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The problem of cooperative optimal control of multiagent systems with linear periodic continuous-time dynamics is considered.
The state consensus problem is formulated as an optimal control problem in which the consensus requirement is reflected in the
cost.The cost optimization of each subsystem is considered over finite horizon while the states of the agents converge to a common
value, with a control signal that depends on the interactions of the neighboring subsystems. The proposed control law consists
of a local and regional terms to capture local measurements and measurements due to interactions with the neighboring agents,
respectively.These two terms are obtained by solving aHamilton-Jacobi-Bellman partial differential equation. A numerical example
is presented to demonstrate the effectiveness of the proposed method.

1. Introduction

In recent years, there has been a growing interest towards
coordination control of a group of dynamical agents with
prescribed dynamics. Multiagent systems, which consist of
agents and their environments, are considered in many
applications such as multi-robot systems [1–3], unmanned
aerial vehicles [4–7], formation control [8–12], and swarms
[13–16] to help accomplish tasks that cannot be completed by
individual ones.

Various dynamics can be considered for the agents in
a multiagent team. Among these, multiagent systems with
linear periodic dynamics that may be employed in several
applications such as satellite networks or robotic systems, are
considerable.The importance of the study of periodic control
systems is that the properties of periodicity may be used to
achieve more suitable design, and its capability allows better
describing physical dynamics with cyclic behavior such as
Low Earth Orbit (LEO) satellites or robotic systems [17–19].
Furthermore, the theory of periodic systems provides useful
tools to improve the control performance of the closed-loop

systems and also is adequate enough for solving the problems
of time-invariant systems where time-invariant controllers
are inadequate [20, 21].

One of the first works on periodic multiagent systems
was presented [22] for discrete-time dynamical systems by
extending a gradient based optimization approach of a single
periodic system to a multiagent case. The method considers
the network’s cost as a linear combination of agent’s costs and
minimizes it by finding a single periodic output feedback. A
stable optimal state feedback is proposed in [23] to control
a group of periodic agents that can move at different speeds
but only in the same direction. However, the designed control
signal for each agent is considered completely independent
from other agents’ feedback.

Consensus problem is a fundamental topic in the area
of cooperative control of multiagent systems. In a network
of agents, consensus means to reach an agreement (either in
state or output) regarding a certain quantity of interest while
the agents have different initial states [24]. Various control
methods such as optimal control, event-based control, and
sliding mode control have been investigated so far for the
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consensus problem of multiagent systems (see [25, 26] and
the references therein). In [27], the consensus problem is
solved via a periodically intermittent control for a class of
second-order agents while the optimality condition is not
considered. In [28], a networked system whose agents can
only communicate with their local neighbors is considered
and a decentralized event-based control strategy is proposed
for the consensus problem without considering the optimal-
ity conditions. In [29], an optimal controller is designed to
achieve state consensus for a team of agents with discrete-
time dynamics.

A closed-loop solution for optimal control problems
can be achieved by solving HJB equation if one can guess
a suitable solution candidate [30–32]. Among studies on
the optimization of multiagent networks based on the HJB
equation, HJB equations in coupled quadratic forms with
nonquadratic input energy cost have been formed in [33] to
investigate the optimal synchronization control for generic
linear multiagent systems with input saturation. Authors in
[34] focused on interactions among the agents to design a
controller for a multiagent team in continuous-time case to
reach output consensus. The result was implemented on a
group of mobile robot vehicles. However, for the existence of
a solution to HJB equation, the method requires nonsingular
square input matrices. A similar method is incorporated
in [35] to reach an optimum state consensus controller for
a team of nonlinear agents. Authors in [36] designed an
optimal consensus based formation controller for a team
of mobile robots via HJB equation by considering both
full connectivity and partial connectivity for their assumed
network.

The main focus of this paper is on designing an optimum
group cooperation in the sense of optimal consensus for a
team of agents with continuous-time periodic dynamics. We
assume that each agent of the team is connected to some
other agents known as neighbors such that all the agents are
in connection with each other directly or indirectly, such that
the connectivity of the entire network is guaranteed. Having
only a limited access to the information from the neighbors,
the agents have to exchange information to achieve coop-
eration. Considering this challenge, we design a distributed
control system with a separate controller for each agent
that uses partial information of its neighbors. Each agent in
the proposed team has its own cost function that must be
minimized while the main goal of the team is to reach state
consensus. Unlike the design in [22], we design distributed
controllers for the agents tominimize their costs according to
the feedback signals received from neighbors and also their
own information. Similar to themethod incorporated in [37],
we assume that the control signal consists of two parts, but,
unlike [34], in our proposed design method both parts are in
feedback form. By the connectivity assumption, to reach state

consensus, it suffices to consider state consensus for each
agent only with its neighbors. The consensus requirement is
reflected in the cost function of each agent. Similar to [34], we
use the general method of HJB for solving the minimization
problem, but, unlike that work, the input matrices do not
need to be invertible. In addition, we incorporate interval
numbers for the first time for periodic systems in order to
extend a result of LTI systems to periodic systems.

The paper is organized as follows: Section 2 provides
the preliminary background and the problem definition. In
Section 3, our strategy to reach the optimal control signal
is explained and the proposed design method is offered. In
Section 4, a numerical example and the simulation results
are provided. Finally, the conclusion remarks are given in
Section 5.

2. The Problem Definition and Preliminaries

A multiagent team consists of a set of agents 𝐴 = {𝑎𝑖, 𝑖 =1, . . . ,𝑀}, where𝑀 denotes the number of agents in the team.
Similar to [32, 38, 39] all agents are assumed to have the same
dynamicalmodel, which is typical inmany applications. Each
agent id considered a linear periodic continuous-time system
of the following form:

�̇�𝑖 (𝑡) = 𝐴 (𝑡) 𝑥𝑖 (𝑡) + 𝐵 (𝑡) 𝑢𝑖 (𝑡) , (1)

where 𝑥𝑖(𝑡) ∈ R𝑛×1 and 𝑢𝑖(𝑡) ∈ R𝑚×1 are state and input
vectors, respectively, and 𝐴(𝑡) ∈ R𝑛×𝑛 and 𝐵(𝑡) ∈ R𝑛×𝑚 are
periodic matrices with period 𝜔, i.e., 𝐴(𝑡 + 𝜔) = 𝐴(𝑡) and𝐵(𝑡 + 𝜔) = 𝐵(𝑡).

The overall system can be written as follows:

�̇� (𝑡) = 𝐴𝐷 (𝑡) 𝑋 (𝑡) + 𝐵𝐷 (𝑡) 𝑈 (𝑡) , (2)

where 𝑋(𝑡) ∈ R𝑛𝑀×1 and 𝑋(𝑡) = [𝑥𝑇1 , . . . , 𝑥𝑇𝑀]𝑇, 𝑈(𝑡) ∈
R𝑚𝑀×1 and 𝑈(𝑡) = [𝑢𝑇1 , . . . , 𝑢𝑇𝑀]𝑇, 𝐴𝐷(𝑡) ∈ R𝑛𝑀×𝑛𝑀 and𝐴𝐷 = diag{𝐴, . . . , 𝐴}, 𝐵𝐷(𝑡) ∈ R𝑛𝑀×𝑚𝑀, and 𝐵𝐷 =
diag{𝐵, . . . , 𝐵}.

For cooperation and coordination among the team’s
agents, each agent must be aware of the status of other
agents, which in this work is considered as their states. Hence,
the agents need to communicate with each other through
two-way links. It is assumed that the network is partially
connected such that there is no isolated agent in the team and
that all agents are connected to each other either directly or
indirectly via their neighboring sets. The connection among
the neighboring agents is defined by an𝑀 ×𝑀 nonsingular
and symmetric matrix 𝑁 = [𝑛𝑖𝑗] known as neighboring
matrix with 𝑛𝑖𝑖 = 0 and other entries as follows:

𝑛𝑖𝑗 = 𝑛𝑗𝑖 = {{{
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛𝑦 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑖 𝑎𝑛𝑑 𝑎𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (3)
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In this work, we consider the problem of optimal state
consensus for a team of periodic agents; i.e., all agents
in a neighboring set must reach to the same state. For
reaching state consensus suppose that one arbitrary agent𝑎𝑖 approaches the desired state; then any other agent 𝑎𝑘 for
which 𝑛𝑖𝑘 = 1 can directly reach the common reference state
too. For an agent 𝑎𝑘 such that 𝑛𝑖𝑘 = 0 connectivity assumption
implies the existence of an information path between 𝑎𝑖
and 𝑎𝑘 through their neighbors which helps 𝑎𝑘 to reach the
desired value. Considering the mentioned hypothesis, the
main aim of this work is to minimize each individual agent
cost function via its local and regional feedback signals such
that all agents in the team reach the state consensus.

According to what is mentioned above, we define the cost
function for agent 𝑎𝑖 by importing state consensus condition
as a part of cost, by the following expression:

𝐽𝑖 = 12𝑥𝑇𝑖 (𝑇)𝑄𝑓𝑥𝑖 (𝑇) + 12
⋅ ∫𝑇
0

[
[
𝑀∑
𝑗=1

𝑛𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)𝑇𝑄(𝑥𝑖 − 𝑥𝑗) + 𝑢𝑇𝑖 𝑅𝑢𝑖]]𝑑𝑡,
(4)

where matrix 𝑄𝑓 ∈ R𝑝×𝑝 is positive semi-definite, 𝑄 ∈ R𝑛×𝑛

is a symmetric positive definite matrix, and 𝑅 ∈ R𝑚×𝑚 is a
symmetric positive definite matrix.

3. Main Results

In this section, we are going to propose 𝑀 distinct control
laws to minimize cost functions (4) for the periodic multia-
gent system (1). To this end, we are going to use HJB partial
differential equations [40, 41].

For a teamof agentswith dynamical equations introduced
by (1) and costs introduced by (4), the corresponding HJB
equation for agent 𝑎𝑖 is as follows:
− 𝜕𝑉𝑖𝜕𝑡 (𝑡,𝑥𝑖) = min

𝑢𝑖∈𝑈

{{{
12 (
𝑀∑
𝑗=1

𝑛𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)𝑇𝑄(𝑥𝑖 − 𝑥𝑗)

+ 𝑢𝑇𝑖 𝑅𝑢𝑖) + 𝜕𝑉𝑖𝜕𝑥𝑖 (𝑡,𝑥𝑖) (𝐴𝑥𝑖 + 𝐵𝑢𝑖)
}}} ,

(5)

where 𝑉𝑖 is a value function which must be chosen such
that the partial differential equation (5) satisfies with the
boundary condition 𝑉𝑖(𝑇, 𝑥𝑖) = 0.

Due to the connectivity assumption, each agent of the
introduced model receives information from its neighboring
agents and passes its own information to them through
existing communications links. As mentioned before, the
control law for each agent consists of a local feedback as
well as regional feedback signals received from its neighbors.
Thus, we can decompose the control signal 𝑢𝑖 of agent 𝑎𝑖 into
the following two parts:

𝑢𝑖 = 𝐾𝑖𝑖𝑥𝑖 + 𝑀∑
𝑗=1

𝑛𝑖𝑗𝐾𝑖𝑗𝑥𝑗 𝑓𝑜𝑟 𝑖 = 1, . . . ,𝑀, (6)

where𝐾𝑖𝑖 is the local feedback matrix and𝐾𝑖𝑗 (for 𝑛𝑖𝑗 = 1) are
regional feedbackmatrices corresponding to the neighboring
agents. We also consider the following theorem to construct
the required feedback matrices such that consensus is guar-
anteed.

Lemma 1 (see [42]). There exists a state feedback𝑈 = 𝐹𝑋 such
that the system (2) achieves consensus if and only if there exist
a positive definite matrixX and a matrixY such that

(𝑖) 𝐴XS + 𝐵YS = 0
(𝑖𝑖) S

𝑇
⊥ (𝐴X +X𝐴𝑇 + 𝐵Y +Y

𝑇𝐵𝑇)S⊥ < 0,
(𝑖𝑖𝑖) X = S⊥S

𝑇
⊥XS⊥S

𝑇
⊥ + SS

𝑇
XSS

𝑇

(7)

where S is an orthonormal matrix in R𝑛𝑀×𝑝, for some 𝑝, and
S⊥ is its orthonormal complement.Then the control law can be
reconstructed by 𝐹 = YX−1.

Remark 2. The entries of a periodic matrix in one period
can be expressed as interval numbers, which are a set of real
numbers between two numbers: 𝑎 = [𝑎, 𝑎] = {𝑥 | 𝑎 <𝑥 < 𝑎} [43]. Although Lemma 1 was originally given for time-
invariant systems, using the calculus of interval numbers and
following the same derivations given in the proof of Lemma 1,
one can easily yield the same result for the periodic systems.

The following theorem gives 𝐾𝑖𝑖 and 𝐾𝑖𝑗 that leads to the
optimal control law for minimization of cost function (4),
while state consensus is achieved.

Theorem3. Assume a team of periodic agents whose dynamics
are governed by (1) with controllable pair (𝐴,𝐵), and, with the
entire system dynamics of given by (2), and the cost functions
are governed by (4). For the agent 𝑎𝑖, ( for 𝑖 = 1, . . . ,𝑀),
consider the control law (6) with local feedback matrix,

𝐾𝑖𝑖 = −𝑅−1𝐵𝑇𝑆𝑖, (8)

and the neighboring feedback matrices,

𝐾𝑖𝑗 = −𝑅−1𝐵𝑇𝐿𝑇𝑖𝑗, (9)

in which 𝑆𝑖 is an 𝑛 × 𝑛 positive definite symmetric matrix with
continuously differentiable entries computed from:

̇𝑆𝑖 + 𝑆𝑖𝐴 + 𝐴𝑇𝑆𝑖 − 𝑆𝑖𝐵𝑅−1𝐵𝑇𝑆𝑖 + (𝑀∑
𝑗=1

𝑛𝑖𝑗)𝑄 = 0
𝑆𝑖 (𝑇) = 𝑄𝑓,

(10)

and 𝐿 𝑖𝑗 (for 𝑗 = 1, . . . ,𝑀 𝑠.𝑡. 𝑛𝑖𝑗 = 1) are 𝑛×𝑛 positive definite
matrices with continuously differentiable entries computed
from:

�̇� 𝑖𝑗 + (𝐴 − 𝐵𝑅−1𝐵𝑇𝑆𝑖)𝑇 𝐿𝑇𝑖𝑗 − 𝑄 = 0, 𝐿 𝑖𝑗 (𝑇) = 0, (11)

then the proposed control protocol (6) will minimize the cost (4)
while state consensus is achieved.
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Proof. Consider a continuously differentiable value function
candidate of the following form:

𝑉𝑖 (𝑡,𝑥𝑖) = 12𝑥𝑇𝑖 𝑆𝑖 (𝑡) 𝑥𝑖 +
𝑀∑
𝑗=1

𝑛𝑖𝑗𝑥𝑇𝑗 𝐿 𝑖𝑗 (𝑡) 𝑥𝑖
+ 12
𝑀∑
𝑗=1

𝑛𝑖𝑗𝑥𝑇𝑗 𝐺𝑗 (𝑡) 𝑥𝑗,
(12)

that should satisfy the HJB equation (5). Here, 𝑆𝑖, 𝐿 𝑖𝑗, and𝐺𝑗 are 𝑛 × 𝑛matrices with continuously differentiable entries
where 𝑆𝑖 is symmetric positive definite and 𝐿 𝑖𝑗 is positive
definite. Substituting (12) into (5) yields:

− 12𝑥𝑇𝑖 ̇𝑆𝑖𝑥𝑖 − 𝑥𝑇𝑖
𝑀∑
𝑗=1

𝑛𝑖𝑗�̇� 𝑖𝑗 (𝑡) 𝑥𝑗 − 12
𝑀∑
𝑗=1

𝑛𝑖𝑗𝑥𝑇𝑗 �̇�𝑗 (𝑡) 𝑥𝑗

= min
𝑢𝑖∈𝑈

{{{
12 (
𝑀∑
𝑗=1

𝑛𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)𝑇𝑄(𝑥𝑖 − 𝑥𝑗)

+ 𝑢𝑇𝑖 𝑅𝑢𝑖) + (𝑥𝑇𝑖 𝑆𝑖 + 𝑀∑
𝑗=1

𝑛𝑖𝑗𝑥𝑇𝑗 𝐿 𝑖𝑗)(𝐴𝑥𝑖 + 𝐵𝑢𝑖)}}} .

(13)

To carry out the minimization on the right-hand side, we
let:

𝑑𝑑𝑢𝑖 (
12 (
𝑀∑
𝑗=1

𝑛𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)𝑇𝑄(𝑥𝑖 − 𝑥𝑗) + 𝑢𝑇𝑖 𝑅𝑢𝑖)

+ (𝑥𝑇𝑖 𝑆𝑖 + 𝑀∑
𝑗=1

𝑛𝑖𝑗𝑥𝑇𝑗 𝐿 𝑖𝑗)(𝐴𝑥𝑖 + 𝐵𝑢𝑖)) = 0,
(14)

which yields

𝑢∗𝑖 = −𝑅−1𝐵𝑇𝑆𝑖𝑥𝑖 − 𝑅−1𝐵𝑇 𝑀∑
𝑗=1

𝑛𝑖𝑗𝐿𝑇𝑖𝑗𝑥𝑗. (15)

where the first term is the local control signal and the second
term is the regional counterpart. To show that the resulting𝑢∗𝑖 minimizes the objective function, we consider the second
derivative of the right-hand side of (14) with respect to 𝑢𝑖 as
follows:

𝑑2𝑑𝑢𝑖2 (
12 (
𝑀∑
𝑗=1

𝑛𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)𝑇𝑄(𝑥𝑖 − 𝑥𝑗) + 𝑢𝑇𝑖 𝑅𝑢𝑖)

+ (𝑥𝑇𝑖 𝑆𝑖 + 𝑀∑
𝑗=1

𝑛𝑖𝑗𝑥𝑇𝑗 𝐿 𝑖𝑗)(𝐴𝑥𝑖 + 𝐵𝑢𝑖)) = 𝑅.
(16)

According to our assumptions, 𝑅 is a positive definite matrix,
and, thus, the resulting 𝑢∗𝑖 in (15) is the optimum control
signal.

To determine 𝑆𝑖 and 𝐿 𝑖𝑗, one can substitute (15) into (13),
which leads to the following ODEs:

̇𝑆𝑖 + 𝑆𝑖𝐴 + 𝐴𝑇𝑆𝑖 − 𝑆𝑖𝐵𝑅−1𝐵𝑇𝑆𝑖 + (𝑀∑
𝑗=1

𝑛𝑖𝑗)𝑄 = 0,
𝑆𝑖 (𝑇) = 𝑄𝑓

�̇� 𝑖𝑗 + (𝐴 − 𝐵𝑅−1𝐵𝑇𝑆𝑖)𝑇 𝐿𝑇𝑖𝑗 − 𝑄 = 0,
𝐿 𝑖𝑗 (𝑇) = 0

�̇�𝑗 − 𝐿 𝑖𝑗𝐵𝑅−1𝐵𝑇𝐿𝑇𝑖𝑗 + 𝑄 = 0.
𝐺𝑗 (𝑇) = 0

(17)

The last two ODEs must hold for all 𝑗 = 1, . . . ,𝑀 s.t. 𝑛𝑖𝑗 =1.
The first equation in (17) is a matrix differential Riccati

equation. According to [44], positive definiteness of 𝑄 and𝑄𝑓 and the controllability of (𝐴,𝐵) guarantee the existence
of the unique 𝑆𝑖 satisfying in the first equation. The two
other differential equations in (17) are linear in 𝐿 𝑖𝑗 and 𝐺𝑗,
respectively. Due to the theorem of existence and uniqueness
of solutions to the linear first-order differential equations
[45], the existence of unique solutions to two remaining
equations in (17) is guaranteed by existence of 𝑆𝑖.This implies
that the HJB equation (5) has a solution in the form of (12)
which satisfies the boundary conditions. This leads to the
optimal solution.

Now consider presentation of entire system as (2); then
the optimum control signal (15) in entire form is as follows:

𝑈 = −𝑅−1𝐷 𝐵𝑇𝐷 (𝑆 + 𝐿)𝑋, (18)

where 𝑅𝐷 = diag{𝑅, . . . , 𝑅}, 𝑆 = diag{𝑆1, . . . , 𝑆𝑀} and 𝐿 = [𝑙𝑖𝑗]
s.t. 𝑙𝑖𝑗 = 𝐿𝑇𝑖𝑗 for 𝑛𝑖𝑗 = 1 and 𝑙𝑖𝑗 = 0 for 𝑛𝑖𝑗 = 0. Then the entire
closed-loop form is �̇� = 𝐴𝑐𝑙𝑋with𝐴𝑐𝑙 = 𝐴𝐷−𝐵𝐷𝑅−1𝐷 𝐵𝑇𝐷(𝑆+𝐿). Now let S ∈ R𝑛𝑀×𝑝 be an orthonormal basis for the
nullspace of𝐴𝑐𝑙 andS⊥ be its orthonormal complement, i.e.,
S𝑇⊥S⊥ = 𝐼 and S𝑇⊥S = 0, then, for every X > 0, the third
relation in (7) of Lemma 1 is satisfied. If it does not, then there
existsX > 0 such that:

X ̸= S⊥S
𝑇
⊥XS⊥S

𝑇
⊥ + SS

𝑇
XSS

𝑇. (19)

Left multiplying (19) by S⊥and right multiplying it by S𝑇⊥
yield S𝑇⊥XS⊥ ̸= S𝑇⊥XS⊥ which is contradiction. Due to the
definition ofS, matrix [S⊥ S] is invertible and [S⊥ S]−1 =[ S𝑇
⊥

S𝑇
]. Thus, we have:

X
−1 = ([S⊥ S] [S𝑇⊥XS⊥ 0

0 S𝑇XS
][S𝑇⊥

S𝑇
])−1

= S⊥ (S𝑇⊥XS⊥)−1S𝑇⊥ + S (S𝑇XS)−1S𝑇.
(20)
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Due to the definition ofS, we have𝐴𝑐𝑙S = 0 or equivalently:
(𝐴𝐷 − 𝐵𝐷𝑅−1𝐷 𝐵𝑇𝐷 (𝑆 + 𝐿))S = 0. (21)

As 𝑆 and 𝐿 are positive definite matrices, we can conclude
that 𝑆 + 𝐿 is also positive definite and invertible. Therefore,
By choosing X = (𝑆 + 𝐿)−1, and Y = −𝑅−1𝐷 𝐵𝑇𝐷, the relation
(21) can be represented as:

(𝐴𝐷 + 𝐵𝐷YX
−1)S = 0, (22)

Now by right multiplying (22) by S𝑇𝑋S and making use of
(20) and noting that SS𝑇𝑋S = 𝑋S we obtain:

(𝐴𝐷X + 𝐵𝐷Y)S = 0, (23)

Thus, the first relation in (7) satisfies. To verifying the second
relation, let:

𝑥 = [S⊥ S] [𝜁𝜂] = S⊥𝜁 +S𝜂, (24)

then we have the entire closed-loop system as follows:

[S⊥ S] [ ̇𝜁
̇𝜂] = 𝐴𝑐𝑙 [S⊥ S] [𝜁𝜂]
= 𝐴𝑐𝑙S⊥𝜁 + 𝐴𝑐𝑙S𝜂,

(25)

or equivalently:

[ ̇𝜁
̇𝜂] = [

S𝑇⊥

S𝑇
]𝐴𝑐𝑙S⊥𝜁 = [S𝑇⊥𝐴𝑐𝑙S⊥ 0

S𝑇𝐴𝑐𝑙S⊥ 0][
𝜁
𝜂] , (26)

where S⊥ is the orthonormal complement of S. For every𝜁(0) = 𝜁0, system ̇𝜁 = S𝑇⊥𝐴𝑐𝑙S⊥𝜁 converges to a point in𝑠𝑝𝑎𝑛{S} and lim𝑡→∞𝜁(𝑡) = 0.Therefore, 𝜁(𝑡) = 𝑒S𝑇⊥𝐴𝑐𝑙S⊥𝑡𝜁(0)
implies the eigenvalues of S𝑇⊥𝐴𝑐𝑙S⊥ have negative real part.
Thus, there exists a matrix 𝑃 > 0 such that:

S
𝑇
⊥𝐴𝑐𝑙S⊥𝑃 + 𝑃S𝑇⊥𝐴𝑇𝑐𝑙S⊥ < 0. (27)

By choosing 𝑃 = S𝑇⊥XS⊥ and substituting the above-
mentioned X and Y, the second relation in (7) is obtained
and consensus is achieved.

4. Numerical Example

In this section, the proposed approach is applied to a multia-
gent team consisting of 3 identical SISO periodic subsystems.
The matrices of each linear time periodic agent are given by
[46] which are borrowed from an aeromechanic system:

𝐴 = [−1 + sin 𝑡 0
1 − cos 𝑡 −3] ,

𝐵 = [−1 − cos 𝑡
2 − sin 𝑡 ]

(28)

component1 of agent1
component2 of agent1
component1 of agent2

component2 of agent2
component1 of agent3
component2 of agent3
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Figure 1: States of the system.

The neighboring matrix of this system is given by:

𝑁 = [[
0 1 01 0 10 1 0]] (29)

Required matrices for cost functions are taken as:

𝑅 = 𝐼1×1,
𝑄 = [0 00 1]

(30)

Appling ODEs (16) on the controllable pair (𝐴,𝐵) leads to
the following results:

𝑢∗1 = [1 + cos 𝑡 −2 + sin 𝑡] ([0.0662 0.0138
0.0138 0.1560] 𝑥1

− [−0.0408 −0.4093
0.6841 −0.2276] 𝑥2)

𝑢∗2 = [1 + cos 𝑡 −2 + sin 𝑡] ([0.0992 0.0328
0.0328 0.2963] 𝑥2

− [−0.0505 −0.4624
0.7969 −0.1384] (𝑥1 − 𝑥3))

𝑢∗3 = [1 + cos 𝑡 −2 + sin 𝑡] ([0.0662 0.0138
0.0138 0.1560] 𝑥3

− [−0.0408 −0.4093
0.6841 −0.2276] 𝑥2)

(31)

Figure 1 that shows states of the system illustrates state
consensus of the team for the arbitrary initial state 𝑥1(0) =
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Figure 2: Difference of states of agent 1 and agent 2.
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Figure 3: Difference of states of agent 1 and agent 3.

[1 −1]𝑡, 𝑥2(0) = [2 3]𝑡, 𝑥3(0) = [0 2]𝑡 over one period𝜔 = 2𝜋. Figures 2, 3, and 4 show differences between states
of each of the two separate agents. These figures verify that
the state differences converge to zero over one period which
is equivalent to state consensus.

5. Conclusion

In this paper, the problem of cooperative control in a
multiagent team with periodic dynamics was investigated
and a control protocol to minimize agent’s individual costs
subject to availability of some other agent’s information was
introduced. The control law was obtained from solving HJB
partial differential equation and consists of local and regional
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Figure 4: Difference of states of agent 2 and agent 3.

terms that are stated in feedback form. In addition, the
states of all the agents in the team converge to a common
reference value, and thus the state consensus is achieved.
The effectiveness of the proposed method was demonstrated
through an illustrative example.
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