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In order to realize the rational delivery and effective dispatch of urban public self-vehicles, according to the randomness and time-
varying of public bicycle demand, a demand forecast based on random forest and spatiotemporal clustering is proposed, and based
on this, the user-based site rebalancing price incentive mechanism is implemented. Combining the demand of public bicycles with
time factors, meteorological factors, associated sites, and other variables, using logarithmic optimization to reduce the impact of
outliers, establish a random forest regression model. Secondly, based on this, a dynamic price incentive model is constructed to
realize the rebalancing of user-based rental vehicles. The validity and feasibility of the dynamic price incentive model are verified
by taking the historical data of public bicycle operation in the Bay Area as an example.

1. Introduction

With the advancement of rapid urbanization and motor-
ization, the development of public bicycle systems at home
and abroad has been promoted [1]. The emergence of urban
public bicycles not only has greatly alleviated the traffic
pressure, but has been gradually improved by the advantages
of convenience, low carbon and environmental protection.
The public bicycle system is an important part of the public
transportation system, effectively solving the problem of
“last 1 km”. In its rapid development, it provides convenient
transportation for urban residents [2]. At the same time, due
to the tidal traffic and the untimely dispatching of vehicles,
it also faces the problem of “difficult to rent a car and return
the car”, which hinders the development of public bicycles
[3]. Therefore, it is essential to improve the scheduling
mechanism and achieve the “balance of the car with rent and
availability”.

At present, a lot of researches have been done on the
scheduling problem of public bicycle systems at home and
abroad. The scheduling of scholars’ research focuses on the
optimization of transportation vehicle routes. Yajun Zhou et
al. [4] use the Markov chain model to predict the demand
to reduce the scheduling cost. Schuijbroek J et al. [5] carried
out an algorithm improvement for vehicle path optimization.

Kloimullner et al. [6] proposed an optimization model that
minimizes the number of bicycles to be dispatched. The
existing research is to assume the static demand of each
site demand, which is inconsistent with the randomness of
customer demand in the public bicycle system, which is not
conducive to the long-term sustainable development of the
enterprise [7]. In order to effectively alleviate the problem of
“returning a car to rent a car” in public bicycle systems and
improve the utilization rate of public bicycles [8], a new user-
based rebalancing mechanism is proposed.

Based on the demand forecasting of random forests [9],
this paper proposes a price incentive mechanism based on
user self-balancing and considers the randomness of user
demand to achieve the balance of supply and demand of
public bicycle system. While improving service levels, the
need for dispatchers to relocate vehicles is reduced.

2. Public Bicycle Demand
Distribution Characteristics

2.1. Time Distribution Characteristics. The use of public
bicycles is affected by time [10]. This paper uses the bicycle
demand data of No. 70 site in Bay Area in 2015 to analyze
the timing variation. The results are shown in Figure 1. Traffic
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Table 1: Correlation coefficient between demand and meteorological factors.

temp humid Wind Cloud weather
Correlation coefficient 0.19 -0.12 -0.26 0.06 0.36
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Figure 1: The seasonal variation of demand in the Bay Area.
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(a) The starting site is the associated site analysis map
for Site 70.
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(b) The termination site is the associated site analysis
graph for site 70.

Figure 2: Analysis of the starting site of the 70th station riding.

conditions on weekdays are similar including morning peak
hours, daytime hours, night peak hours, and night time
periods, while weekends and holiday periods are similar
including night time, travel time, and late time. The total
traffic volume on weekdays is much larger than that on
weekends and holidays, and the traffic volume during peak
hours and travel time is much larger than that of other time
periods. Although bicycle usage varies from site to site, they
are all closely related to time.

2.2.Meteorological DistributionCharacteristics. Bicycles are a
type of vehicle that is significantly affected by weather [11, 12].
Table 1 shows the correlation analysis between the demand
for Site No. 70 of the Bay Area Public Bicycle System. It can
be seen from the table that there is a correlation between the
demand for bicycle and five meteorological factors, and there
is a significant positive correlation with temperature, cloud
amount, and weather conditions, while the same humidity
and wind speed have a negative correlation. Bicycle demand
is most correlated with wind speed and weather conditions,
with -0.26 and 0.36, respectively.

2.3. Related Site Distribution Characteristics. The user rents
a car from a certain rental point, and after a certain time, to

another rental point nearby [13], this kind of flow behavior
makes a certain relationship between the lease point and the
lease point: one of the lease points at the current moment
and the other lease. There is a certain correlation between
the number of rented cars before a certain time. Specifically,
the associated site of a site is determined by the number of
trips between the two sites. Therefore, when predicting the
demand for a site for a certain period of time, the input
variables should also consider the demand for other sites
associated with the site, as shown in Figure 2, the relationship
between Site 70 in the US Gulf Area and other sites. It can
be seen from Figure 2 that most users who start to ride from
station 70 will end their riding at stations 50 and 55. When
the user ends the riding at station 70, the starting stations are
generally stations 50 and 55.

2.4. Site Inventory Forecasting Model. The bicycle site inven-
tory refers to the number of bicycles owned by the site at
the current moment, which is the difference between the
number of borrowed vehicles and the number of returned
vehicles at the current time. Accurate and efficient forecasting
of bicycle site inventory is a prerequisite for price incentives.
Because public bicycle travel is affected by time, weather, and
associated site conditions, it has strong randomness, time
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variation, and nonlinearity. Aiming at the above problems, a
regression prediction algorithm for public bicycle inventory
based on random forest is proposed, and logarithmic opti-
mization is used to reduce the impact of outliers onprediction
performance.

The random forest algorithm is a decision tree classi-
fier fusion algorithm proposed by Breiman [14]. It belongs
to the bagging algorithm in Ensemble Learning and is a
classification and regression algorithm [15]. The basic idea
of the random forest regression algorithm is to use the
self-sampling method (Bootstrap) to randomly sample the
original samples and construct several decision trees. When
each decision tree is split, the optimal attributes are selected
from some attributes for splitting. Finally, combining these
decision trees constitutes a random forest, and the average
of all decision trees in the random forest is used as the final
prediction result. Random forest regression can be seen as a
strong predictor (random forest) integrated bymultiple weak
predictors (decision trees).

Random forest selects n samples by self-sampling method
by borrowing the bagging idea of integrated learning. Dif-
ferent from bagging selects all features for decision tree
generation, random forest selects k features from all fea-
ture attributes. Use these samples and features to construct
multiple decision trees to form a ”forest.” Its ”random”
characteristics are manifested in the random selection of
samples, and the selection of feature attributes is also random.
Through the random introduction of these two, the random
forest has been overfitting and has good antinoise ability. A
random forest is a single classifier consisting of a series of
training samples X and random vectors 𝛽k with a sample size
of K.A set of {h(X,𝛽k), K=1, 2,...,K}. Each decision tree model
h(X, 𝛽k) has one vote to select the final classification result.
The classification decision is as shown in

𝐻(𝑥) = argmax
𝑌

𝑘∑
𝑖=1

𝐼(ℎ𝑖 (𝑥) = 𝑌) (1)

H (x) represents random forest classification results, hi
(x) represents a single classification result, Y represents a
classification target, and I is an indicative function. This
formula is a classification problem of random forests, that is,
the majority of the results of each decision tree are the final
results. For the regression problem of random forests, the
expectation of the results of each decision tree can be selected
as the final result.

The general training process for random forests is as
follows:

(1) Resampling using the bootstrap method from the
sample training set, randomly generating k sample
training sets 𝜃1, 𝜃2,..., 𝜃k. Each sample training set
corresponds to a corresponding decision tree T(𝜃1),
T(𝜃2),..., T(𝜃k). Assuming that the number of samples
in the sample training set is n, and each sample
is subjected to random sampling with a return, the
probability of extraction is 1/n, and the extraction is
repeated n times. In the training sample set, each sam-
ple is not extracted. The probability is (1-1/n)n. When

the number of training samples is large enough, (1 -
1/n )n ≈ 0.368, the probability of not being extracted
is about 37%, which guarantees the difference of the
training set.

(2) Assuming that the sample training set features are
M-dimensional, m features are randomly selected
from the M-dimensional features as the split feature
set of the current node, and the features with the
smallest variance among the m features are selected
for splitting, and no pruning is required. This tree is
fully grown. (The requirement here is that m is much
smaller than M, i.e.) The formula for calculating the
variance is as follows:

𝑉 = 1𝑛
𝑁∑
𝑖=1

(𝑦𝑖 − 𝜇) (2)

where n represents the total number of samples, yi
represents the label of a sample, and 𝜇 represents the
mean of all samples.

(3) Repeat the above steps to establish K decision trees to
form a random forest.

(4) Output the result. For the new data that is not pre-
dicted, the prediction is the random forest’s result, and
the prediction result is the average of the calculation
results of each decision tree.

Random forest regression can be regarded as a strong pre-
dictor integrated by weak predictor generated by randomly
sampling samples and randomly selecting features. It almost
inherits all the advantages of decision trees and avoids overfit-
ting problems and reducing generalization errors.There is no
need to normalize the input variables. In the public bicycle
raw data, weather characteristic data such as temperature,
wind speed, humidity, etc. are numerical variables, and data
such as holidays andworking days are categorical variables. In
the random forest model, we can use these features directly as
input variables without the need for additional conversions.
However, the regression accuracy of random forests depends
heavily on the accuracy of a single decision tree, ensuring that
the predictive power of a single decision tree can improve the
classification effect of random forests. Therefore, logarithmic
optimization is used to reduce the influence of outliers
on decision tree performance and clustering algorithm is
used to cluster training samples. Different categories use
different prediction models, and the results of each model are
summarized to obtain the final prediction.

3. Price Incentive Model Based on
User Rebalancing

3.1. Model Parameter. If appropriate incentives are provided,
the user may make a contribution to the rebalancing of the
vehicle [16]. Currently, it is possible to communicate with
users and pay incentives through existing infrastructure (self-
service terminals or mobile applications) [17]. Therefore, a
user-based rebalancing price incentive mechanism is pro-
posed to dynamically select the amount of money provided
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Table 2: Symbol Definition.

symbol description
Ns
Q(t)

N neighbors around the S site
The demand for the site at t time

M(t) The number of users returning at time t
N(t) Change the amount of car due to the acceptance of the incentive price
𝜆 Incentive price coefficient
𝜇 Distance perception coefficient

Table 3: Site space relative distance table (KM).

Station 69 70 71 72 73 74 75 76
69 0 0.233 1.612 1.829 1.722 1.052 0.962 1.197
70 0.233 0 1.632 1.852 1.738 1.048 0.971 1.219
71 1.612 1.632 0 0.571 0.631 1.601 1.064 0.411
72 1.829 1.852 0.571 0 1.194 2.078 1.539 0.819
73 1.722 1.738 0.631 1.194 0 1.194 0.861 0.692
74 1.052 1.048 1.601 2.078 1.194 0 0.541 1.260
75 0.962 0.971 1.064 1.539 0.861 0.541 0 0.723
76 1.197 1.219 0.411 0.819 0.692 1.260 0.723 0

to the user to change the user’s return location in a manner
that improves the overall service level.

In the public bicycle rental system, some of the technical
terms are symbolized, as shown in Table 2.

3.2. Incentive Mechanism Model. It is set 𝑃𝑛𝑠 (𝑡) that, during
the time period from t∈T to t to t+1, the rental systemprovides
the customer with the incentive price for changing the vehicle
from the original planned returning station s to the returning
station n, and f(x) is the site inventory vehicles at time t. The
number of stock vehicles, f(x), is related to the site demand
Q(t), the number of users returning the vehicle M(t), and the
number of returned vehicles N(t) that change the returning
location by accepting the incentive price.The riding incentive
price of each riding user obeys the uniform distribution P∼
U[0, Pmax], and the number of returned vehicles that accept
the incentive price and change the returning location N(t)
satisfies formulas (3)-(6):

f (x) = Q (t) −M (t) −N (t) (3)

𝜋s,n = 𝜆Ps,n − 𝜇ds,n (4)

𝛿 (t) = Q (t) −M (t) (5)

∑
𝑛∈𝑁
𝑠

𝜋𝑛,𝑠𝛿𝑛 = 0.8N (t) (6)

Equation (3) indicates that the change in the site vehicle
inventory level f(x) is related to the site demand amount Q(t),
the number of users returning the vehicle M(t), and the num-
ber of returned vehicles N(t) that accepts the incentive price
and changes the returning location. Equation (4) represents
the probability of accepting the price incentive to change
the returning station from s to n, and the price incentive
coefficient 𝜆, the user changes the incentive price of the

returning station Ps, n, the distance perception coefficient 𝜇,
and the distance between stations ds, n related. Equation (5)
represents the number of vehicles that need to be stimulated
by the neighboring site through price incentives. Equation (6)
indicates that the neighboring site region Ns of the site s can
meet the needs of 80% of users. From the relational formulas
of (3) to (6), combined with the objective function and
constraints of the price incentive model, the price incentive
mechanism model can be described as

min[ 𝑁∑
𝑛=1

𝑄 (𝑡) −𝑀 (𝑡) − 𝑁 (𝑡)] (7)

s.t

∑
𝑛∈𝑁
𝑠

𝜋𝑛,𝑠 ≤ 1, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇 (8)

0 ⩽ Ps,n (t) ⩽ Pmax, ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 𝑇 (9)

The objective function (7) minimizes the sum of the
unbalanced vehicles of the site of the leased site neighbor
network; the constraint (8) indicates that the sum of the
probability that the user chooses to accept the price incentive
of the neighboring site is not more than 1; the constraint (9)
indicates that the rental system provides. The price incentive
to the user is not greater than the maximum price incentive
value Pmax.

4. Experiment Analysis

4.1. Experimental Data Analysis. The data used in this paper
is from August 2013 to August 2016 in the Gulf of California
area. There are 8 sites in a common area, and the spatial
distance between the sites is shown in Table 3. Now the price
incentive period T is one day, which is divided into 13 time
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Table 4: Initial site demand information data table.

Station Number of station lock Optimal stock Initial stock Dispatching vehicles
69 23 19 4 15
70 19 11 5 6
71 19 5 12 -7
72 23 5 3 2
73 15 7 12 -5
74 23 2 9 -7
75 19 2 15 -13
76 19 5 7 -2
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Figure 3: Random forest parameter selection and error.

segments, and the price incentive opening period is from 9:00
to 21:00 every day, and the price period is opening from 9:00
to 21:00 every day by dividing the T discretization into 13 time
segments.

4.2. Experimental Parameter Selection. There are two main
factors affecting the performance of random forest algo-
rithms, the number of random forest algorithm trees and
features used in building trees. By analyzing the affecting
factors of shared bicycle inventory, including time, spatial,
meteorological, and associated site screening for the factors
that have a greater impact on it, Figure 3 shows the results
of constructing a random forest prediction model using
different parameters. Considering the time consumption and
the error of the model, the number of trees is 180 and the
number of features is 5 to construct the prediction model.

4.3. Analysis of Results. Through the logarithm-optimized
random forest model to solve the inventory quantity, the

optimal inventory level of each station at different times is
obtained. The optimal inventory level, initial inventory, and
number of vehicles scheduled for each station at the initial
time t=0 are shown in Table 4.

Analyze the influence of time factors, meteorological
factors, and associated sites on the demand of public bicycle
systems, use the log-optimized random forest which is used
to find the optimal inventory level of each site, in the price
incentive mechanism, and use the optimized ion swarm
algorithm to solve. The site price incentive matrix obtains the
system price incentive matrix at the initial moment and loops
the solution at the next moment to provide the customer
with the real-time incentive price of the site, as shown in
Table 5.

4.4. Evaluation Index. For the evaluation indicators, the
shared bicycle site service level is used to calculate, and the
formula is as follows:

System balance = Number of vehicles required −Number of unavailable vehicles
Number of vehicles required (10)

When the maximum incentive price is increased, the
service level of the public bicycle system site has been

significantly improved; the effectiveness of dynamic price
incentive model is proved to improve the imbalance of the
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Table 5: Incentive price for each site at the initial moment (in US dollars).

Station 69 70 71 72 73 74 75 76
69 0 0 0 1.9 1.7 0 0 0
70 0 0 0 5 0 3.2 0.5 0
71 0 4.9 0 0.3 3.5 0.3 1.3 0
72 3.5 5 0 2.4 0.8 3.1 2.3 5
73 4.8 2.7 0.3 4.5 0 5 4 5
74 3.6 0 0 4.1 2.9 0 3.8 4.0
75 0.66 0 0 0.4 0 2 0 4.8
76 0 3.5 0 1.4 5 0 0 0
The abscissa is the original planned returning station, and the ordinate is the returning site after the price incentive.
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Figure 4: Balance between the maximum incentive price and the
rental system.

public bicycle rental system. In order to further analyze
the simulation results, by analyzing the impact of different
price incentives on the system to find the best maximum
price incentive value, the experimental results are shown in
Figure 4.

Figure 4 shows that the maximum incentive price is
raised from 2 to 5, and the balance of the rental system
is increased from 62% to 90%, which greatly reduces the
operating costs of the leasing companies. On this basis, three
sets of tests are continued, and the test results show that
appropriately increasing the maximum incentive price Pmax
can greatly improve the balance of the rental system, but
excessively increasing the value of Pmax does not significantly
improve the system balance; the total system cost is sig-
nificantly related to the size of Pmax. When the Pmax value
is too small, the price incentive mechanism does not. To
achieve the incentive effect, the customer does not choose to
change the returning site, the vehicle can not be effectively
configured, and the system loss cost is high; when the Pmax
value is too large, the balance of the rental system does not
increase greatly with the increase of the incentive, and the
larger. The Pmax value brings too much incentive payment
to the enterprise, and the total system cost is too high.
Appropriately increasing the maximum incentive price Pmax
can greatly improve the balance of the rental system and

improve customer service level and vehicle utilization. When
Pmax reaches 5 and continue to increase Pmax value, the
system balance does not improve significantly, the growth
rate slows down, and the maximum incentive price Pmax = 5
system balance of 90% can meet the needs of leasing business
operations management.

5. Conclusion and Future Work

Aiming at the problem of leased self-vehicle configuration
in urban public bicycle system, this paper proposes a vehicle
scheduling model based on dynamic price incentive mech-
anism, which realizes user-based self-balancing, can realize
long-term configuration of rental vehicles, and analyzes by
random forest algorithm. The demand for rental vehicles has
the following conclusions:

(1) The factors of time andmeteorological and associated
sites are important to influence the behavior of public
bicycles. Due to the randomness in use of public
bicycles, the quantity demanded has abnormal values
that are reduced by logarithmic optimization. This
algorithm makes the random forest-based prediction
model more accurate and provides a basis for the next
step of self-balancing based on user price incentive.

(2) The dynamic price incentive matrix is obtained
through the price incentive model. The price incen-
tive matrix can help public bicycle rental companies
provide real-time dynamic price incentive decisions
to customers.

(3) The test results show that an appropriate increase in
the maximum incentive price Pmax can significantly
improve the balance of the rental system. The maxi-
mum incentive price was raised from 2 to 5, and the
balance of the rental system was increased from 62%
to 90%, which greatly improved the balance of the
rental system.

The above conclusions show that the model and method
can be better to complete the vehicle configuration in the
lease system, realize the balance of supply and demand of
the lease network, and provide theoretical basis and practical
reference for the study of vehicle allocation problem in the
public bicycle rental system.
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