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Estimators for the parameters of theMarkovianmultiserver queues are presented, from samples that are the number of clients in the
system at arbitrary points and their sojourn times. As estimation in queues is a recognizably difficult inferential problem, this study
focuses on the estimators for the arrival rate, the service rate, and the ratio of these two rates, which is known as the traffic intensity.
Simulations are performed to verify the quality of the estimations for sample sizes up to 400.This research also relates notable new
insights, for example, that the maximum likelihood estimator for the traffic intensity is equivalent to its moment estimator. Some
limitations of the results are presented along with a detailed numerical example and topics for future developments in this research
area.

1. Introduction

One of the major research interests in queuing theory is
to study the performance characteristics of the queues as
a function of their parameters, namely, the arrival rate 𝜆,
the service rate 𝜇, or else the traffic intensity 𝜌. The math-
ematical problem dealt with here is how these parameters
can be estimated using some statistical inferential method.
This article focuses on the M/M/s queuing system, which
in Kendal notation represents the Markovian number of
arrivals, exponential (Markovian) service times, s identical
serversworking in parallel, and an infinitemaximumcapacity
of users simultaneously allowed in the system, which is
one of the classical basic queuing models [1]. From the
above parameters and reminding that for M/M/s queues the
traffic intensity is defined as the ratio 𝜌 = 𝜆/𝑠𝜇, important
performance measures can be derived, such as the empty
system probability P0, the expected number of customers in
the system L, the expected number of customers in the queue
Lq, the expected time in the systemW, and the expected time
in the queueWq.

One of the classical basic queuing models [1], M/M/s
queues havemany applications and consequently great neces-
sity of inference. In fact, many real-life systems are approx-
imately described by queuing models, including computer

and telecommunication networks [2–4], manufacturing and
service systems [5–7], and heathcare systems [8–10].

Classical inference results for queues (based on the maxi-
mum likelihood) are unknown before the results reported in
parallel by Clark [11], with the development of the maximum
likelihood estimates for 𝜆 and 𝜇 for Markovian single-served
queues, that is, M/M/1 queues, in Kendal notation, and by
Benes [12], for Markovian infinite queues, that is, M/M/∞
queues, in Kendal notation. More recently, Schruben and
Kulkarni [13] proved that popular performance measures
unfortunately do not have expected values and standard
errors, Basawa and Prabhu [14] discovered some asymptotic
properties of the estimators for the performance evaluation
of M/M/1 queues, Zheng and Seila [15] showed that under
a certain upper limit for the traffic intensity (𝜌 < 1), the
estimators do exist and have the necessary properties, and
Almeida et al. [16] proposed bias correction methods for
classical estimators forM/M/1 queues.

However, probably because of the inherent computational
difficulties, Bayesian inference has not gained enough interest
until the pioneering results reported by Armero and Bayarri
[17–19], which were followed by the improvements from
Armero and Conesa [20–23], McGrath et al. [24], McGrath
and Singpurwalla [25], Choudhury and Borthakur[26], and,
more recently, Almeida and Cruz [27], Cruz et al. [28],
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Quinino and Cruz [29], Cruz et al.[30], and Choudhury and
Basak, [31], among many others.

Almost all the literature that addresses estimation issues
describes methods that require the continuous observation
of the process over a fixed interval of time. Among the
exceptions is the article by Basawa et al. [32], which considers
the estimation for M/M/1 queues from the sojourn time
data, and the articles by Choudhury and Borthakur [26]
and Chowdhury and Mukherjee [33], in which the number
of customers present in the M/M/1 queue at successive
departure epochs is used to estimate the traffic intensity. In
Ross et al. [34], a method that requires the numbers in the
queue at successive time points, which are not necessarily
equally spaced, has been developed. The specific results
presented by Ross et al. [34] apply toM/M/s queues with large
number of server s (in particular when 𝑠 > 40, a limit that
generates the smallest estimation errors).

Thus, this study aims to derive a maximum likelihood
estimator for𝜌 inM/M/s queues, from samples of the number
of clients in the system at arbitrary points, which has been
shown to be conveniently equivalent to the moment esti-
mator. Additionally, with the use the additional information
from samples of the sojourn times, a maximum likelihood
estimator for the arrival and the service rates is derived. To
the best of the authors’ knowledge, these have not been done
before.

Summarizing, the main contributions of this paper are
as follows. The traffic intensity moment estimator is proved
to be equal to the maximum likelihood estimator. Also,
it is shown that if additional information of the sojourn
times is used then estimators for the arrival and service
rates can be deduced. Finally, it is demonstrated by extensive
computational experiments that the method of moments is
competitive to estimate arrival and service rates in M/M/s
queues.

The rest of this paper is organized as follows. In the
next section, the probabilistic model of the M/M/s queue is
detailed, the respective maximum likelihood estimator for𝜌 is deduced, demonstrating its equivalence to the moment
estimator, and the estimators for 𝜆 and 𝜇 are derived. In
the following section, results from Monte Carlo simulations
are presented to attest the efficiency of the estimators, along
with an illustrative numerical example. In the last section,
the paper is concluded, with discussions, final remarks, and
the presentation of some topics for future research in this
area.

2. Materials and Methods

2.1. Probabilistic Model. InM/M/s queues, the arrivals of the
customers are assumed to follow a Poisson process with rate𝜆, which means that the times between successive arrivals
are independent exponentially distributed random variables
with mean 1/𝜆. Upon arrival, a customer goes immediately
into service, if any of the servers are free, or else joins the
queue if all s servers are busy. After service, a customer leaves
the system and if there are any customers waiting, the next
one in line enters the service. The successive service times

are assumed to be independent exponential random variables
with mean 1/𝜇.

Denoting by𝑋(𝑡) the number in the system at time t, then{𝑋(𝑡), 𝑡 ≥ 0} is a birth-and-death process with 𝜇𝑛 = 𝑛𝜇,
if 1 ≤ n ≤ s; 𝜇𝑛 = 𝑠𝜇, if n > s; and 𝜆𝑛 = 𝜆, if 𝑛 ≥ 0.
Defining 𝜌 = 𝜆/𝑠𝜇 as the traffic intensity (also known as the
server utilization), it is required that 𝜌 < 1, for the queue
to be stable, which is a common assumption in queuing
theory [1]. The traffic intensity 𝜌 may also be seen as the
average proportion of time that each of the servers is occupied
(assuming that the jobs finding more than one vacant server
choose their servers randomly). If the traffic intensity is such
that 𝜌 < 1, then the system is under equilibrium and it
has a stationary distribution. From the theory developed for
birth-and-death processes, the stationary distribution of the
number of customersN in the system at the departure epochs
is given by (for instance, see Gross et al. [1])

𝑃𝑛 ≡ 𝑃 (𝑁 = 𝑛) = {{{{{{{

(𝑠𝜌)𝑛𝑛! 𝑃0, 0 < 𝑛 ≤ 𝑠,
𝑠𝑠𝜌𝑛𝑠! 𝑃0, 𝑛 > 𝑠, (1)

in which 𝑃0 ≡ 𝑃(𝑁 = 0) is given from the usual boundary
condition that the probabilities must sum to 1; that is,

𝑃0 = (𝑠−1∑
𝑗=0

(𝑠𝜌)𝑗𝑗! + (𝑠𝜌)𝑠𝑠! 1(1 − 𝜌))
−1

. (2)

2.2. Maximum Likelihood Estimator for the Traffic Intensity.
In this section, the traffic intensity 𝜌 is the focus; that is, the
ratio 𝜌 = 𝜆/(𝑠𝜇). To generate data, it is necessary to observe
the system at arbitrary epochs. Such a scheme ensures that
the data-generating process is consistent with the distribution
given by (1). Assume that the number of customers in the
queue is 𝑥𝑖. If x = {𝑥1, 𝑥2, ..., 𝑥ℓ} constitutes our sample of
size ℓ, then the corresponding likelihood function is

𝐿 (x | 𝜌) = ℓ∏
𝑖=1

[(𝑠𝜌)𝑥𝑖𝑥𝑖! 𝑃0𝐼{0≤𝑥𝑖≤𝑠} + 𝑠𝑠𝜌𝑥𝑖𝑠! 𝑃0𝐼{𝑥𝑖>𝑠}] , (3)

in which 𝐼{∙} is the indicator function. It is pertinent to
note here that this data-generating scheme must ensure the
independence of the sample observations, provided that they
are sufficiently spaced in time.

The maximum likelihood estimator for the traffic inten-
sity 𝜌 is the value that maximizes the likelihood given by (3)
for 0 < 𝜌 < 1. Observe that (3) may be written as 𝐿(x | 𝜌) =𝛼∏ℓ𝑖=1𝜌𝑥𝑖𝑃0, in which 𝛼 is a constant, and that the value that
maximizes (3) also maximizes

𝑈(x | 𝜌) = ℓ∏
𝑖=1

𝜌𝑥𝑖𝑃0 = 𝑃𝑛0 𝜌∑ℓ𝑗=1 𝑥𝑗 . (4)
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Figure 1: Behavior of the likelihood function, 𝐿(x | 𝜌), and the derivative of its natural logarithm with respect to 𝜌, 𝑢(x | 𝜌), for s = 4, and
sample value 𝑥 = 4.03.

The value that maximizes (4) is the maximum likelihood
estimator, 𝜌MLE. Applying the natural logarithm to (4), we
obtain

ln [𝑈 (x | 𝜌)] = 𝑛 ln[[
𝑠−1∑
𝑗=0

(𝑠𝜌)𝑗𝑗! + 𝑠𝑠𝜌𝑠𝑠! (1 − 𝜌)]]
+ ℓ∑
𝑖=0

𝑥𝑖 ln 𝜌.
(5)

Making the derivative of (5) equal to zero will produce

𝑢 (x | 𝜌)
= −𝑛𝑃0 [[

𝑠−1∑
𝑗=0

𝑠𝑗𝜌𝑗−1(𝑗 − 1)! + 𝑠𝑠𝑠! 𝑠 (1 − 𝜌) 𝜌
𝑠−1 + 𝜌𝑠

(1 − 𝜌)2 ]
]

+ ∑ℓ𝑖=0 𝑥𝑖𝜌 = 0.
(6)

The value that solves (6) is the maximum likelihood estima-
tor,𝜌MLE.However, because (6) is not algebraically simple, it is
necessary to implement a numerical search to find 𝜌MLE, aswe
will show shortly. For our convenience, the software selected
was MATLAB� [35], but many others could be used as well.

To better understand the behavior of (6), it is interesting
to closely analyze some special cases of s. Table 1 illustrates
some of these special cases for s = 1, 2, 3, and 4, in which x =∑ℓi=1 xi/ℓ. Observe that each polynomial is of a degree equal
to the number of servers, s. Figure 1 illustrates the likelihood
function, 𝐿(x | 𝜌), and the derivative of its natural logarithm
with respect to 𝜌, 𝑢(x | 𝜌), for s= 4 and sample value x = 4.03.
Themaximum likelihood estimated by the software is 𝜌MLE =0.7180. It is noticeable that the functions were well behaved
and seem to be unimodal. Other examples for different values
of s were tested, and the results (not shown) were similar.

2.3. Traffic Intensity Moment Estimator versus the Maximum
Likelihood Estimator. The moment estimator [36] for 𝜌 can
be obtained by setting the analytical expression of the
expected number of clients in the queuing system, L, equal
to the average of the sample of the number of clients at the
arbitrary epochs, 𝑥. In accordance with Gross et al. [1], the
expected number of clients in an M/M/s queuing system is
given by

𝐿 = 𝜌 (𝜌𝑠)𝑠
𝑠! (1 − 𝜌)2𝑃0 + 𝑠𝜌. (7)

To obtain the moment estimator, 𝜌ME, we set (7) equal to
the average of the sample, 𝑥. In other words, the moment
estimator is the value 𝜌ME that satisfies

𝐿 = 𝜌 (𝜌𝑠)𝑠
𝑠! (1 − 𝜌)2𝑃0 + 𝑠𝜌 = 𝑥, (8)

which should be solved preferably by numerical methods
since finding an analytical solution does not seem to be trivial.

After some computational experiments (not shown),
the authors observed that the results from the maximum
likelihood andmoment estimators were actually equal, which
led to the conjecture that, in M/M/s queuing systems, the
maximum likelihood estimator and the moment estimator
for the traffic intensity 𝜌 are equivalent. Indeed, it is easy
to verify that both estimators are equal by showing that an
algebraic manipulation of (6) will produce (7):

𝑃0 [[𝜌𝑠(
𝑠−1∑
𝑗=0

𝑠𝑗−1𝜌𝑗−1(𝑗 − 1)! + 𝑠𝑠−1𝜌𝑠−1(𝑠 − 1)! (1 − 𝜌))

+ 𝜌 (𝑠𝜌)𝑠
𝑠! (1 − 𝜌)2]] = 𝑥 󳨐⇒
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Table 1: Special cases for (6).

s Eq. (6)
1 𝜌 (𝑥 + 1) − 𝑥 = 0
2 𝜌2𝑥 + 2𝜌 − 𝑥 = 0
3 𝜌3 (3𝑥 − 3) + 𝜌2 (6 + 𝑥) + 𝜌 (6 + 2𝑥) − 𝑥 = 0
4 𝜌4 (𝑥2 − 1) + 𝜌3 (𝑥4 + 34) + 𝜌2 (−3𝑥16 + 32) + 𝜌(34 − 3𝑥8 ) − 3𝑥16 = 0

𝑃0 [𝜌𝑠(𝑠−2∑
𝑦=0

𝑠𝑦𝜌𝑦𝑦! + 𝑠𝑠−1𝜌𝑠−1(𝑠 − 1)! (1 − 𝜌)) + 𝜌 (𝑠𝜌)𝑠
𝑠! (1 − 𝜌)2]

= 𝑥 󳨐⇒
𝑃0 [𝜌𝑠(𝑠−2∑

𝑦=0

𝑠𝑦𝜌𝑦𝑦! + 𝑠𝑠−1𝜌𝑠−1(𝑠 − 1)! (1 + 𝜌1 − 𝜌))

+ 𝜌 (𝑠𝜌)𝑠
𝑠! (1 − 𝜌)2] = 𝑥 󳨐⇒

𝑃0 [𝜌𝑠(𝑠−1∑
𝑦=0

𝑠𝑦𝜌𝑦𝑦! + 𝑠𝑠−1𝜌𝑠−1(𝑠 − 1)! 𝜌1 − 𝜌) + 𝜌 (𝑠𝜌)𝑠
𝑠! (1 − 𝜌)2]

= 𝑥 󳨐⇒
𝑃0 [𝜌𝑠(𝑠−1∑

𝑦=0

(𝑠𝜌)𝑦𝑦! + (𝑠𝜌)𝑠𝑠! (1 − 𝜌)) + 𝜌 (𝑠𝜌)𝑠
𝑠! (1 − 𝜌)2] = 𝑥 󳨐⇒

𝐿 = 𝑠𝜌 + 𝜌 (𝑠𝜌)𝑠
𝑠! (1 − 𝜌)2𝑃0 = 𝑥.

(9)

Thus, the moment estimator is in fact equal to the maximum
likelihood estimator, which is very convenient because, in
general, obtaining the moment estimator is simpler than
obtaining the likelihood estimator and this facilitates the
explanation of the estimation process. In addition, in this
particular case, the moment estimator for the traffic intensity
inherits the good asymptotic properties shared by all maxi-
mum likelihood estimators.

2.4. Arrival and Service Rate Estimators. If the sample x ={𝑥1, 𝑥2, . . . , 𝑥ℓ} related to the number of clients in the system
at arbitrary epochs is collected and also the sojourn times of
the clients, it is possible to estimate the arrival rate 𝜆 and the
service rate 𝜇 as well. Define the sojourn time of a client in the
system, which includes both the waiting time in line and the
service time. In accordance with Gross et al. [1], the expected
sojourn timeW may be expressed as

𝑊 = (𝜌𝑠)𝑠
𝑠!𝑠𝜇 (1 − 𝜌)2𝑃0 +

1𝜇 . (10)

With a sample of the sojourn times in the system, it is possible
to estimate W as 𝑥W. Also with the estimate 𝜌, which was
obtained in the previous section, it is possible to estimate 𝜇 as

𝜇 = (𝜌𝑠)𝑠 𝑃̂0 + 𝑠!𝑠 (1 − 𝜌)2𝑥𝑊𝑠!𝑠 (1 − 𝜌)2 . (11)

Notice that in (11) 𝑃̂0 may be calculated from (2) using the
estimated traffic intensity, 𝜌. Then, from the traffic intensity,𝜌 = 𝜆/(𝑠𝜇), it is possible to estimate 𝜆 as

𝜆̂ = 𝑠𝜇𝜌. (12)

3. Performance Analysis of
the Estimation Methods

3.1. Simulations. In this section, the performances of the
estimation methods described earlier are evaluated. The
algorithms were implemented in MATLAB [35], and the
codes are available directly from the authors upon request for
research and teaching purposes. A Monte Carlo simulation
study was conducted as follows to evaluate the methodology
described earlier in this paper.

Random samples of the number of customers in the
arbitrary epochs were obtained from simulations of an
M/M/s queuing system, with sample sizes ℓ = {50, 200, 400},
traffic intensities 𝜌 = {0.1, 0.5, 0.9}, and number of servers𝑠 = {3, 9, 27}. Without loss of generality, the arrival rate was
fixed to 𝜆 = 10 for all experiments, where the service rate
is given by 𝜇 = 𝜆/(𝑠𝜌). With these values, it is possible to
evaluate a broad range of different situations that are likely to
occur in practice.

Table 2 shows the average values (means) and the stan-
dard deviations (SDs) of estimates for 𝜌, 𝜇, and 𝜆, from
(8), (11), and (12), respectively, obtained from a Monte Carlo
simulation procedure, repeated 1,000 times. From Table 2,
it is observed that, with the increase of the sample size, the
difference between the estimates and the true values reduces
and the standard deviation decreases.

3.2. Numerical Example. Now an application based on data
collected in a large supermarket network in a region of
interest is discussed for a better understanding of the pre-
sented methodology. The cashier's desks in this network are
separated into normal desks and fast desks. The focus of
our example is the latter, which serve exclusively consumers
with up to 15 items.The primary interest of those responsible
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Table 2: Averages (means) and standard deviations (SDs) of estimates for 𝜌, 𝜆, and 𝜇.
𝜆=10 Sampling distribution

ℓ 𝜌 s 𝜇 𝜌 estimated 𝜇 estimated 𝜆 estimated
Mean SD Mean SD Mean SD

50

0.1
3 33.3333 0.1006 0.0253 36.0326 4.7752 10.4347 1.4326
9 11.1111 0.0998 0.0150 11.9889 1.6397 10.3399 1.4758
27 3.7037 0.0996 0.0090 4.0059 0.5537 10.3394 1.4949

0.5
3 6.6667 0.4979 0.0452 7.1426 1.0592 10.2850 1.5888
9 2.2222 0.4992 0.0320 2.4031 0.3244 10.3540 1.4599
27 0.7407 0.4990 0.0186 0.8015 0.1112 10.3596 1.5006

0.9
3 3.7037 0.8744 0.0138 3.3016 0.5743 9.1311 1.5507
9 1.2346 0.8643 0.0137 1.0493 0.1328 8.7706 1.0757
27 0.4115 0.8661 0.0126 0.4256 0.0630 9.7771 1.5296

200

0.1
3 33.3333 0.1002 0.0130 35.9311 2.3430 10.3781 0.7029
9 11.1111 0.0998 0.0073 11.9786 0.8625 10.3374 0.7762
27 3.7037 0.1001 0.0042 3.9896 0.2456 10.3651 0.6631

0.5
3 6.6667 0.4990 0.0228 7.1038 0.4836 10.2856 0.7254
9 2.2222 0.4992 0.0167 2.3884 0.1575 10.3282 0.7088
27 0.7407 0.4994 0.0093 0.7973 0.0516 10.3430 0.6965

0.9
3 3.7037 0.8755 0.0067 3.2548 0.2719 9.0676 0.7341
9 1.2346 0.8649 0.0068 1.0335 0.0616 8.6964 0.4987
27 0.4115 0.8668 0.0064 0.4234 0.0310 9.7694 0.7543

400

0.1
3 33.3333 0.1001 0.0090 35.9298 1.6050 10.3695 0.4815
9 11.1111 0.1001 0.0051 11.9613 0.5730 10.3618 0.5157
27 3.7037 0.1002 0.0029 3.9871 0.1878 10.3697 0.5071

0.5
3 6.6667 0.4986 0.0158 7.0955 0.3618 10.2760 0.5427
9 2.2222 0.5001 0.0120 2.3877 0.1108 10.3486 0.4985
27 0.7407 0.4991 0.0064 0.7985 0.0377 10.3397 0.5085

0.9
3 3.7037 0.8758 0.0047 3.2426 0.1902 9.0476 0.5136
9 1.2346 0.8652 0.0045 1.0294 0.0423 8.6808 0.3424
27 0.4115 0.8671 0.0042 0.4229 0.0209 9.7613 0.5083

for the supermarket is to evaluate the time between 15:00
and 22:00 on Saturdays, mainly because there is a large
volume of buyers at that time, and the volume has increased
because the supermarket chain has an advertising agency
conducting regular campaigns.The fear is that users will give
up shopping or not return to this supermarket because of
dissatisfaction with the sojourn time. The past experiences
of those responsible for supermarkets indicate that the traffic
intensity 𝜌 should not exceed 85% to minimize the risk of
compromising current and future sales. Based on several pre-
vious studies, it is reasonable to assume that consumers arrive
during a given period of time approximately according to a
Poisson process and that the service times are exponentially
distributed. The objective is to evaluate the traffic intensity,
arrival rates, and the service rates for an M/M/6 queuing
system, when the current number of servers (that is, 6) is
insufficient.

In this scenario, 200 random observations of the number
of customers in the system were collected, 28 at each of 8
consecutive Saturdays, at times sufficiently spaced and pre-
viously defined by the person responsible for data collection.

The observed values (O) and frequencies (F) are presented in
Table 3. For example, from the 200 observations, at 2 times,
only 1 customer was found in the system and at 6 times, 2
customers were found.

Along with the observation of the number of clients in
the system, the sojourn times for 200 randomly selected
customers were also collected (which was performed simul-
taneously with the observation of the number of customers in
the system). Figure 2 depicts the histogram for the observed
results.

Using the collected data, the estimates from (8), (11), and
(12) are 𝜌 =0.9013, 𝜇 =2.0046 clients/min, and 𝜆̂ =10.8247
clients/min, respectively. The data suggests that s = 6 servers
are insufficient to handle the clients and to keep the traffic
intensity below 85%. Using the previous estimates for 𝜇 and𝜆, we can verify that increasing the number of servers to
s = 7 would reduce the traffic intensity to 𝜌 = 𝜆̂/(𝑠𝜇)
=10.8247/(7×2.0046) = 0.7714, which would result in an
acceptable performance for the queuing system (that is, below
85%).
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Table 3: Observed values and frequencies.

O F O F O F O F
1 2 7 14 13 4 19 4
2 6 8 14 14 11 20 6
3 14 9 11 15 8 21 4
4 23 10 8 16 7 22 8
5 18 11 10 17 3 23 2
6 12 12 8 18 2 25 1
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Figure 2: Histogram of the observed sojourn times for 200 clients.

4. Conclusions and Final Remarks

The estimation of the traffic intensity 𝜌, the arrival rate 𝜆,
and the service rate 𝜇, for Markovian multiservice queues,
known in Kendall notation asM/M/s queues, is a challenging
mathematical problem that was solved here by statistical
inferential methods. For the M/M/s queues, even without
knowledge of the arrival rate and queue length of service, it
is possible to make inferences about the traffic intensity by
collecting a random sample of the number of customers in the
system at the arbitrary epochs. If, in addition to the number of
customers, the sojourn times in the queue are also collected,
then it is possible to accurately estimate the arrival and service
rates by means of simple expressions, as demonstrated here.
In fact, a comprehensive set of Monte Carlo simulations were
performed to show that estimates for 𝜌, 𝜇, and 𝜆 may be
obtained that are very close to the true values, especially when
the sample sizes are close to 400.

Finally, it is worthwhile to mention that future studies
in this area could include extensions to more general single-
server queuing systems, such as M/G/1 and G/M/1, and
general multiserver queues, such asM/G/s and G/M/s. These
are only a few of the many topics for future research in this
area.
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