con-
structed as follows:

(1 − 𝑞) 𝐿𝑈 [Φ (𝑌; 𝑞) − 𝑈0 (𝑌)] = 𝑞ℎ𝑈𝑁𝑈 [Φ (𝑌; 𝑞)] (28)

(1 − 𝑞) 𝐿𝜃𝑠 [𝜑 (𝑌; 𝑞) − 𝜃𝑠 (𝑌)]
= 𝑞ℎ𝜃𝑠𝑁𝜃𝑠 [𝜑 (𝑌; 𝑞) , 𝜓 (𝑌; 𝑞)] (29)

(1 − 𝑞) 𝐿𝜃nf [𝜓 (𝑌; 𝑞) − 𝜃nf (𝑌)]
= 𝑞ℎ𝜃nf𝑁𝜃nf [Φ (𝑌; 𝑞) , 𝜑 (𝑌; 𝑞) , 𝜓 (𝑌; 𝑞)] (30)

where

𝑁𝑈 = 𝑑2Φ(𝑌; 𝑞)
𝑑𝑌2 − (𝑠𝜀2 + 𝑅𝑓𝑅𝜇 𝜀𝑁)Φ (𝑌; 𝑞)

− 𝑅𝜌𝜀𝐶𝐼Re
2𝑅𝜇√𝐷𝑎Φ

2 (𝑌; 𝑞) − 1𝑅𝜇 𝑠𝜀
2𝑃
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Figure 2: The results of the velocity compared to H. J. Xu. [16].

𝑁𝜃𝑠 = 𝑑2𝜑 (𝑌; 𝑞)
𝑑𝑌2 − 𝐵𝑖 (𝜑 (𝑌; 𝑞) − 𝜓 (𝑌; 𝑞)) + 𝑤𝑠

𝑁𝜃nf = (𝑅𝑘𝐶) 𝑑2𝜓 (𝑌; 𝑞)𝑑𝑌2 + 𝐵𝑖 (𝜑 (𝑌; 𝑞) − 𝜓 (𝑌; 𝑞))
− (1 + 𝜉)Φ (𝑌; 𝑞) + 𝑅𝑐𝑤𝑛𝑓

(31)

To get the mth-order deformation equations, the zero-
order deformations ((28)-(30)) are first differentiated m-
times (m=1,2, 3. . .) with respect to q at q=0 and then the
resulting expression is divided by m! so that the m-order
deformation equations are shown as follows:

𝐿𝑈 [𝑈𝑚 (𝑌) − 𝜒𝑚𝑈𝑚−1 (𝑌)] = ℎ𝑈𝑅𝑈𝑚 (󳨀→𝑈𝑚−1)
𝐿𝜃𝑠 [𝜃𝑠𝑚 (𝑌) − 𝜒𝑚𝜃𝑠𝑚−1 (𝑌)]

= ℎ𝜃𝑠𝑅𝜃𝑠𝑚 (󳨀→𝜃 𝑠𝑚−1, 󳨀→𝜃 𝑛𝑓𝑚−1)
𝐿𝜃𝑛𝑓 [𝜃𝑛𝑓𝑚 (𝑌) − 𝜒𝑚𝜃𝑛𝑓𝑚−1 (𝑌)]

= ℎ𝜃𝑛𝑓𝑅𝜃𝑛𝑓𝑚 (󳨀→𝑈𝑚−1, 󳨀→𝜃 𝑠𝑚−1, 󳨀→𝜃 𝑛𝑓𝑚−1)

(32)

where

𝜒𝑚 = {{{
0, 𝑚 ≤ 1
1, 𝑚 > 1. (33)

4. Results and Discussion

We extended the results of H. J. Xu [16] with the first-
order slip boundary and investigated nanofluid flow and heat
transfer with the second-order slip velocity and temperature
jump. Hence, we compared the analytical results for 𝐴V =0, 𝐴𝑇 = 0, 𝜉 = 1with H. J. Xu et al. [16], as shown in Figure 2.
It is worthmentioning that the solution we get is in very good
agreement with the result of the paper written byH. J. Xu [16].

The convergence of the HAM solutions depends on the
convergence-control parameters h. Figures 3(a) and 3(b) are
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Figure 4: The comparison of two solutions.
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Figure 5: The residual errors of the velocity.

plotted by fixing other parameters to calculate the range
of admissible values for the auxiliary parameter h. We find
the stable interval of h is about [-0.9, -0.6]. Figure 4 is the
comparison of the analytical and homotopy solution. We
can see that the solution of the homotopy analysis method
coincides with the analytical solution which is obtained. In
addition, Figure 5 shows that the error of the model reaches

10−12 ∼ 10−6 when the order of the HAM approximation is
more than 6-order through BVPh2.0 procedure package with

𝐶𝐼 = 0,
𝑠𝜀 = 3,

𝜀𝐶𝐼Re
2√𝐷𝑎 = 0.011,

𝐶 = 0.085,
𝐵𝑖 = 0.076,
𝜉 = 5,
𝛽V = 0.0193,
𝛽𝑇 = 0.0235,
𝑎1 = 0.3.

(34)

The effects of slip velocity and temperature jump on
velocity and temperature of the solid and nanofluids are
showed in Figure 6. In Figure 6(a), the value of first slip
velocity coefficient is higher and the velocity distribution is
more uniform. It is clear that the first slip velocity coefficient
increases; the wall slippage effect is enhanced.This is because
the increase in first slip velocity coefficient can be due to
increase in the mean free path of the molecules, which in
turn decreases the retarding effect at the wall. Figure 6(b)
shows the velocity profile at different second slip velocity
coefficient. From those curves, the second slip velocity
coefficient number increases, the velocity profile shifts up to
show increase on the top wall while𝐴V are opposite effects on
velocity of bottomwall.With the temperature jump increases,
the temperature of the nanofluids also rises in Figure 6(c).
Figure 6(c) also shows that the increase in 𝐴V makes the
temperature higher but less symmetrical due to the enhanced
local convective heat transfer.

Figures 7(a) and 7(b) show the temperature distribu-
tions of the nanofluid phase for varying values of different
nanoparticles and nanoparticles volumetric concentration.



8 Mathematical Problems in Engineering

v=0.0
v=0.2
v=0.4

v=0.8
v=0.9

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

U

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1
Y

U

(a) The effect of the first-order slip parameter on 𝑈

v=0.0193,Av=0.00
v=0.0193,Av=0.01
v=0.0193,Av=0.03

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

U

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1
Y

(b) The effect of the second-order slip parameter on𝑈

t=0.0,At=0.00
t=1.0,At=0.0
t=2.0,At=0.0

t=1.0,At=0.5
t=2.0,At=0.5

Ｈ＠

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 1
Y

0
5

10
15
20
25
30
35
40
45

 Ｈ
＠

(c) Effect of the second-order temperature jump on 𝜃𝑛𝑓

Figure 6

As a general trend, these figures show that the addition of
nanoparticles and variation of their concentration have influ-
ences on the temperature of the nanofluid phase. According
to temperature plotted in Figure 7(a), it is observed that by
increasing the nanoparticle concentration the dimensionless
temperature of the nanofluid decreases and gratitude of
nanofluid temperature increases. This is in keeping with
the physical expectations, as increasing the nanoparticles
concentration results in enhancing the thermal conductivity
of the nanofluid, which in turn reduces the dimensionless
flow temperature. In addition, the gradient of the nanofluids
temperature rises gradually while the solid temperature
decreases fromTable 3 and Figure 7(b). Effects of slip velocity
and volume fractions on Nusselt number are presented
through Figures 7(c) and 7(d), respectively. Figure 7(c) con-
firms that, by increasing volume fractions,Nusselt number on
bottomwall will be increased. A reverse treatment by increas-
ing the nanoparticles volume fraction is observed through
Figure 7(d). Because the Brownianmovement carries the heat
from the top wall and distributes it to the surroundings, it
has the main influence on thermal conductivity of nanofluid.
In addition, we find that, by increasing first slip velocity
coefficient, Nusselt number on both walls will be increased

Table 3: The effect of the volume fraction on the temperature.

𝜙 𝑠 M Re 𝐶 𝜃𝑛𝑓󸀠(1) 𝜃𝑆󸀠(1)
0.1 35 0 10 0.085 13.0378 12.8918
0.025 (2.5%) 13.0425 12.8914
0.05 (5%) 13.0471 12.8910

while Nusselt number will be decreased with increasing
second slip velocity coefficient.

Figures 8(a) and 8(b) show the temperature profiles of
solid and fluid phases for different ratios 𝜉 with 𝑠 = 10,𝜀𝐶𝐼Re/2√𝐷𝑎 = 0.011, 𝐶 = 0.085, 𝐵𝑖 = 0.076, 𝛽V = 0.0193,𝛽𝑇 = 0.0235, 𝑎1 = 0.3,𝐴V = 0.0193, and𝐴𝑇 = 0.0235. When𝜉 becomes larger, the temperature of the nanofluids and solid
temperature shifts up due to the faster heat dissipation.

Figure 9 show the development of the nondimensional
temperature profiles of the fluid and solid for different mag-
netic field. As the magnetic felid is stronger, the temperature
is larger. At the same time, we can notice that the temperature
gets faster on the bottom wall.

Figure 10 shows the temperature for the various Biot
numbers. Biot number is the ratio of solid phase conduction
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(b) The effect of 𝜉 on 𝜃𝑛𝑓

Figure 8

resistance over the actual heat exchanged between the fluid
and solid phases. According comparisons between solid
temperature profiles, the figure shows that the increase in
Biot number means to decrease the conduction resistance,
so the solid temperature increases and heat transfer can be
enhanced by increasing effective Biot number. However, Biot
number has opposite effect on nanofluids temperature.

FromFigure 11 it can be seen that velocity profile becomes
uniform with an increase in shape factor when the boundary
conditions are the second-order slip of the velocity. From the
H. J. Xu [16], we come to know the figure about 𝑠𝜀 of which the
boundary condition is the first-order slip of the velocity and
find the trend is too similar.When the shape factor is smaller,
the maximal value of the velocity profile is higher.
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(b) The effect of the 𝐵𝑖 on 𝜃𝑛𝑓

Figure 10

Figure 12 presents the effect of shape factor on the value
for dot product of permeability friction factor and perme-
ability Reynolds number for different Knudsen number. We
discuss the small shape factor from 0 to 1. When Knudsen
number is small, the value of dimensionless pressure drop
first increases and then decreases with the increase in shape
factor. Dimensionless pressure drop is sharply decreased for
small Knudsen number.

5. Conclusions

Flow and heat transfer for Cu-water and 𝐹𝑒3𝑜4-water
nanofluid are considered with the composite system includ-
ing internal heat source, the magnetic field, and the heat flux
boundary. Analytical solutions and semianalytical solutions
by homotopy analysis are obtained. The present analytical
solution agrees well with those previously reported in the
literature and HAM solution. The effects of the physical
factors on the heat transfer are graphically discussed. The
results also show that the first velocity slip enhances Nusselt
numbers while the second slip coefficient has a reverse effect
on them. Increasing thermal jump coefficient causes the
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Figure 11: The effect 𝑠𝜀 on the velocity.

temperature of the nanofluids to rise. Moreover, with the
value of the Biot number increasing, the temperature cuts
down.The heat transfer enhancement increases with increase
of the nanoparticle concentration while it decreases with
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increase of Hartmann number. As expected, the nanoparticle
concentration enhances heat transfer on bottomwall. Dimen-
sionless pressure drop is sharply decreased for small Knudsen
number.

Nomenclature

𝐶𝐼: Inertial constantℎ𝑠𝑓: Convective heat transfer coefficient𝜇: Viscosity𝑝: Pressure𝜎: Magnetic conductivity𝐵𝑖: Biot number𝑐: Specific heat capacity𝑇: Temperature𝜙: Volume fraction of the solid particles in
the nanofluid𝑥, 𝑦: Horizontal and vertical positions𝑈,𝑉: Dimensionless𝑋, 𝑌 velocities𝑎𝑠𝑓: Specific surface area𝐾: Permeability𝑘: Thermal conductivity𝑞: Heat flux𝐵0: Magnetic field intensity

Re: Reynolds number𝑆: Energy source per unit volume𝐷𝑎: Darcy number𝑢, V: Velocity components, respectively, at x, y
directions𝑋,𝑌: Dimensionless horizontal and vertical
positions.

Greek Symbols

𝛽𝑇, 𝐴𝑇: Thermal slip coefficient𝛽V, 𝐴V: Velocity slip coefficient𝜀: Porosity𝜃: Dimensionless temperature𝜉: HF (heat flux) ratio𝜌: Density𝐾𝑛: Knudsen number
Pr: Prandtl number.

Subscripts

1: Bottom plate
2: Upper plate

𝑑: Dispersion𝑒: Effective/equivalent𝑛𝑓: Nanofluids
m: Mean𝑠: Solid
w: Wall
f: Basic fluid.
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