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To solve the problem of high accuracy initial alignment of strap-down inertial navigation system (SINS) for ballistic missile, an
on-line identification method of initial alignment error based on adaptive particle swarm optimization (PSO) is proposed. Firstly,
a complete navigation model of SINS is established to provide the accurate model basis for subsequent numerical optimization
calculation.Then setting the initial alignment error as the optimization parameter and regarding the minimum deviation between
SINS andGPS output as the objective function, the error parameter optimizationmodel is designed. At the same time, themutation
idea of genetic algorithm (GA) is introduced into the PSO; thus the adaptive PSO is adopted to identify the initial alignment
error on-line. The simulation results show that it is feasible to solve the initial alignment error identification problem of SINS by
intelligent optimization algorithm. Compared with the standard PSO algorithm and the GA, the adaptive PSO algorithm has the
fastest convergence speed and the highest convergence precision, and the initial pitch error and the initial yaw error precision are
within 10󸀠󸀠 and the initial azimuth error precision is within 25󸀠󸀠. The navigation accuracy of SINS is improved effectively. Finally,
the feasibility of the adaptive PSO algorithm to identify the initial alignment error is further validated based on the test data.

1. Introduction

Initial alignment for strap-down inertial navigation system
(SINS) plays an important role in the navigation operation of
the ballistic missile. The main purpose of initial alignment is
to establish the initial attitudematrix, and the quality of initial
alignment will affect the navigation accuracy of SINS directly
[1] and thus affect the missile firing accuracy ultimately.
Therefore, improving the initial alignment accuracy of SINS
is of great significance to improve the performance of ballistic
missile weapon.

The propagation process of the initial alignment error of
SINS is a complex nonlinear problem. The previous solution
is to linearize the nonlinear problem, and the filtering algo-
rithms based on Kalman filter are widely adopted [2–6]. A
fast SINS initial alignment scheme based on the disturbance
observer and Kalman filter is proposed to estimate the
misalignment angles in [4], and an adaptive extendedKalman
filter algorithm combined with innovation-based adaptive
estimation is proposed in [7], while these filtering algorithms
often have some disadvantages, such as the difficulty of

model establishing, poor observability of parameters, and
long alignment time [8]. Consequently, this paper rejects the
traditional research method based on analytic simplification,
linearization and filtering, attempting to convert the initial
alignment problem of SINS into parameter optimization
identification problem.The complete nonlinear optimization
model is established, and the intelligent optimization algo-
rithm is used to realize the on-line identification of the initial
alignment error of SINS.

To solve the initial alignment problem of inertial system,
the application of genetic algorithm (GA) in the initial
alignment of SINS on the static base is studied based on
the intelligent optimization algorithm [9, 10]. The precision
of the initial alignment error is about 2󸀠 in [9], and the
alignment accuracy needs to be improved. At the same time,
the GAhas the disadvantages of large computational capacity,
low efficiency, and complicated coding, while the particle
swarm optimization (PSO) is simple in structure, fast in
convergence, and easy to implement and has the advantage
of dealing with complex systems. The transfer alignment
between the master inertial sensor and the slave inertial
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sensor is realized by PSO, and the influence of the maneuver
on alignment accuracy is analyzed in [11]. The PSO is applied
into the parameter optimization of compass alignment circuit
in SINS, and the performance of strap-down gyrocompass
initial alignment is improved in [12]. In view of the above
analysis and research results, the PSO algorithm is considered
to solve the initial alignment problem of the ballistic missile
SINS.

In this paper, a complete SINS navigation model is
established, and then the error parameter optimizationmodel
is constructed based on the minimum deviation between
the position parameters outputted by SINS and the position
parameters measured by GPS. The mutation idea of GA is
introduced into PSO, and the inertial weight and learning
factors are improved to obtain adaptive PSO. Finally, the
standard PSO, GA, and adaptive PSO are adopted to identify
the initial alignment error with the flight software of a certain
type of ballistic missile. At the same time, the test data
are used to inspect the identification effect of intelligent
optimization algorithm.

The rest of this paper is organized as follows. A nav-
igation model of SINS, including initial alignment error
model and error compensation model, is established in the
second section. In the third section, an error parameter
optimization model is constructed and the adaptive PSO
is designed for the ballistic missile SINS. In the fourth
section, the simulation for identification of initial alignment
error is given to demonstrate the feasibility of the intelligent
optimization algorithm. Finally, we conclude in the fifth
section.

2. Establishment of SINS Navigation Model

Themain coordinate frames used in this paper different from
other references are defined as follows: the body coordinate
of the ballistic missile is the orthogonal reference frame
aligned with the inertial measurement unit (IMU) axes, and
the origin locates the mass of the ballistic missile, the x-
axis along the longitudinal direction forward, opposite the
direction of gravity, the y-axis is perpendicular to the lon-
gitudinal direction upward, the z-axis along the transversal
direction right, completing a right-handed system. Launch
inertial coordinate (inertial coordinate) is a coordinate whose
origin is the launch point, the x-axis points to target in the
local level of launch point, and the y–axis is perpendicular
to the launch point’s local level (upward) and constitutes
the right-handed Cartesian coordinates with the axes of
x, z. The inertial coordinate is used as the navigation
frame.

2.1. Initial Alignment Error Model. The initial alignment
errors of SINS, including initial pitch angle error Δ𝜑0, initial
yaw angle errorΔ𝜓0, and initial azimuth errorΔ𝛾0, are caused
by vertical degree, installation error, and aiming error of the
ballistic missile. The initial attitude matrix 𝐴 between the
body coordinate and the inertial coordinate can be described
as follows by using the quaternion (𝑞0, 𝑞1, 𝑞2, 𝑞3):

𝐴

= [[[[
𝑞21 + 𝑞20 − 𝑞22 − 𝑞23 2 (𝑞1𝑞2 − 𝑞0𝑞3) 2 (𝑞0𝑞2 + 𝑞1𝑞3)2 (𝑞1𝑞2 + 𝑞0𝑞3) 𝑞20 + 𝑞22 − 𝑞21 − 𝑞23 2 (𝑞2𝑞3 − 𝑞0𝑞1)2 (𝑞1𝑞3 − 𝑞0𝑞2) 2 (𝑞0𝑞1 + 𝑞2𝑞3) 𝑞20 + 𝑞23 − 𝑞21 − 𝑞22

]]]]
(1)

The initial values of the quaternion (𝑞0, 𝑞1, 𝑞2, 𝑞3) are
𝑞0 = 𝑞00 − 𝛾02 𝑞20𝑞1 = 𝑞10 + 𝛾02 𝑞30𝑞2 = 𝑞20 + 𝛾02 𝑞00𝑞3 = 𝑞30 − 𝛾02 𝑞10

(2)

where

𝑞00 = √22 (1 − Δ𝜑02 )
𝑞10 = −𝜓02 𝑞00
𝑞20 = 𝜓02 𝑞30
𝑞30 = √22 (1 + Δ𝜑02 )

(3)

From (2) and (3), we can see that the initial alignment
error will affect the initial values of the quaternion and thus
affect the calculation precision of the initial attitude matrix𝐴.

2.2. Error Compensation Model of SINS. During the flight
course of ballistic missile, the inertial measurement unit
(IMU) of SINS, including gyroscope and accelerometer, can
measure apparent acceleration and angular velocity in real
time and output the data in pulse form. The pulse outputs
of the accelerometer and the gyroscope under a navigation
cycle are (Δ𝑁𝑤𝑥1, Δ𝑁wy1, Δ𝑁𝑤𝑧1) and (Δ𝑁𝑏𝑥1, Δ𝑁𝑏𝑦1, Δ𝑁𝑏𝑧1),
respectively, in which the pulse number remains the same as
the actual missile, and the outputs are integers.

After the IMU sends the pulse signals to the onboard
computer, the error compensation calculation is completed
by the onboard computer in real time. The equations of
the error compensation calculation of the apparent velocity
increment and the angular increment under a navigation
cycle in body coordinate are shown in (4) and (5), respectively
[13]:

[[[
Δ𝑊𝑥𝑏0Δ𝑊𝑦𝑏0Δ𝑊𝑧𝑏0

]]] = [[[[[[[[[

(Δ𝑁𝑤𝑥1 − 𝐾0𝑥)𝐾1𝑥(Δ𝑁𝑤𝑦1 − 𝐾0𝑦)𝐾1𝑦(Δ𝑁𝑤𝑧1 − 𝐾0𝑧)𝐾1𝑧

]]]]]]]]]
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[[[
Δ𝑊𝑥𝑏Δ𝑊𝑦𝑏Δ𝑊𝑧𝑏

]]] = [[[
Δ𝑊𝑥𝑏0Δ𝑊𝑦𝑏0Δ𝑊𝑧𝑏0

]]] − [[[
0𝐸𝑥𝑦Δ𝑊𝑥10𝐸𝑥𝑧Δ𝑊𝑥10]]]

(4)

[[[
Δ𝜃𝑥𝑏0Δ𝜃𝑦𝑏0Δ𝜃𝑧𝑏0

]]] =
[[[[[[[[[[[

Δ𝑁𝑏𝑥1𝐾𝑥Δ𝑁
𝑏𝑦1𝐾𝑦Δ𝑁
𝑏𝑧1𝐾𝑧

]]]]]]]]]]]
− [[[

𝐷0𝑥𝐷0𝑦𝐷0𝑧
]]]

[[[
Δ𝜃𝑥𝑏Δ𝜃𝑦𝑏Δ𝜃𝑧𝑏

]]] = [[[
Δ𝜃𝑥𝑏0Δ𝜃𝑦𝑏0Δ𝜃𝑧𝑏0

]]] − [[[[
0 𝐸𝑦𝑥 𝐸𝑧𝑥𝐸𝑥𝑦 0 𝐸𝑧𝑦𝐸𝑥𝑧 𝐸𝑦𝑧 0

]]]]
[[[
Δ𝜃𝑥𝑏0Δ𝜃𝑦𝑏0Δ𝜃𝑧𝑏0]]]

− [[[
𝐷1𝑥 𝐷2𝑥 𝐷3𝑥𝐷1𝑦 𝐷2𝑦 𝐷3𝑦𝐷1𝑧 𝐷2𝑧 𝐷3𝑧

]]][[[
Δ𝑊𝑥1Δ𝑊𝑦1Δ𝑊𝑧1]]]

(5)

where𝐾𝑖, 𝐾0𝑖, 𝐾1𝑖, 𝐷0𝑖, 𝐷1𝑖, 𝐷2𝑖, 𝐷3𝑖, and 𝐸𝑖𝑗 are the tool error
coefficient of IMU which are calibrated in the missile techni-
cal site.Δ𝑊𝑖𝑏0 andΔ𝜃𝑖𝑏0 are the calculated intermediate values
of the apparent velocity and angle increment, respectively.Δ𝑊𝑖𝑏 and Δ𝜃𝑖𝑏 are the apparent velocity and the angle
increment in body coordinate after the error compensation,
respectively, where 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 represents the three direc-
tions of the x, y, and z axes.

2.3. Calculation of Velocity and Position in Inertial Coordinate.
According to the error compensation model of SINS, the
apparent velocity increment in body coordinate can be cal-
culated. The apparent velocity increment in body coordinate
is converted to inertial coordinate, and it can be presented as

[[[
Δ𝑊𝑥𝑎Δ𝑊𝑦𝑎Δ𝑊𝑧𝑎]]] = 𝐴[[[

Δ𝑊𝑥𝑏Δ𝑊𝑦𝑏Δ𝑊𝑧𝑏]]] (6)

whereΔ𝑊𝑥𝑎,Δ𝑊𝑦𝑎, and Δ𝑊𝑧𝑎 are the projections of apparent
velocity increment in inertial coordinate and the matrix 𝐴
is calculated by (1), where the calculation equation of the
quaternion is as follows:

[[[[[
𝑞0𝑞1𝑞2𝑞3
]]]]]𝑗
= [[[[[[

𝑞0 −𝑞1 −𝑞2 −𝑞3𝑞1 𝑞0 −𝑞3 𝑞2𝑞2 𝑞3 𝑞0 −𝑞1𝑞3 −𝑞2 𝑞1 𝑞0
]]]]]]𝑗−1

[[[[[[[[[[

1 − 18Δ𝜃2𝑗(12 − 148Δ𝜃2𝑗)Δ𝜃𝑥𝑏(12 − 148Δ𝜃2𝑗)Δ𝜃𝑦𝑏(12 − 148Δ𝜃2𝑗)Δ𝜃𝑧𝑏

]]]]]]]]]]𝑗

(7)

where Δ𝜃𝑗 = √Δ𝜃2𝑥𝑏 + Δ𝜃2𝑦𝑏 + Δ𝜃2𝑧𝑏. According to (7), the
quaternion is calculated by the recursion method which
based on the value of the previous moment, recursion to get
the quaternion of the current moment.The initial value of the
quaternion can be calculated by (2).

By integrating the apparent velocity increment in inertial
coordinate, the recursive value of the velocity and position
in inertial coordinate at any moment of the missile can be
obtained, and the calculation equation is as follows:

[[[
V𝑥𝑎
V𝑦𝑎
V𝑧𝑎

]]]𝑗 =
[[[
V𝑥𝑎
V𝑦𝑎
V𝑧𝑎

]]]𝑗−1 +
[[[
Δ𝑊𝑥𝑎Δ𝑊𝑦𝑎Δ𝑊𝑧𝑎

]]]𝑗 +
[[[
𝑔𝑥𝑎𝑔𝑦𝑎𝑔𝑧𝑎

]]]𝑗
Δ𝑇2

+ [[[
𝑔𝑥𝑎𝑔𝑦𝑎𝑔𝑧𝑎

]]]𝑗−1
Δ𝑇2

(8)

[[[
𝑥𝑎𝑦𝑎𝑧𝑎
]]]𝑗 =

[[[
𝑥𝑎𝑦𝑎𝑧𝑎
]]]𝑗−1 +

[[[
V𝑥𝑎
V𝑦𝑎
V𝑧𝑎

]]]𝑗−1 Δ𝑇
+([[[

Δ𝑊𝑥𝑎Δ𝑊𝑦𝑎Δ𝑊𝑧𝑎
]]]𝑗 +

[[[
𝑔𝑥𝑎𝑔𝑦𝑎𝑔𝑧𝑎

]]]𝑗−1 Δ𝑇)
Δ𝑇2

(9)

where V𝑥𝑎, V𝑦𝑎, V𝑧𝑎 are the projections of velocity in inertial
coordinate;𝑥𝑎, 𝑦𝑎, 𝑧𝑎 are the projections of position in inertial
coordinate; 𝑔𝑥𝑎, 𝑔𝑦𝑎, 𝑔𝑧𝑎 are the projections of gravity accel-
eration in inertial coordinate, which can be computed by
the ellipsoid gravity acceleration model; Δ𝑇 is the navigation
cycle.

3. Error Parameter Optimization Model
and Algorithm Design

3.1. Establishment of Error Parameter Optimization Model

3.1.1. Select the Optimization Variable. Set the initial align-
ment error of SINS as the optimization parameter; that is,𝑋 = (𝑥1, 𝑥2, 𝑥3)T = (Δ𝜑0, 𝜓0, 𝛾0)T (10)

3.1.2. Determine the Objective Function. Regard the mini-
mum deviation between the position parameters outputted
by SINS and the position parameters measured by GPS as the
objective function, namely,

𝐽 (𝑋) = min
𝑁𝑢𝑚∑
𝑖=1

√𝛿𝑥 (𝑖)2 + 𝛿𝑦 (𝑖)2 + 𝛿𝑧 (𝑖)2
𝛿𝑥 (𝑖) = 𝑥𝐼𝑁𝑆 (𝑖) − 𝑥𝐺𝑃𝑆 (𝑖)𝛿𝑦 (𝑖) = 𝑦𝐼𝑁𝑆 (𝑖) − 𝑦𝐺𝑃𝑆 (𝑖)𝛿𝑧 (𝑖) = 𝑧𝐼𝑁𝑆 (𝑖) − 𝑧𝐺𝑃𝑆 (𝑖)

(11)
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where𝑥𝐼𝑁𝑆(𝑖),𝑦𝐼𝑁𝑆(𝑖), and 𝑧𝐼𝑁𝑆(𝑖) are the position parameters
outputted by SINS at the navigation cycle 𝑖, which can be
calculated by (9); 𝑥𝐺𝑃𝑆(𝑖),𝑦𝐺𝑃𝑆(𝑖), and 𝑧𝐺𝑃𝑆(𝑖) are the position
parameters measured by GPS at the navigation cycle i; 𝛿𝑥(𝑖),𝛿𝑦(𝑖), and 𝛿𝑧(𝑖) are the position deviations. 𝑁𝑢𝑚 is the
number of navigation cycle used to optimize alignment, and𝑁𝑢𝑚 ⋅ Δ𝑇 ≤ 𝑇𝑠, 𝑇𝑠 is the total simulation test time.

3.2. Design of Adaptive Particle Swarm Optimization Algo-
rithm. PSO is an intelligent optimization algorithm for find-
ing optimal region of search spaces through the interaction
of individuals in a swarm [14], and it has been widely
applied in the fields of aeronautics and astronautics because
of its advantages such as fast convergence, simple structure,
and strong versatility [15–17]. However, the standard PSO
algorithm has the disadvantage of premature convergence
and low efficiency in optimization iteration. Consequently,
the standard PSO is improved to the adaptive PSO, and the
improved strategy is as follows:(1) The mutation idea is introduced into PSO algorithm
based on GA algorithm. Mutation operation is an important
means to increase population diversity in GA algorithm,
which can expand search space and avoid falling into local
optimization. Therefore, the mutation idea is introduced
into PSO algorithm, and through the mutation operation of
particles, the population can jump out of the current local
optimal position in foraging process and search for a larger
space range. Thus, the global search ability is enhanced to
overcome the shortcoming of premature convergence of PSO.(2) The learning factors and inertia weight of PSO
are designed as dynamic adjustment form to improve the
convergence speed and overcome the disadvantage of low
efficiency of PSO in the late optimization. By dynamically
adjusting the values of the learning factors and inertia weight
of PSO algorithm, it is ensured that PSO has strong global
search ability at the initial stage of optimization and a fast
search speed at the later stage of optimization.

The basic optimization flow of initial alignment error
parameter by adaptive PSO is shown in Figure 1, and the
specific steps for optimization calculations are as follows.

Step 1 (initialize the population). Set particle population size𝑁, maximum iterations 𝑀, maximum position 𝑥max, and
minimum position 𝑥min = −𝑥max. The initial position and
the initial velocity of the particles are randomly generated,
and each particles fitness value of initialization population is
calculated to determine the individual best and the global best
of the particles.

Step 2 (update particle swarm velocity and position). The
equation for calculating the velocity and position of particles
is as follows:

V𝑖𝑗 (𝑘 + 1) = 𝑤 (𝑘) V𝑖𝑗 (𝑘) + 𝑟1𝑐1 (𝑘) (𝑃𝑖𝑗 (𝑘) − 𝑥𝑖𝑗 (𝑘))+ 𝑟2𝑐2 (𝑘) (𝑃𝑔𝑗 (𝑘) − 𝑥𝑖𝑗 (𝑘))𝑥𝑖𝑗 (𝑘 + 1) = 𝑥𝑖𝑗 (𝑘) + V𝑖𝑗 (𝑘 + 1)
(12)

where 𝑥𝑖𝑗(𝑘) and V𝑖𝑗(𝑘) (𝑗 = 1, 2, 3) are the position and
velocity of the jth dimension of particle i at iteration k; 𝑤(𝑘)
is the inertia weight; 𝑟1 and 𝑟2 are the random numbers
distributed in the range [0, 1]; 𝑐1(𝑘) and 𝑐2(𝑘) are the learning
factors;𝑃𝑖𝑗(𝑘) and𝑃𝑔𝑗(𝑘) are the individual best and the global
best at iteration k, respectively.

In order to enhance the global exploration ability in the
early stage of optimization and improve the convergence
speed at the later stage of optimization, the inertia weight is
designed to be the dynamic adjustment mode. The inertial
weight has a large value at the beginning, and the weight
decreases with the increase of the number of iterations.
Consequently, the inertia weight 𝑤(𝑘) can be designed as

𝑤 (𝑘) = 𝑤max − ( 𝑘𝑀)2 (𝑤max − 𝑤min) (13)

Learning factors 𝑐1(𝑘) and 𝑐2(𝑘) are the factors which
can control degree of self-learning and group learning of
particles, respectively. The particle swarm needs a large
self-learning ability to enhance the global search effect in
the early stage of optimization, and it needs a large group
learning ability to speed up the convergence speed in the late
optimization. Therefore, with the increase of the number of
iterations, learning factors 𝑐1(𝑘) continues to decrease and
learning factors 𝑐2(𝑘) increases gradually and the learning
factors can be described as

𝑐1 (𝑘) = 𝑐1max − ( 𝑘𝑀)2 (𝑐1max − 𝑐1min)
𝑐2 (𝑘) = 𝑐2min + ( 𝑘𝑀)2 (𝑐2max − 𝑐2min) (14)

Step 3. Calculate fitness value of population, and update
individual best and global best. According to (11), the fitness
value 𝑓(𝑥𝑖(𝑘 + 1)) of particles is calculated at iteration 𝑘 + 1
and compared with the previous fitness value 𝑓(𝑃𝑖(𝑘)) of
individual best. If 𝑓(𝑥𝑖(𝑘 + 1)) < 𝑓(𝑃𝑖(𝑘)), the individual
best is updated, namely, 𝑃𝑖(𝑘 + 1) = 𝑥𝑖(𝑘 + 1). Similarly,
comparing the fitness value of the individual best𝑓(𝑃𝑖(𝑘 + 1))
at iteration 𝑘 + 1 with the previous fitness value of the global
best 𝑓(𝑃𝑔(𝑘)), if 𝑓(𝑃𝑖(𝑘 + 1)) < 𝑓(𝑃𝑔(𝑘)), the global best of
particles is updated, namely, 𝑃𝑔(𝑘 + 1) = 𝑃𝑖(𝑘 + 1).
Step 4. Mutation operation and update the individual best
and the global best again.

(A) Select Mutation Particles. The fitness values of particle
swarm at iteration 𝑘+1were sorted by descending order, and
the numbers𝑁𝑚 of particles arranged in front and with large
fitness value were selected as the mutation objects.

(B) Mutation Operation. First, generate the random number𝑟, and then compare the sizes of the random number 𝑟 and𝑟𝑚, where 𝑟𝑚 is the mutation probability of particle. If the
generated random number 𝑟 is less than 𝑟𝑚, the mutation
operation is performed as follows:𝑥𝑖𝑗 (𝑘) = (2𝑟 − 1) (𝑥max (𝑗) − 𝑥min (𝑗)) (15)
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Figure 1: Calculation flow chart of adaptive PSO.

where 𝑟 is the random number distributed in the range [0, 1]
and 𝜆 is the mutation coefficient. Otherwise, go to Step 5 for
the next calculation.

(C) Update Particle’s Best. For the new particles generated
by mutation, update the individual best and the global best
again.

Step 5 (end condition). If reaching maximum iterations,
namely, 𝑘 > 𝑀, or the search results satisfy the accuracy
requirement, the calculation is stopped and the optimal
parameter of initial alignment error is output. Otherwise,
return Step 2 for the next generation calculation.

4. Simulation Experiment and Result Analysis

The simulation study is presented to confirm the feasibility of
initial alignment error on-line identification based on adap-
tive PSO in this section. Firstly, the simulation conditions
are set up, then the simulation experiment and results are
analyzed. At last, the test data is introduced.

4.1. SimulationCondition Settings. Thesimulation conditions
of the initial alignment error optimization model for SINS are
set as follows:(1) Setting initial pitch angle error is 90󸀠󸀠, initial yaw angle
error is -90󸀠󸀠 and initial azimuth error is -150󸀠󸀠 .The navigation
cycleΔ𝑇 is 0.1 s, the number of navigation cycles𝑁𝑢𝑚 is 500,
and the total simulation test time 𝑇𝑠 is 50 s.(2) Tool error of SINS.The constant and random drifts of
gyro are chosen as 0.02∘/h and 0.01∘/h/Hz, respectively. The
constant and random drifts of accelerators are chosen as 100
ug and 50 ug/Hz, respectively.(3)GPS navigation error. The position error is 5.0 m, and
the velocity error is 0.1 m/s.(4) Simulation conditions of PSO algorithm. The maxi-
mum iterations 𝑀 is 100, the population size 𝑁 is 40, and
the maximum position 𝑥max = (300 300 500). The inertia
weights 𝑤max and 𝑤min are 0.8 and 0.4, respectively. The
learning factors 𝑐1max and 𝑐2max are all 3.0, and the learning
factors 𝑐1min and 𝑐2min are all 0.5. The mutation numbers of
particles 𝑁𝑚 are 10, the mutation probability 𝑟𝑚 is 0.2, and
the mutation coefficient 𝜆 is 0.5.



6 Mathematical Problems in Engineering

10 20 30 40 50 60 70 80 90 100
Evolution time

GA optimization
Standard PSO
Adaptive PSO

70

75

80

85

90

95

100

105

In
iti

al
 p

itc
h 

an
gl

e e
rr

or
(

)

Figure 2: Convergence process of initial pitch angle error.

4.2. Simulation Results and Analyses. Based on the above
error parameter optimization model and taking the flight
software of a certain ballistic missile as the simulation
experiment environment, the standard PSO algorithm, the
GA, and the adaptive PSO algorithm are adopted to optimize
the initial alignment error parameter of SINS, and the
convergence process of the initial pitch angle error, the initial
yaw angle error, and the initial azimuth angle error are shown
in Figures 2–4, and the fitness convergence diagrams of the
three algorithms are shown in Figure 5. The optimization
results of initial alignment error are shown in Table 1. It
shows the accuracy and convergence speed of three different
algorithms.

It is shown from Table 1 that the GA, the standard PSO,
and the adaptive PSO can be used to optimize the initial
alignment error parameter; the maximum residual error of
the initial alignment error of three algorithms is not more
than 30󸀠󸀠, the optimization calculation time is less than 4.0
s, and the convergence speed is fast. It shows that it is feasible
and effective in identifying the initial alignment error of SINS
by using intelligent optimization algorithm.

From Figures 2–5, we can see that the adaptive PSO has a
fastest convergence speed than the GA and the standard PSO.
It is shown fromTable 1 that the residual errors of initial pitch
angle and the initial yaw angle calculated by the adaptive PSO
are less than 10󸀠󸀠, and the residual error of the initial azimuth
is less than 25󸀠󸀠, which shows that the adaptive PSO can
improve the convergence accuracy of the initial alignment
error.

The initial alignment error parameter calculated by the
adaptive PSO is compensated, and then the navigation
parameters of the SINS are recalculated. The deviation
between the navigation parameters obtained by error com-
pensation and the actual navigation parameters of the missile
is called the optimization residual. By simulation, the SINS
position error, GPS position error and optimization residual

of position are shown in Figure 6, and the SINS velocity error,
GPS velocity error, and optimization residual of velocity are
shown in Figure 7. The root mean square (RMS) statistic
results of navigation parameter error are listed in Table 2.

From Figures 6 and 7, we can find out that the optimiza-
tion residuals of position and velocity are not only far less
than SINS, but also significantly less than GPS navigation
system. It is shown from Table 2 that the RMS position errors
of SINS are within 10 m, and the RMS velocity errors of SINS
are within 1 m/s while the RMS position errors are less than
1 m, and the RMS velocity errors are less than 0.1 m/s, after
the initial alignment error is identified and compensated by
the adaptive PSO algorithm. Obviously, compared with SINS,
the RMS errors of the navigation parameters compensated by
the adaptive PSO are reduced by 10 times, and the navigation
accuracy is greatly improved. The simulation results indicate
that the adaptive PSO can effectively identify the initial
alignment error and improve the navigation accuracy of
SINS.

4.3. Test Data Validation. In order to verify the effectiveness
of adaptive PSO algorithm to identify initial alignment error,
the data collected from the test are analyzed. Among them,
the gyroscope constant drift and the accelerometer constant
bias are about 0.01∘/h and 100𝜇g, respectively; SINS data
update frequency is 10.0HZ; GPS data update frequency is
1.0Hz. The actual measured output values of SINS and GPS
were collected and recorded during the test. The deviation
between the position and the speed of SINS andGPS output is
called the position error and the velocity error of SINS, then
the position error and the velocity error curve of SINS are
shown in Figures 8 and 9, respectively.

Based on the above test data, the adaptive PSO algorithm
is used to optimize the initial alignment error parameters,
and the results of the optimization parameters are shown in
Table 3.
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Figure 3: Convergence process of initial yaw angle error.
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Figure 4: Convergence process of initial azimuth angle error.

Table 1: Optimization results of initial alignment error.

Optimization algorithm Parameter Initial alignment error Calculation time/(s)Δ𝜑0/(󸀠󸀠) Δ𝜓0/(󸀠󸀠) Δ𝛾0/(󸀠󸀠)
GA optimization Optimization value 92.42 -108.67 -122.62 3.85

Residual error 2.42 -18.67 27.38

Standard PSO Optimization value 91.03 -102.35 -124.53 3.46
Residual error 1.03 -12.35 25.47

Adaptive PSO Optimization value 90.51 -99.29 -127.56 3.48
Residual error 0.51 -9.29 22.44
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Table 2: RMS statistical results of navigation parameter errors.

Error type Navigation parameter Pure SINS error Compensation error

Position error (m)
𝑥𝑎 6.9748 0.1730𝑦𝑎 2.4885 0.3683𝑧𝑎 10.7109 0.0960

Velocity error (m/s)
V𝑎𝑥 0.3748 0.0147
V𝑎𝑦 0.1790 0.0306
V𝑎𝑧 0.6336 0.0044
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Figure 5: Fitness convergence diagram.

Table 3: Results of optimization parameters.

Optimization
parameter

Lower
bound

Upper
bound

Optimization
valueΔ𝜑0/(󸀠󸀠) -90.00 90.00 90.00Δ𝜓0/(󸀠󸀠) -90.00 90.00 73.46Δ𝛾0/(󸀠󸀠) -180.00 180.00 -104.04

Table 4: RMS statistical results of errors.

Error type Navigation
parameter

Initial
error

Optimization
error

Position error
(m)

𝑥𝑎 6.2535 5.4109𝑦𝑎 10.3145 8.2356𝑧𝑎 8.6935 7.5713

Velocity error
(m/s)

V𝑎𝑥 0.4784 0.2770
V𝑎𝑦 0.7956 0.6541
V𝑎𝑧 0.2769 0.2540

The initial alignment error calculated by the adaptive
PSO is compensated, and then the navigation parameters of
SINS are recalculated. After calculation and compensation,
the position and velocity error curves are shown in Figures
10 and 11 respectively, and the error RMS statistic results are
shown in Table 4.
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Figure 6: Position error simulation curve.

From Figures 10 and 11, we can see that the optimization
errors of the position and velocity are less than the initial
errors of the position and velocity of the test data, after
the initial alignment error is compensated. It is shown from
Table 4 that the RMS errors of the position and velocity
of optimization calculation are less than the RMS errors of
the test data. Therefore, it is proved that the adaptive PSO
algorithm is effective in identifying the initial alignment error
and can improve the navigation accuracy of missile flight.

5. Conclusion

The initial alignment error identification of ballistic missile
SINS is studied in this paper. The real and complete naviga-
tion model of SINS is established, which provides an accurate
model basis for the initial alignment error identification. At
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Figure 7: Velocity error simulation curve.
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Figure 8: Position error curve of SINS.

the same time, the error parameter optimization model is
designed, and the initial alignment error is identified on-
line by the intelligent optimization algorithm. What is more,
the inertia weight and learning factors of PSO are designed
as dynamic adjustment form to improve search speed and
search accuracy, and the mutation operation of the GA is
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Figure 9: Velocity error curve of SINS.
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Figure 10: Position optimization error curve.

introduced into the PSO algorithm to jump out local optimal
value and enhance global convergence ability.

The simulation results show that the intelligent optimiza-
tion algorithm is efficient to solve the problem of initial
alignment error identification. Of course, the results show
that the adaptive PSO algorithm has fastest search efficiency
and highest convergence accuracy than the standard PSO
algorithm and the GA, and the residuals of the initial pitch
angle and the initial yaw angle are less than 10󸀠󸀠, and the
residual of the initial azimuth is less than 25󸀠󸀠. Finally, the
validity of the adaptive PSO algorithm to identify the initial
alignment error is validated based on the test data. Therefore,
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Figure 11: Velocity optimization error curve.

the content of this paper has a certain reference value for the
improvement of the initial alignment accuracy of the ballistic
missile SINS.
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