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An overhead crane is an underactuated system, which leads to residual swing of the crane’s payload when the crane accelerates or
decelerates. This paper proposes a trajectory planning approach which uses the Bezier curve and particle swarm optimizer (PSO-
BC) to limit the residual swing of a payload. The dynamic equation for an overhead crane is discredited, and a five-order Bezier
curve is generated as the trolley’s displacement. The trolley’s desired position is set as the last control point of the Bezier curve,
which guarantees that the trolley reaches the desired position accurately. Various constraints, including restricting the swing angle,
the allowable trolley velocity, and the allowable trolley acceleration, are then taken into consideration as the constraints. In order to
make the trolley reach its desired position whilst suppressing the payload’s swing under the constraints, a particle swarm optimizer
is used to determine the optimal control point positions of the Bezier curve. Finally, the PSO-BC simulation results are compared to
some existing approaches and are presented to show the feasibility and robustness of the proposed PSO-BCmethod.The simulation
results indicate that the trolleymoved to the desired position accurately whilst the payload’s swing angle is kept to an allowable level.

1. Introduction

Overhead cranes are widely used in various fields, such as
factories, seaports, and manufacturing workshops. They also
play a significant role in the modern logistics engineering,
industry, and the transportation ofmassive goods.Themanu-
facturing industry now requires that overhead cranes become
faster, larger, and heavier, which has led to the new challenge
of the crane’s operators having to guarantee a fast turn-over
time whenever they operate the overhead cranes. However,
an overhead crane is typical of a nonlinear underactuated
mechanical system which means that the crane’s trolley
motion normally induces an undesirable payload swing [1].
Kecik et al. [2] present an energy harvester that is dependent
on pendulum motion when the model is vertically excited.
The pendulum swing is able to be suppressed whilst the
energy is harvested and stored. The problem is that an
unexpected large payload swing angle can lead to hazardous
situations and cause serious accidents, such as damaging the

overhead crane or harming people nearby. In addition, it is
hard to achieve both simultaneous objectives of fast accurate
trolley transportation and payload swing suppression, to
ensure the safe and efficient transportation of payloads.

Much work and effort has been expended on limiting the
undesirable swing of payloads [3]. In general, the considered
control strategies can be categorized into two groups: the
open loop [4] and the closed loop [5, 6] techniques. The
article in [7] presented an anti-sway and anti-skew control
system for a container crane which uses a model-based Pro-
portional and Integral and Derivative (PID) control method.
Simulation results for this system show that any spreader
motion is stabilized under external disturbances within a
few seconds. Mahmud et al. [6] proposed a fuzzy-tuned PID
which utilizes a fuzzy system as the PID gain tuners to help
robustly control variations in the parameters of gantry cranes.
These control methods need accurate sensors to measure
the trolley positions and velocities as well as payload swing
angles.
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Feedback control methods [8, 9] utilize measurements of
the system in reducing the payload swing whereas feedfor-
ward approaches work by altering the actuator commands
so that system’s vibration is suppressed. One of the use-
ful approaches for reducing motion-induced vibration in
underactuated systems is input shaping. In this technique,
the residual vibration of the payload induced by a former
input impulse is canceled out by the vibration induced
by a later input impulse [10]. This frequency-modulation
input shaping technology [11] was developed with the aim
of tuning the resonant frequencies of a system to a set of
frequencies that can then be eliminated through the use of a
single-mode primary input shaper. The Command smoother
[12] is another effective control method for driving flexible
systems and suppressing residual vibrations. The proposed
smoothers were designed to be functions of the systems’
natural frequencies and damping ratios.

Unfortunately, the maximum swing angles of payloads
cannot be predicted and thus evaluated in advance. Trajectory
planning,mentioned in [13, 14], is the procedure for obtaining
a sequence of action curves that moves an object from an
initial position to a target position whilst satisfying certain
constraints. Boscariol et al. [14] proposed a robust model-
based trajectory planning algorithm for underactuated non-
linear systems by exploiting an indirect variational formula-
tion method. An underactuated double-pendulum crane was
modeled as a differential Two-Point BoundaryValue Problem
(TPBVP). A separate offline trajectory planning method
[15], based on the geometrical analysis of the phase plane,
presented horizontal transference tasks for underactuated
overhead cranes. Sun et al. [16] used a positioning reference
trajectory component to guide the trolley to the desired
location and a swing-eliminating component to eliminate the
payload swing without affecting the trolley position.

Optimal control [17, 18] is a useful method for designing
the profile of control inputs within given optimal perfor-
mance indices. Kolar et al. [19] set the payload transition time,
the time it took to start from an initial rest position to that of
the final rest position, as the control objective and presented
this approach for the design of time-optimal reference trajec-
tories. Zhang et al. [20] proposed an offline minimum time
trajectory planning approach for underactuated overhead
cranes, which took into account the various constraints, and
included the bounded swing angle of the payload, bounded
velocity, and the acceleration of the trolley. Smoczek et al. [21]
presented a control approach which used a particle swarm
optimizer for limiting the transient and residual swing of a
payload. A particle swarm optimizer was used to determine
the optimal sequence for the control increments when con-
sidering the input and output variable constraints. Optimal
control methods look for optimal solutions to minimize (or
maximize) the values of the defined objectives.

The trolley acceleration curve is the key factor which
controls the ability to suppress residual payload swing.
Therefore, the payload residual swing is able to be suppressed
by generating a proper trolley acceleration curve as an input
signal. Due to their being both smooth and continuous,
Bezier curves [22–24] have been used to create mobile robot
paths for trajectory planning in recent years. Instead of

using reference trajectories [16], the trolley displacement is
generated directly in this paper through using a Bezier curve,
and the shape of the curve is able to be adjusted by moving
the position of the control points of the Bezier curve. In
[20], the desired position of trolley was used as a constraint
to guarantee that the trolley moved to the desired position
accurately. In this paper, a five-order Bezier curve is generated
as the trolley displacement, and the desired position of trolley
is set as the last of the control points in the Bezier curve,
which ensures that the trolley moves to the desired position
accurately. The acceleration of the trolley, which can be
obtained through the use of second-order derivatives with
respect to the time t of the trolley’s displacement curve, is then
used as the input signal for the crane system. The maximal
swing angle, the mean swing angle, and the normalized
energy are set as the objective functions. The other control
points for the Bezier curve are adjusted by using the particle
swarm optimization method [25, 26] to ensure that the
curve meets certain constraints. The control scheme was
successfully simulated for different constraints and different
initial conditions, and the results showed that the trolley
moved to the desired position accurately whilst the payload’s
swing angle was kept to an acceptable level.

This paper is organized as follows. Section 2 presents a
dynamic model of an overhead crane system which is then
discredited. In Section 3, an optimized displacement curve for
a trolley is generated, by combining the Bezier curve method
and the particle swarm optimizationmethod, for suppressing
payload residual swing. Section 4 presents numerical simula-
tions results which verify the effectiveness of the trajectory
planning method. Finally, Section 5 concludes the paper.

2. The Dynamic Model

2.1. The Dynamic System of an Overhead Crane. A two-
dimensional model of an underactuated overhead crane is
presented in Figure 1. The crane model consists of a payload
and an overhead trolley. The trolley hoists the payload via a
suspension cable. The payload is assumed to oscillate around
a point𝑂 on the XY plane, and the swing angle 𝜃 is measured
on the XY plane. The trolley is modeled as a point mass with
a mass of𝑚𝑐. The payload is modeled as a rigid body of mass𝑚𝑝.The suspension cable is simplified as a massless cable and
its length is 𝑙. Additionally, as this paper focuses on trajectory
planning for horizontal transportation, hoisting and wind
disturbances are not considered. Gravitational acceleration is
represented as g.

For a 2D underactuated overhead crane system with a
constant cable length, the dynamic equations are described
as the following:

(𝑚𝑐 + 𝑚𝑝) �̈� + 𝑚𝑝𝑙 ̈𝜃 cos 𝜃 − 𝑚𝑝𝑙 ̇𝜃2 sin 𝜃 = 𝐹𝑥 − 𝑓𝑟 (1)

𝑚𝑝𝑙2 ̈𝜃 + 𝑚𝑝𝑙�̈� cos 𝜃 + 𝑚𝑝𝑙𝑔 sin 𝜃 = 0 (2)

where 𝐹𝑥 stands for the actuating force of the trolley and𝑓𝑟 denotes the friction force. As usual, the dot and double
dots above a variable represent the first and second time
derivatives, respectively.
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Figure 1: Sketch of an underactuated overhead crane structure.

As the swing angle is assumed to be small (𝜃 < 5∘), the
following assumptions can be made: sin 𝜃 ≈ 𝜃, cos 𝜃 ≈ 1.
Therefore, (2) can be rewritten as

̈𝜃 + 𝑔𝑙 𝜃 + �̈�𝑙 = 0 (3)

The system’s dynamic in (3) shows that there is a kine-
matic relationship between the payload’s swing angle and the
acceleration of the trolley.

2.2. System Discretization. To facilitate the subsequent anal-
ysis, we need to rewrite (3) as the state-space representation:

̇𝑞 = 𝐴𝑞 + 𝐵𝑢 (4)

where

𝑞 = [𝑥 �̇� 𝜃 ̇𝜃]𝑇 ,

𝐴 =
[[[[[[
[

0 1 0 0
0 0 0 0
0 0 0 1
0 0 −𝑔𝑙 0

]]]]]]
]

,

𝐵 =
[[[[[[[
[

0
1
0
−1𝑙

]]]]]]]
]

(5)

and where the control input 𝑢(𝑡) represents the acceleration
of the trolley. 𝑞(𝑡) is referred to as the system’s state vector,
with matrices 𝐴 and 𝐵 being the state matrix and the input
matrix, respectively.

The dynamic system needs to be discretized to corre-
spond to an exact discrete-time model of a computer-based
control system.We thus create an input vector that represents
the trolley’s acceleration at different time steps, where the
total number of time steps is k. We let T denote the sampling
period, and the acceleration of trolley 𝑢(𝑘) remains constant
between kT and (k + 1)T. This acceleration vector can be
represented by (𝑢(0), 𝑢(1) , . . . 𝑢(𝑘)), where 𝑢(𝑘) is the input
acceleration at the time interval k. Hence, (4) is discretized as
follows:

𝑞 (𝑘 + 1) = 𝐺 (𝑇) 𝑞 (𝑘) + 𝐻 (𝑇) 𝑢 (𝑘) (6)

with

𝐺 (𝑇) = 𝑒𝐴𝑇,
𝐻 (𝑇) = ∫𝑇

0
𝑒𝐴𝑇𝑑𝑡𝐵 (7)

where G(T) and H(T) represent the corresponding discrete-
time state matrix and input matrix for a fixed sampling time
T, respectively. Using the backward recurrence algorithm
from (6), we obtain

𝑞 (𝑘) = 𝐺𝑘𝑞0 + 𝐺𝑘−𝑖𝐻𝑢 (0) + ⋅ ⋅ ⋅ + 𝐻𝑢 (𝑘 − 1)
= 𝐺𝑘𝑞0 + 𝑘∑

𝑖=1

𝐺𝑘−𝑖𝐻𝑢 (𝑖 − 1) (8)

which shows the state of the transition process. It is clear
that the system’s state at a specified time kT is affined
to the exerted control sequence (𝑢(0), 𝑢(1) , . . . , 𝑢(𝑘 − 1)).
This equation indicates that the acceleration of trolley
((𝑢(0), 𝑢(1) , . . . , 𝑢(𝑘))) influences the payload’s swing angel𝜃. Therefore, it is important to design an optimized trolley
acceleration curve that leads to the trolley moving to its
desired position accurately, whilst keeping the payload’s
swing angle small.

3. Optimal Control of the Trajectory Planning

3.1. Using the Bezier Curve to Generate Trolley Acceleration.
According to (8), the acceleration curve of the trolley directly
impacts the residual swing of the payload. Generating an
appropriate acceleration curve for a trolley can help to
suppress the residual swing of the payload. A Bezier curve is
defined by several control points and it always passes through
the first and the final control points, and its shape can be
altered by moving the control points. A two-dimensional
Bezier curve of order𝑁 is represented as

𝑥 (𝜏) = 𝑁∑
𝑖=0

(𝐶𝑖𝑁𝜏𝑖 (1 − 𝜏)𝑁−𝑖) 𝑃𝑖
= 𝑁∑
𝑖=0

( 𝑁!(𝑁 − 𝑖)!𝑖! 𝜏𝑖 (1 − 𝜏)𝑁−𝑖)𝑃𝑖, 𝜏 ∈ [0, 1]
(9)

where 𝜏 is a parameter and 𝑥(𝜏) is a two-dimensional Bezier
curve generated by the control points (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) and is
used as the horizontal displacement curve for a trolley.
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Equation (9) is a parametric equation of the trolley’s
horizontal displacement curve. Since 𝜏 is the normalized
time, for the trajectory execution time 𝑇1 = 𝑡𝑒 − 𝑡𝑠, we define𝑡 = 𝑡𝑠 + 𝜏 ⋅ 𝑇1, where 𝑡𝑠 is the starting time of the first point 𝑃0
and 𝑡𝑒 is the finishing time of last point 𝑃𝑁.

The velocity of the trolley can be obtained by using the
first-order derivatives with respect to time 𝑡 [27] and is shown
as

�̇� (𝑡) = 𝑑𝑥𝑑𝜏 𝑑𝜏𝑑𝑡 = 𝑁𝑇1
⋅ 𝑁−1∑
𝑖=0

𝐶𝑖𝑁−1 (𝑡 − 𝑡𝑠𝑇1 )𝑖 (1 − 𝑡 − 𝑡𝑠𝑇1 )𝑁−𝑖−1 (𝑃𝑖+1 − 𝑃𝑖)
(10)

The acceleration of the trolley can be obtained by using
the second-order derivatives with respect to time 𝑡 and is
shown as

�̈� (𝑡) = (𝑑2𝑥/𝑑𝜏2) (𝑑𝑡/𝑑𝜏) − (𝑑𝑥/𝑑𝜏) (𝑑2𝑡/𝑑𝜏2)
(𝑑𝑡/𝑑𝜏)3

= 𝑁 (𝑁 − 1)𝑇21
𝑁−2∑
𝑖=0

𝐶𝑖𝑁−2 (𝑡 − 𝑡𝑠𝑇1 )𝑖 (1 − 𝑡 − 𝑡𝑠𝑇1 )𝑁−𝑖−2

⋅ (𝑃𝑖+2 − 2𝑃𝑖+1 + 𝑃𝑖)

(11)

where 𝐶𝑖𝑁 = 𝑁!/(𝑁 − 𝑖)!𝑖! is the binomial coefficient of order𝑁.
The following properties of Bezier curves render them

particularly suitable for trajectory generation:(1) Bezier curves start at the first point 𝑃0 and end at the
last point 𝑃𝑁. They are continuous at any degree.(2)The vectors tangential to the Bezier curves at the start
and end points are parallel to the line that connects the first
two (𝑃0 and 𝑃1) and last two control points (𝑃𝑁 and 𝑃𝑁−1),
respectively.

According to (10) and (11), the velocity and acceleration
of the trolley at the start point 𝑃0 and the end point 𝑃𝑁 are

�̇� (𝑡𝑠) = 𝑁𝑇1 (𝑃1 − 𝑃0) (12)

�̇� (𝑡𝑒) = 𝑁𝑇1 (𝑃𝑁 − 𝑃𝑁−1) (13)

�̈� (𝑡𝑠) = 𝑁 (𝑁 − 1)𝑇21 (𝑃2 − 2𝑃1 + 𝑃0) (14)

�̈� (𝑡𝑒) = 𝑁 (𝑁 − 1)𝑇21 (𝑃𝑁 − 2𝑃𝑁−1 + 𝑃𝑁−2) (15)

When a single Bezier curve is used for trajectory plan-
ning, there are several reasons why it may not be able to
converge into a suitable trajectory for a trolley’s displacement.
A Bezier curve constructed from numerous control points
is numerically unstable; and moving one control point can
alter the global shape of the curve. To overcome this problem,
the entire Bezier curve is constructed though smoothly
connecting several piecewise Bezier curves.

In order tomake the Bezier curve continuous and smooth
at the connection points, we mainly focused on assuring
the continuity of the first-order derivative and second-
order derivative at the waypoints connecting the two curves.
Figure 2 gives an example of the displacement for a trolley
curve connected by two Bezier curves. The abscissa is time,
and the vertical coordinate is the displacement of the trolley.
The points in Figure 2 are the control points of the Bezier
curve, and the vertical coordinates of each control point can
be changed to generate a Bezier curve with a different shape,
so as to obtain different acceleration curves for the trolley.
The two curves meet at a shared end point, termed the curve
“midpoint”. In order to ensure that the curve is smooth at the
midpoint, the velocity and acceleration of the trolley at the
midpoint of the two piecewise Bezier curves need to be equal.
According to (12)∼(15), we can obtain

𝑁𝑇1 (𝑃𝑁 − 𝑃𝑁−1) = 𝑁𝑇1 (𝑃𝑁+1 − 𝑃𝑁) (16)

𝑁(𝑁 − 1)𝑇21 (𝑃𝑁 − 2𝑃𝑁−1 + 𝑃𝑁−2)
= 𝑁 (𝑁 − 1)𝑇21 (𝑃𝑁+2 − 2𝑃𝑁+1 + 𝑃𝑁)

(17)

For a curve constructed of 𝑛 segments Bezier curves
and where the second-order derivative is continuous, 𝑛(N-
3)+3 points are needed to shape the curve. As every point
has two parameters, which includes the abscissa values and
the ordinate values, 2n(N-3)+6 independent parameters are
required for this kind of Bezier curve.

The shape of the Bezier curve is significantly affected by
the position of the control points (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁). The Bezier
curve is generated as the trolley displacement and trolley
acceleration can be calculated according to its displacement
as in (9) and (11). Meanwhile, the residual swing of the
payload is calculated by the trolley’s acceleration according
to (8). In other words, the residual swing of the payload 𝜃
is a function of the control points (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁), which
can be defined as 𝜃(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁), and the residual swing
of the payload can be suppressed through generating suitable
control points on the Bezier curve.

3.2. The Constraints and Cost Functions of Trajectory Planning

3.2.1. Constraints. According to the practical experience of
operating an overhead crane, the following constraints need
to be considered when carrying out trajectory planning for
the trolley.The trolley reaches the desired location𝑝𝑑within a
finite time 𝑡𝑒.Themaximumpermitted payload swing, trolley
velocity, and trolley acceleration all need to be kept within
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acceptable limits. There should be no swing when the trolley
stops at the destination. That is,

𝑥 (𝑡𝑒) = 𝑝𝑑, ∀𝑡 ≥ 𝑡𝑒
|�̇� (𝑡)| ≤ Vmax,
|�̈� (𝑡)| ≤ 𝑎max

|𝜃 (𝑡)| ≤ 𝜃max

𝜃 (𝑡𝑒) = 0,
�̈� (𝑡𝑒) = 0

(18)

Vmax and 𝑎max are the permitted maximum velocity and
the acceleration of trolley, respectively. 𝜃max is the maximum
allowable swing amplitude.

3.2.2. Objective Functions. The energy of the payload is an
important indicator for evaluating payload swing.The kinetic
energy and potential energy of the payload are

𝐸 = 12𝑚𝑝 (𝑙 ̇𝜃)2 + 𝑚𝑝𝑔𝑙 (1 − cos 𝜃) (19)

The normalized total energy of the payload is

𝐸 = 𝐸𝑚𝑝𝑔𝑙 = 𝑙2𝑔 ̇𝜃2 + (1 − cos 𝜃) (20)

The objective function of trajectory planning is to ensure
safety during the horizontal transportation of the payload.
The safety of an overhead crane can be reflected in the
following three metrics: the maximum swing angle of the
payload, the mean swing angle of the payload, and the
normalized energy of the payload at the finish time 𝑡𝑒. The
objective function which combines three of the metrics is

𝐽 (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁)
= min{𝑎 max

𝑖∈{1,2,⋅⋅⋅ ,𝑘}

𝜃𝑖 (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁)
+ (1 − 𝑎) 𝑘∑

𝑖=1

𝜃𝑖 (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁)𝑘 + 𝛽𝐸 (𝑘)}
(21)

𝑘 is the number of samples in the evaluated planning
period. 𝜃𝑖(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) is the payload swing angle at the𝑖𝑡ℎ period when the control points on the Bezier curve are(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁). The first component is the maximum swing
angle, and the second component is the mean swing angle of
the payload.The third component guarantees the value of the
payload’s swing angle is kept small when the trolley moves
to the desired location.The weight coefficient 𝑎 is set at 0.5 in
this paper, and theweight coefficient𝛽 is set at 25.Theoptimal
variables are the control point’s locations (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) on
the Bezier curve.

3.3. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is used to find the optimal control points

(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) on the Bezier curve. Particle swarm opti-
mization is an evolutionary computation technique.The stan-
dard PSO algorithm consists of three steps: (1) First, initialize
a population of particles (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) with random initial
values within the solution space. (2) Evaluate the optimiza-
tion fitness function 𝐽(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁): the movements of the
particles are guided based on the information of their own
current best known position (local) and the swarm’s current
best known position (global). When better positions are
found, these will then be chosen to lead the movement of the
swarm. (3)This process is repeated generation by generation
until satisfactory control points (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) on the Bezier
curve are eventually found.

Suppose the position and the velocity of the 𝑖th particle
at iteration j are represented by 𝑝𝑗𝑖 and V𝑗𝑖 , respectively. The
update velocity of the 𝑖th particle then consists of three
parts: a momentum of its previous velocity V𝑗𝑖 , velocity
increments according to its best local 𝑝𝑗

𝑖,𝑏𝑒𝑠𝑡
, and the best

global position 𝑔𝑗
𝑖,𝑏𝑒𝑠𝑡

. Their updates can be expressed as
follows as determined by the PSO algorithm:

V𝑗+1𝑖 = 𝑤V𝑗𝑖 + 𝑐1𝑟1 (𝑝𝑗𝑖,𝑏𝑒𝑠𝑡 − 𝑝𝑗𝑖 ) + 𝑐2𝑟2 (𝑔𝑗𝑖,𝑏𝑒𝑠𝑡 − 𝑝𝑗𝑖 )
𝑝𝑗+1𝑖 = 𝑝𝑗𝑖 + V𝑗+1𝑖 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚

(22)

where 𝑚 is the size of the populations. 𝑐1 and 𝑐2 are positive
constants called learning factors and 𝑟1 and 𝑟2 are the uni-
formly distributed values in the interval [0, 1].The coefficient𝑤 is an inertia weight factor which effectively controls the
scope of the search. A lower inertia weight leads to better
exploitation, whilst a higher inertia weight implies better
exploration of new search areas. Thus, the linear decrease
of inertia weight from 0.9 to 0.4 during iteration ensures an
efficient balancing between the global and local search.

3.4. Combining the Particle Swarm Optimization Algorithm
and the Bezier Curve Method. The trolley’s displacement is
generated by a Bezier curve as shown in Figure 2. The points
in Figure 2 are the control points for the Bezier curve, and
the vertical coordinate values of each of the control points
can be changed to generate a Bezier curve with a different
shape, so as to obtain different acceleration curves for the
trolley. The particle swarm optimization algorithm is then
used to optimize the shape of the Bezier curve from the initial
population until the optimization process results can satisfy
the given constraints.

Trajectory planning for a trolley means finding a suit-
able displacement curve that will move an object from an
initial position to the target position while satisfying certain
constraints. In this paper, displacement curves are randomly
directly generated through using the Bezier curve method,
and then the PSO algorithm is used to obtain the optimum
displacement curve which satisfies certain constraints. This
hybrid optimization algorithm, which combines the PSO
algorithm with the Bezier curve method, is abbreviated as
the “PSO-BC” in this paper. The steps detailing this are
summarized below.
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Figure 2: The displacement curve of a trolley connected by two
piecewise Bezier curves.

Step 1. Rewrite the original problem equation (3) in a flat
output space as (4) and then discretize the dynamic equation
as in (8). The residual swing of the payload is affected by
acceleration curve of the trolley.

Step 2. The control points of the Bezier curve (𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁)
are stochastically generated, and the Bezier curve is generated
as the displacement curve of the trolley. The trolley’s acceler-
ation can be obtained using the second-order derivative with
respect to time for the trolley’s displacement, as in (11). In
addition, the trolley’s acceleration is used as an input signal
in (8). When the positions of the control points are moved,
the shapes of acceleration curve of trolley also change.

Step 3. The control points of the Bezier curves are used as
particles in the PSO algorithm. The size of the populations
and themaximumnumber of iterations 𝑖𝑡𝑒𝑟max are given.The
stopping criterion is whether the change between the current
best particle fitness value and its previous one is smaller than
a predefined value 𝜅.
Step 4. Several constraints in (18) need to be satisfied when
carrying out trajectory planning for the trolley. If these con-
straints are notmet, the control points of Bezier curve need to
be moved to make sure the trolley’s acceleration meets these
constraints.The swing angle of the payload 𝜃𝑖(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁)
can be calculated according to (8). The objective function𝐽(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁)which combines themaximum swing angle,
the mean swing angle, and the normalized energy can be
calculated as (21).

Step 5. In order to obtain optimal results, Particle Swarm
Optimization is used to adjust the positions of the control
points of the Bezier curve until the best control points are
found. The best fitness value 𝑔𝑗

𝑖,𝑏𝑒𝑠𝑡
needs to be compared

with its previous one 𝑔𝑗−1
𝑖,𝑏𝑒𝑠𝑡

; if the change between the
two is smaller than 𝜅, then go to Step 6. If the results

do not satisfy the precision requirement, then increase the
number of Bezier curve control points, and go to Step 2, or
else stop. This process is repeated generation by generation
until a satisfactory solution𝑔𝑖,𝑏𝑒𝑠𝑡(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) is eventually
discovered.

Step 6. Obtain the optimal flat output variables 𝑔𝑖,𝑏𝑒𝑠𝑡. Then,
use those control points to generate the Bezier curve as the
displacement curve for the trolley. Substitute the optimal
Bezier curve into the system’s dynamic equation (8) and
obtain the actual payload swing angle 𝜃(𝑃0, 𝑃1, ⋅ ⋅ ⋅ , 𝑃𝑁) using
numerical integral calculations.

4. Numerical Simulation

In this section, some numerical simulations were carried
out to verify the validity of the proposed PSO-BC trajectory
planning scheme. The physical parameters of the simulated
overhead system were listed as follows:

𝑚𝑝 = 1.025 𝑘𝑔,
𝑚𝑐 = 7 𝑘𝑔,

𝑙 = 0.75𝑚,
𝑔 = 9.8𝑚/𝑠2

(23)

The desired trolley location 𝑝𝑑 in the simulation ranged
from 0.6m to 4 m, and the practical constraints were given as

Vmax = 0.4𝑚/𝑠,
𝑎max = 1.2𝑚/𝑠2,
𝜃max = 5 deg,

𝑡𝑠 = 0 𝑠,
𝑡𝑓 = 10 𝑠.

(24)

The trolley’s displacement was generated using a fifth-
order Bezier curve with 6 control points (𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5).
In this paper, we connected 4 segments of the Bezier curves
to create the trolley’s displacement curve, and the total
number of control points for the Bezier curve was 21. The
parameters involved for the PSO-BC were listed as follows:
the population size for the simulation experiments was fixed
at 100, and 𝑖𝑡𝑒𝑟max = 50, 𝑐1 = 𝑐2 = 2,

Table 1 gives the optimized control point positions of the
Bezier curve when the initial swing angle 𝜃0 and the desired
location 𝑝𝑑 are given values. Take the first row as an example:
when the desired location of the trolley is 0.6 meters and
the initial swing angle of the payload is -0.087 rad, then the
control points of the optimal Bezier curve are (0, 0, 0, 0.065,
0, 0.055, 0.109, 0.283, 0.600, 0.461, 0.600, 0.739, 1.155, 0.045,
0.177, 0.322, 0.467, 0.626, 0.6, 0.6, 0.6).

Figure 3 shows the corresponding simulation results
when the desired location of trolley is at 0.6 m and the
initial swing angle of payload is set to zero. Figure 3(a) is the
optimized displacement of the trolley which is generated by
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Figure 3: The results of the proposed trajectory planning for when the desired location of the trolley is set at 0.6m. (a) The trolley’s
displacement and control points of the Bezier curve; (b) the trolley’s acceleration; (c) the swing angle of the payload; (d) the normalized
energy of the payload.

the control points of the Bezier curve. The initial location of
trolley is zero, and the desired location of trolley is 0.6 m.
The red square points are the control points of the Bezier
curve. The PSO-BC algorithm successfully found a solution𝑔𝑏𝑒𝑠𝑡 [0, 0, 0.132, 0, 0.108, 0.162, 0.217, 0.217, 0.331, 0.381,0.426, 0.471, 0.511, 0.582, 0.579, 0.600, 0.621, 0.664, 0.6,0.6, 0.6] that fulfils all the constraints. It is made up of four
sections of the five-order Bezier curve. Figure 3(b) is the
acceleration of the trolley calculated using (11), and the
acceleration of the trolley is continuous at every midpoint.
Figure 3(c) is the swing angle of the payload; the initial swing
angle is zero, and the final swing angle is zero. There is no
residual swing when the trolley stops at the destination.
Figure 3(d) is the normalized energy of the payload which is
an indicator of the swing energy of payload. The normalized
energy of the payload rises dramatically at the beginning and
drops down to zero when the trolley moves to the desired
location.

Figure 4 shows the corresponding simulation results
when the desired location of the trolley is at 4m and the initial
swing angle of the payload is at 5 degrees. The red square
points of Bezier curve are [0, 0, 0, 0.886, 0.927, 1.055, 1.183,1.397, 1.713, 2.040, 2.468,2.897, 3.428, 3.196, 2.839, 2.874,2.909, 3.337, 4, 4, 4]. At the beginning, the normalized
energy of the payload is quite large, because the payload
has an initial angle as shown in Figure 4(c). The normalized
energy of the payload drops rapidly when the trolley moves
to the desired location.

Figure 5 shows the convergences of the best fitness
functions versus the number of iterations for the two PSO
simulations. The fitness values decrease fairly rapidly which
shows the searching power of the PSO-BC algorithm.

We presented two groups of numerical simulation results
for the proposed PSO-BC scheme, as compared to existing
approaches such as the online trajectory generating method
(OTGM) [16] and the phase plane-based trajectory plan-
ning method (PPBM) [15]. The phase plane-based planning
method (PPBM) does not take into account the bounded jerk
constraint.

For the first simulation, we supposed that the initial angle
of the payload was zero. Figure 6 shows a comparison of the
simulation results for the various methods, which includes
the OTGM, PPBM, and the proposed PSO-BCmethods. Fig-
ure 6(a) shows the trolley displacement graphs for the three
input signals. Figure 6(b) depicts the acceleration graphs for
the trolleys. Figure 6(c) shows the payload swing angle curve
graphs where the residual oscillations of the payloads are
essentially suppressed after 10 seconds. Figure 6(d) shows
the normalized energy change diagrams for the payloads,
where the energies of the payloads are suppressed after 10
seconds of oscillation. It is clearly seen that all the trolleys
reach their target positions accurately and the maximum
accelerations of the trolleys are kept under the physical
constraints during the overall transfer processes. It is also
seen that the maximum payload swing angles never exceed
the permitted range of 5 degrees, and there is no residual
swinging when the trolley stops at the destination. However,
it should be noted that although the PPBM control system
shows the fastest convergence speed to the desired location,
its maximum swing angle is larger than those of the other two
methods during the planning process.Thenormalized energy
graph of the PPBM control system in Figure 6(d) has four
peaks which are nearly twice as large as the proposed PSO-
BC method.
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Figure 4: The results of the proposed trajectory planning for when the desired location of trolley is set at 4m. (a) The trolley’s displacement
and control points on the Bezier curve; (b) the trolley’s acceleration; (c) the swing angle of the payload; (d) the normalized energy of the
payload.
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Figure 5: The convergence of the best fitness evaluations (a) for when the desired location of the trolley is 𝑝𝑑 = 0.6𝑚 and the initial angle is
zero and (b) for when the desired location of the trolley is 𝑝𝑑 = 4𝑚 and the initial angle is 5 degrees.

Similarly, Figure 7 shows the simulation results for the
three input signals when the trolley’s desired position is at
1 meter. The control points for the optimal Bezier curve are
(0, 0.056, 0.113, 0.167, 0.227, 0.29, 0.353, 0.419, 0.518, 0.531,
0.6, 0.671, 0.799, 0.715, 0.828, 0.867, 0.907, 0.874, 1, 1, 1). In
Figure 7(a), all the three control methods reach the desired
position, but the OTGM, PPBM methods are faster than the
proposed PSO-BC method. The trolley’s acceleration in the
proposed PSO-BC method is larger than that of the other
two input signals for a short time. Figures 7(c) and 7(d)
indicate that the maximum angle of the payload and the

normalized energy graph for the proposed PSO-BC method
is much smaller than that of the OTGM and PPBMmethods,
respectively.

For each compared trajectory in Figures 6 and 7, the
results for the maximum swing angles and the average swing
angles are listed in Table 2. The first three columns of Table 2
are the results for when the desired position of trolley is at 3
meters. The second three columns of Table 2 are the results
for when the desired position of trolley is at 1 meter. It is seen
that when the same state and control constraints are used,
the proposed PSO-BC method is more efficient than that of
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Figure 6: A comparison of the proposed methods and the existing approaches for when the desired location of the trolley is at 3m. (a) The
trolley displacements and the control points of the Bezier curves; (b) the trolley accelerations; (c) the swing angles of the payloads; (d) the
normalized energies of the payloads.
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Figure 7: A comparison of the proposed methods and the existing approaches for when the desired location of trolley is at 1m. (a)The trolley
displacements and control points of the Bezier curves; (b) the trolley accelerations; (c) the swing angles of the payloads; (d) the normalized
energies of the payloads.

Table 2: A comparison of the maximum swing angles and average angles.

trajectory PSO-BC OTGM PPBM PSO-BC∗ OTGM∗ PPBM∗
Maximum swing angle (rad) 0.0494 0.0882 0.0872 0.0136 0.0363 0.0872
Average angle (rad) 0.0249 0.0247 0.0194 0.0047 0.0089 0.0193
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Figure 8: A comparison of the proposed methods and the existing approaches for when the desired location of the trolley is set at 3m. (a)
The trolley displacements and control points of the Bezier curves; (b) the trolley accelerations; (c) the swing angles of the payloads; (d) the
normalized energies of the payloads.

the other two methods and its optimal-swing trajectory has
the smallest maximal swing angle of 0.0136 rad. Although the
average swing of its optimal 3-meter trajectory is larger than
the OTGM and PPBM methods, the maximum swing value
of the PSO-BCmethod is the smallest amongst the compared
trajectories.

To further verify that the proposed PSO-BC method
works well for any initial state, we carried out a second
simulation for when the initial swing angles were not set
at zero. The initial configurations were selected as 𝑞0 =[0, 0, 5(deg), 0] and the other constraints were the same as
those in (18). The PPBM method was unable to be directly
usedwhen the initial swing angle was not zero and so only the
OTGM and the proposed PSO-BC methods were compared.

Figure 8 depicts the simulation results for the positions
of the trolley, the trolley accelerations, the swing angles of
the payloads, and the normalized energies of the payloads.
Both the proposed PSO-BC method and the OTGMmethod
were successful in reaching the target configurations when
there were different starting angles. Figure 8(a) shows that
the trolley using the OTGMmethod reached the destination
position much faster than that of the proposed PSO-BC
method. As shown in Figure 8(d), the normalized energy
peak for the OTGM method was larger than that of the
proposed PSO-BC method. This simulation demonstrates
that the proposed approach could potentially act as an online
trajectory planner, for when the initial state was a nonstatic
system state. It is promising that, in a real-time online
implementation of the proposed PSO-BC method, it is able
to suppress payload swing.

Figure 9 shows the simulation results forwhen the trolleys
desired position was set at 1 meter and the initial swing

angle was negative 5 degrees. The control points of the PSO-
BC method are (0, 0, 0.091, -0.223, -0.018, 0.278, 0.574,
0.960, 0.449, 0.660, 0.790, 0.920, 0.970, 0.754, 0.907, 0.808,
0.710, 0.361, 0.875, 1, 1). Figure 9(b) shows that the trolley’s
acceleration in the OTGMmethodwas smoother than that of
the proposed PSO-BCmethod. In Figure 9(d), the maximum
normalized energy of theOTGMmethodwas larger than that
of the proposed PSO-BC method.

The OTGM method and the proposed PSO-BC method
are two different control schemes for trolley trajectory plan-
ning, each having its own set of advantages and disadvan-
tages. For the OTGM method, the trajectory commands are
generated and applied to the system in real time. However,
these control methods need accurate sensors to measure the
trolley positions and velocities as well as the payload swing
angles. In general, it is quite difficult to measure all this
data in real time in an outdoor environment due to the
vibrations of the overhead cranes. For the proposed PSO-BC
method, the trajectory commands are calculated in advance
of implementation.The advantages of this are that the trolley’s
stopping time can be set as a parameter, and variables, such as
payload swing angle and trolley acceleration, can be limited
during the whole control process. Increasing the number of
segments of the Bezier curves means that the curves can be
used formore complex control methods. However, doing this
will also increase the burden on the computer, as it will take
longer to generate the multisegments of the Bezier curves.
Meanwhile, the intelligent optimization algorithm should
avoid falling for any local optimal solutions.

In Figures 6–8, the proposed PSO-BCmethod performed
better than the OTGM method when measured by the
normalized energy indicator but was worse in the trolley
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Figure 9: A comparison of the proposed methods and the existing approaches for when the desired locations of the trolleys are set at 1m.
(a) The trolley displacements and control points of Bezier curves; (b) the trolley accelerations; (c) the swing angles of the payloads; (d) the
normalized energies of the payloads.

acceleration indicator measurement. This occurred because
the objective function in (21) only combines three of the indi-
cators: the mean swing angle of the payload, the maximum
swing angle, and the normalized energy of the payload. Addi-
tionally, the proposed PSO-BC method performed better
than the OTGMmethod in last two indicator measurements
as seen in Figures 6–8. In future studies, other indicators
should be added to the objective function in (21) to make the
proposed PSO-BC method perform better.

5. Conclusion

This paper proposed a trajectory planning method based on
the Bezier curve and particle swarm optimization to suppress
payload swing. A five-order Bezier curvewas used to generate
the trolley’s displacement. The desired position of the trolley
was set at the last control point in the Bezier curve, which
guaranteed that the trolley would reach the desired position
accurately. Furthermore, the acceleration of the trolley, which
is a second-order derivative with respect to time 𝑡 of the
trolley’s displacement, was used as the input signal for the
system. In order to make the Bezier curve more numerically
stable, the entire Bezier curvewas constructed from smoothly
connected piecewise Bezier curves. The shape of the trolley’s
displacement would also change whenever the control points
on the Bezier curve changed their position. Particle swarm
optimization was then used to find the optimal control
points on the Bezier curve to make the trolley reach the
desired positionwhilst suppressing the payload’s swing under
the trolley’s velocity and acceleration constraints. Simulation
results with comparisons to existing approaches were then

presented to show the superior performance of the proposed
PSO-BC method.

The main results and conclusions were as follows:

(1) The desired position of the trolley was set as the last
control point of the Bezier curve, which ensured that
the trolley reached its desired position accurately.

(2) Using the control points of the Bezier curve as the
swarm in the particle swarm optimization process
meant that the optimized Bezier curve of the trolley’s
displacement was found by the particle swarm opti-
mization method which satisfied constraints such as
velocity or acceleration limits. The trolley was able to
be moved to its desired position accurately whilst its
payload’s swing angle was kept to a minimum.

(3) Each optimization result could be stored as a data
source, which could then be used as an initial param-
eter on the list of Bezier curve control points. As
data sources increase, the iterative process of the
particle swarm optimization process will become
faster and faster. As the initial state could be any
nonstatic system state, it would therefore be possible
to implement the proposed PSO-BC method in real-
time online.
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