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In this paper, a novel approach to solving the formation online collaborative trajectory planning for fixed-wing Unmanned
Combat Aerial Vehicles (UCAVs) is proposed. In order to describe the problem, the formation attack process which consists of
communication framework and synergy elements is analyzed. The collaborative trajectory planning model which is based on
avoiding the threat zones, reducing the execution time, and accomplishing the mission combines kinematics/dynamics model
of UCAV with formation relative motion model to establish the optimal control problem. The approach based on hp adaptive
pseudospectral method is presented to generate formation trajectory that satisfies the collaborative constraints. When a trigger
event is detected, based on the offline planning, the online collaborative trajectory replanning using rolling horizon strategy is
carried out. Simulated experiments which are divided into offline scenarios and online scenarios demonstrate that the proposed
approach can generate trajectories which can meet the actual flight constraints, and the results verify the feasibility and stability of
the proposed approach.

1. Introduction

The research and development activities on applications of
UnmannedAerial Vehicle (UAV) havemotivated a significant
increase in both civilian andmilitary areas [1].Themain topic
in military fields focuses on reconnaissance, surveillance,
and attack of Unmanned Combat Aerial Vehicle (UCAV),
which will be capable of air combat with the development
of artificial intelligence in the future [2]. As the battlefield
environment is increasingly complicated, it is difficult to
deal with emergencies and changeful environment for the
single UCAV [3]. However, compared with single UCAV, the
formation with the capacity complementarity and operations
coordinating can improve the quality of completing the
missions, shorten the execution time, and reduce the risk of
military operations. In the process of actual combat mission,
the battlefield situation and mission targets are continuously
changed over time, which makes UCAVs collaborative oper-
ation more complicated.

At present, as one of the key technologies of collabo-
rative operation, UCAV formation collaborative trajectory

planning has become a hot research spot all over the world.
The problem of trajectory planning with specific mission
for UAVs has been considered in several papers. In [4],
according to the characteristic of radio communication path
loss constraints, the trajectory planning method based on
distributed model predictive control is proposed. In [5],
a three-dimensional path planning for UAVs using fast
marching method is provided for generating paths free from
obstacles by adjusting parameters. In [6], trajectory planning
algorithm for fixed-wing communication relay UAVs in
urban environment is presented by considering dynamic
constraints. The UCAV formation collaborative trajectory
planning for air-to-ground attack missions and avoiding the
radar detection and antiaircraft missile is mainly focused on
in military field [7].

Many works on trajectory planning algorithms have been
published. Aimed at the problem of collaborative trajectory
planning, in [8], a three-dimensionalmulti-UCAVcollabora-
tive trajectory planning model is established by adopting the
spatial fuzzy set to indicate the planning space. In [9], a path
planning method based on collaborative track nondominant
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sequencing evolutionary algorithm is proposed. With the
development of heuristic stochastic optimization algorithm,
many intelligent algorithms that possess fast convergence
rate and high precision are used to solve the UCAVs path
planning problem. In [10], by introducing the cooperative
evolutionary strategy under themulticonstraint conditions of
ant subgroups, the improved ant colony algorithm is used to
solve the UCAVsmultibatch collaborative three-dimensional
flight path planning. In [11], the genetic algorithm is intro-
duced to solve path planning of multi-UCAV system. In
[12], the self-adaptive 𝛼-constrained virus colony search
based on opposition-based learning is proposed for path
planning. In addition to intelligent optimization algorithms,
other different techniques of path planning for UCAVs have
been studied in many researches: machine learning [13],
rapidly exploring random trees [14, 15], core paths graph
[16], A∗ search algorithms [17], D∗ search algorithms [18],
and probabilistic roadmap method [19]. However, these
path planning methods do not take the platform movement
characteristics ofUnmannedAerial Vehicle into account [20].

In practice, due to the lack of control variable, the paths
which are planned by above algorithms and UCAVs path
planners are unenforceable. In order to solve the problem
of trajectory planning with UCAV motion characteristics,
in [21], adaptive pseudospectral method is adopted and the
low detectable attack trajectory of UCAV based on this
method is simulated. In [22], a convex programming method
based on penalty function sequence is proposed for the
convex and discrete multi-UCAV trajectory planning. In
[23], through considering the change of speed, climb angle
and heading angle, genetic algorithm (GA), and particle
swarm optimization (PSO) are applied to solve the three-
dimensional flight path planning for UAV on a low alti-
tude terrain following/terrain avoidance mission. In [24], a
detailed 3-DOF point-mass model is given to multiple UAVs
cooperative trajectory planning using distributed receding
horizon control. As a new type of direct method, the
pseudospectral method is the search hot spot which most
people pay attention to in twenty years. Compared with the
traditional direct method, the pseudospectral method takes
advantages of the size in the domain of convergence and
convergence speed [25]. Because of the limitation of selecting
point, Gauss pseudospectral method (GPM) can make an
impact on the precision of the solution. In [21], the method is
only applied to the single UCAV trajectory planning. In [26],
the direct trajectory optimization method based on a variable
low-order adaptive pseudospectral method is proposed. In
[27], the total penetration trajectory planning process is
separated intomultiple phases, which is solved by using GPM
as optimal control problem.

Due to the changes of the battlefield environment, mis-
sion demands, and task information in the implementation
process of the actual UCAV collaborative attack task, the
current trajectory cannot satisfy the constraints of the real-
time environment [28, 29]. In [30], Gauss pseudospectral
method with the rolling time domain strategy is adopted
to solve the problem of UCAV online attack trajectory
planning. In [31], the trajectory replanning method based on
rapidly exploring random trees (RRT) is presented. In [32],

in order to ensure the safety and reliability of multiple UAVs’
mission, a collision avoidance method based on Legendre
pseudospectral method (LPM) with a rolling horizon policy
in dynamic environment is proposed. In [33], aimed at
drawbacks of the path planning process that cannot meet the
timeliness, online collaborative path planning with a view
to dynamic task allocation based on chaotic local search
grey wolf optimization is proposed. Though the method
can solve timeliness problem, the paths planned by the
approach cannot meet the maneuverability of UCAVs flight.
However, the difference between path planning based on
optimization algorithm and trajectory planning based on
pseudospectral method is that the trajectories planned by
pseudospectralmethod employed in this paper can satisfy the
flight need. Meanwhile, the collaborative trajectory planning
model in correlative papers has all or some of the following
disadvantages: (i) the changes of environment and tasks are
not considered [34]; (ii) relative motion characteristic is not
considered [35]; (iii) UCAV kinematics/dynamics model is
not considered [36].

This paper addresses the problem of UCAV formation
online collaborative trajectory planning using hp adaptive
pseudospectral method and rolling horizon strategy in
dynamic environments during attack process. The contribu-
tions of this paper are as follows: (1) the dynamic environ-
ments are considered for online trajectory replanning; (2)
the relative motion characteristic is denoted in the UCAV
formation model; (3) a specific UCAV kinematics/dynamics
model with wind power is given. The online collaborative
trajectory replanning is based on the offline planning. When
a trigger event is detected, the online replanning based on hp
pseudospectral method in a certain rolling time domain is
carried out.

The research of this paper is organized as follows.
Section 2 presents the analysis of UCAV formation attack
process, which includes the communication of formation
trajectory planning and analysis of UCAV formation syn-
ergy elements. The model of formation trajectory planning
which consists of kinematics/dynamics model of UCAV and
formation relative motion model is introduced in Section 3.
The proposed approach to solving the problem is denoted in
Section 4. Section 5 presents the simulation results of offline
planning and online replanning. Finally, the conclusions are
presented in Section 6.

2. Analysis of UCAV Formation Attack Process

UCAV formation attack trajectory planning refers to design-
ing the trajectories which are from the starting point to the
target point according to flight and attack mission require-
ments. These trajectories are overall optimal flight trajecto-
ries, whichmake UCAV formation leave the battlefield, make
comprehensive cost minimum, and satisfy the formation
maneuver performance constraints [37]. There may be many
factors in actual formation attack process: (i) the change of
battlefield environment, such as new-found threats; (ii) the
dynamics of task targets, such as target position maneuver
and goals’ addition and deletion; (iii) other factors, such
as UCAV system errors and wind impact [38]. Faced with
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Figure 2: Analysis of UCAV formation synergy elements.

the above situation, UCAV formation trajectory needs to
be replanned or adjusted locally in real time. The UCAV
formation attack process is given as shown in Figure 1.

The task coordination of the formation includes not only
the time coordination, but also the space coordination that
consists of the attitude, speed, and height of each UCAV
[39]. The UCAV formation collaborative elements’ analysis
is given as shown in Figure 2. This paper assumes that the
formation is composed of two UCAVs, which are the leader
and the follower. The following procedure describes how the
communication of formation trajectory planning works:(1) Task allocation. After confirming the mission target
information, according to the specific task information and
task structure, the general control Agent assigns the tasks to
each UCAV.(2) Leader trajectory planning. According to assigned
task information, perceived environment and relative posi-
tion, speeds, and angles between two UCAVs, the leader
Agent exports the optimal trajectory by trajectory planning
module and then sends the attack leader’s trajectory parame-
ters to the general control Agent and the follower Agent.(3) Follower trajectory planning. According to the attack
trajectory parameters of leader UCAV, the follower Agent
obtains the optimal task execution trajectory. As part of the

formation, the follower UCAV can carry out the attack task
itself or cooperate with the leader UCAV to carry out the
task.

3. Model of Formation Trajectory Planning

3.1. Definition of Reference Coordinate System. There are
many kinds of reference coordinate systems, such as ground
coordinate system, body coordinate system, and speed coor-
dinate system [40]. In addition to the ground coordinate
system, this paper defines the trajectory coordinate system
of UCAV’s centroid motion as reference coordinate for
formation. The definition is as follows.

Definition 1. The origin 𝑂𝑑 is UCAV’s centroid; the direction𝑂𝑑𝑋𝑑 is consistent with the speed direction of UCAV. The
direction 𝑂𝑑𝑍𝑑 is in the plumb plane containing the flying
speed direction, which is perpendicular to 𝑂𝑑𝑋𝑑 and points
upward. 𝑂𝑑𝑌𝑑 is perpendicular to the plane 𝑂𝑑𝑋𝑑𝑍𝑑 and
points right. The motion of UCAV’s center of mass that is
relative to the ground coordinate system is determined by the
angle of track inclination 𝛾, yaw angle 𝜓𝛼, velocity roll angle𝜇, and speed V𝑢. The reference coordinate system is as shown
in Figure 3 [41].
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Figure 3: UCAVmotion reference coordinate system.

3.2. Kinematics/DynamicsModel of UCAV. Thepaper adopts
the centroid motion model of UCAV. Meanwhile, the
dynamic model which considers wind power is used [42].
The kinematics/dynamics model of UCAV is obtained
as

�̇� = V𝑢 cos 𝛾 cos𝜓𝑎 +𝑊𝑥

̇𝑦 = V𝑢 cos 𝛾 sin𝜓𝑎 +𝑊𝑦

�̇� = V𝑢 sin 𝛾 +𝑊𝑧

(1)

V̇𝑢 = 𝑇 cos𝛼 cos 𝛽 − 𝐷𝑚 − 𝑔 sin 𝛾 − �̇�𝑥 cos 𝛾 cos𝜓𝑎 − �̇�𝑦

⋅ cos 𝛾 sin𝜓𝑎 − �̇�𝑧 sin 𝛾
̇𝛾 = 𝐿 cos 𝜇 − 𝑌 sin 𝜇 + (sin 𝛼 cos 𝜇 + cos𝛼 sin 𝛽 sin 𝜇) 𝑇

𝑚V𝑢

− 𝑔
V𝑢

cos 𝛾 + �̇�𝑥 sin 𝛾 cos𝜓𝑎
V𝑢

+ �̇�𝑦 sin 𝛾 sin𝜓𝑎
V𝑢

− �̇�𝑧 cos 𝛾
V𝑢

�̇�𝑎 = 𝐿 sin 𝜇 + 𝑌 cos𝜇 + (sin 𝛼 sin 𝜇 − cos 𝛼 sin 𝛽 cos 𝜇)𝑇
𝑚V𝑢 cos 𝛾

+ �̇�𝑥 sin𝜓𝑎
V𝑢 cos 𝛾 − �̇�𝑦 cos𝜓𝑎

V𝑢 cos 𝛾
�̇� = 𝑃 + tan 𝛾

⋅ (𝐿 sin 𝜇 + 𝑌 cos 𝜇 + (sin 𝛼 sin 𝜇 − cos 𝛼 sin 𝛽 cos 𝜇) 𝑇
𝑚V𝑢

+ �̇�𝑥 sin𝜓𝑎
V𝑢

− �̇�𝑦 cos𝜓𝑎
V𝑢

)
�̇� = −𝑐𝑇

(2)

where (𝑥, 𝑦, 𝑧) is the position of UCAV in the ground coordi-
nate system; V𝑢 is true airspeed for UCAV; (𝑊𝑥, 𝑊𝑦,𝑊𝑧) and(�̇�𝑥, �̇�𝑦, �̇�𝑧) are the components of wind speed and wind
acceleration along each axis; 𝛼 is angle of attack; 𝛽 is sideslip

angle; 𝑚 is mass of UCAV; 𝑔 is acceleration of gravity; 𝑃 is
projection of the axis of the rotation angular velocity in the
air flow coordinate system; 𝑌 is lateral force; 𝑇 is thrust; 𝐷 is
drag; 𝐿 is lift; 𝑐 is fuel consumption coefficient. Meanwhile,
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Figure 4: Relative distance relationship between formation members.

the thrust, drag, and lift are, respectively, calculated
as

𝑇 = 𝛿𝑇max (V𝑢, ℎ) (3)

𝐷 = 0.5𝜌V2𝑢𝑆𝐶𝐷 (4)

𝐿 = 0.5𝜌V2𝑢𝑆𝐶𝐿 (5)

where 𝛿 is throttle position; 𝑇max is the maximum available
thrust; 𝜌 is air density; 𝑆 is the cross-sectional area of UCAV;𝐶𝐷 is the resistance coefficient; 𝐶𝐿 is the lift coefficient.

According to flight envelope constraints which are men-
tioned in [43], the constraint conditions for UCAV are
established as

𝛾min ≤ 𝛾 (𝑡) ≤ 𝛾max;
𝜇min ≤ 𝜇 (𝑡) ≤ 𝜇max

𝛼min ≤ 𝛼 (𝑡) ≤ 𝛼max;
𝛽min ≤ 𝛽 (𝑡) ≤ 𝛽max

0 ≤ 𝛿 (𝑡) ≤ 1;
𝑚min ≤ 𝑚 (𝑡)
�̇� (𝑡) + ̇𝛾 (𝑡) cos𝜇 (𝑡) = 𝑡1𝑡1 + �̇� (𝑡) cos 𝛾 (𝑡) sin 𝜇 (𝑡) ≤ 𝑄max�̇� (𝑡) ≤ 𝑃max (𝛼 (𝑡) , ℎ (𝑡) ,𝑀𝑎 (ℎ (𝑡) , V (𝑡)))
𝐶𝐿 (𝛼 (𝑡) ,𝑀𝑎 (ℎ (𝑡) , V (𝑡))) ≤ 𝐶𝐿,max (𝛼,𝑀𝑎)
|�̇� (𝑡)| ≤ �̇�max;�̇� (𝑡) ≤ �̇�max𝑛𝑢 (𝑡) ≤ 𝑛max;
0.5𝜌 (ℎ (𝑡)) V2 (𝑡) ≤ 𝑞max

𝐻𝑠𝑎𝑓𝑒 ≤ 𝑧

(6)

where 𝑡1which is an intermediate variable represents the term�̇�(𝑡)+ ̇𝛾(𝑡) cos 𝜇(𝑡);𝑄max is the maximum angle change rate in
the pitch direction; 𝑃max is the maximum angle change rate in
the rolling direction; 𝐶𝐿,max is the maximum lift coefficient;𝑛𝑢(𝑡) and 𝑛max are the overload in the loader direction and
the maximum direction overload; 𝑞max is maximum dynamic
pressure head; 𝐻𝑠𝑎𝑓𝑒 is minimum safe height.

3.3. Formation Relative Motion Model. The important point
in UCAV formation attack process is relative distance
between leader and follower. In Figure 4, the relationship
between the leader and the follower in position vector is
represented [44]. The relative motion model for UCAV
formation is shown as

�̇�𝑑 = ( 𝑔𝑉𝑊 cos 𝛾𝑊 sin 𝜇𝑊 + 𝑌𝑊𝑀𝑊𝑉𝑊)𝑦𝑑
+ ( 𝑔𝑉𝑊 cos 𝛾𝑊 cos 𝜇𝑊 − 𝐿𝑊𝑀𝑊𝑉𝑊)𝑧𝑑 − 𝑉𝑊
+ 𝑉𝐿 (sin 𝛾𝑊 sin 𝛾𝐿 + cos 𝛾𝑊 cos 𝛾𝐿 cos𝜓𝑎𝑒)

̇𝑦𝑑 = 𝑃𝑊𝑧𝑑 − ( 𝑌𝑊𝑀𝑊𝑉𝑊 + 𝑔𝑉𝑊 cos 𝛾𝑊 sin 𝜇𝑊)𝑥𝑑
+ 𝑉𝐿 (sin 𝜇𝑊 sin 𝛾𝑊 cos 𝛾𝐿 cos𝜓𝑎𝑒
+ cos 𝜇𝑊 cos 𝛾𝐿 sin𝜓𝑎𝑒 − sin 𝜇𝑊 cos 𝛾𝑊 sin 𝛾𝐿)

�̇�𝑑 = ( 𝐿𝑊𝑀𝑊𝑉𝑊 − 𝑔𝑉𝑊 cos 𝛾𝑊 cos𝜇𝑊)𝑥𝑑 − 𝑃𝑊𝑦𝑑
+ 𝑉𝐿 (cos 𝜇𝑊 sin 𝛾𝑊 cos 𝛾𝐿 cos𝜓𝑎𝑒
− sin 𝜇𝑊 cos 𝛾𝐿 sin𝜓𝑎𝑒 − cos 𝜇𝑊 cos 𝛾𝑊 sin 𝛾𝐿)

(7)

where the subscripts 𝐿 and 𝑊 are, respectively, represented
as the leader and the follower; (𝑥𝑑, 𝑦𝑑, 𝑧𝑑) and (�̇�𝑑, �̇�𝑑, �̇�𝑑),
respectively, represent the relative distance and distance
change rate between the leader and the follower. The term𝜓𝑎𝑒 = 𝜓𝑎𝐿 − 𝜓𝑎𝑊 is the deviation of yaw angle between the
leader and the follower.
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The kinematics/dynamics model of UCAV formation
can be obtained through the combination of kinemat-
ics/dynamics model of single UCAV which is represented as
formula (1) and formula (2) and formation relative motion
model which is denoted as formula (7).

3.4. Objective Function. UCAV formation trajectory plan-
ning should not only consider the trajectory planning
constraints of the single UCAV, but also the space coor-
dination constraints and time coordination constraints
between UCAVs. In the UCAV formation attack process,
one of the most commonly used objective functions to
evaluate the planning trajectories of the UCAV forma-
tion is to minimize number of collisions between UCAVs
with minimizing collaborative time and minimizing threat
cost.

For the space constraints of UCAV formation, the colli-
sion constraint is considered in this paper, and the objective
function is established as

𝐽𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = ∫𝑡𝑓
𝑡0

𝜁𝑑𝑡 (8)

where 𝐽𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 represents the collision objective function;𝜁 represents the equivalent collision. When the distance
between the leader and the follower is longer than the safe
relative distance 𝑅𝑠𝑎𝑓𝑒, the value of 𝜁 is 0; otherwise it is 1.

For the collaborative time constraint, the objective func-
tion is established as

𝐽𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑡𝑖𝑚𝑒 = 2∑
𝑖=1

𝑡𝑖 − 𝑡𝑖𝑐 (9)

where 𝐽𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑡𝑖𝑚𝑒 represents the time objective function; 𝑡𝑖 is
the time during which UCAV arrives at a specified location.𝑡𝑖𝑐 is the instruction time during which UCAV arrives at a
specified location.

During the mission, UCAV can be threatened by ground
radar and antiaircraft fire. For the threat model of UCAV, the
threat vector model is adopted. In order to calculate simply,
the paper denotes the concept of threat vector.

Definition 2. The vector of threats at different locations
represents threat vector for UCAV. For the radar threat, the
detection probability of UCAV in a certain position is related
to the attitude and distance which are currently relative to
radar. For antiaircraft fire, the damaged probability of UCAV
in a certain position is connected with current distance from
antiaircraft fire to UCAV and flight speed. Threat value is
calculated by the type of specific threats. Because modern
antiaircraft fire is composed of low level antiaircraft missile
and air defense radar, the paper incorporates the radar
and antiaircraft missile as joint air defense system. Joint air
defense system detection probability is shown as

Pd
 = 1 − 𝑛∏

𝑖=1

(1 − Pd𝑖
) (10)

where |Pd| represents the value of the detection probability of
the joint air defense system; |Pd𝑖| is the detection probability
of the subsystem [42].

In the trajectory planning process, the threat cost is
calculated from starting point to ending point. For the threat
model of UCAV, the threat vector model is adopted, and the
threat objective function is denoted as

𝐽𝑡ℎ𝑟𝑒𝑎𝑡 = ∫𝑡𝑓
𝑡0

Pd
 𝑑𝑡 (11)

where 𝐽𝑡ℎ𝑟𝑒𝑎𝑡 is the threat cost value.
Based on the analysis of the above objective function and

the actual battlefield needs, the integrated objective function
is given as

min 𝐽 = 𝜔1 (𝑡𝑓 − 𝑡0) + 𝜔2 ∫𝑡𝑓
𝑡0

Pd
 𝑑𝑡 + 𝜔3 ∫𝑡𝑓

𝑡0

𝜁 𝑑𝑡

+ 𝜔4 2∑
𝑖=1

𝑡𝑖 − 𝑡𝑖𝑐
(12)

where 𝐽 is the integrated objective function value. 𝑡𝑓 is the
terminal time of completing the task for the formation. 𝑡0 is
the task initial time for the formation. 𝜔1 + 𝜔2 + 𝜔3 + 𝜔4 = 1,
and 𝜔1, 𝜔2, 𝜔3, and 𝜔4 are the weight coefficients of time,
threat, equivalent collision frequency, and instruction time
error, respectively.

4. Online Trajectory Planning Method

4.1. Online Planning Strategy. The problem of UCAV tra-
jectory planning in uncertain environment is very complex.
In addition to considering the changing environment, the
problem should consider the algorithm with high conver-
gence accuracy and fast calculation speed. In order to solve
the problem, the paper proposes an online trajectory plan-
ning method based on hp adaptive pseudospectral method.
Firstly, UCAV formation offline trajectory for global space is
planned. Then, according to the real-time task environment
information, the local trajectory is solved by using hp adaptive
pseudospectral method with less Gauss nodes.The process of
method is presented as shown in Figure 5.

4.1.1. Rolling Horizon Strategy. Considering the complexity
and dynamics of battlefield environment, offline global plan-
ning method cannot meet the real-time demand in attack
process. The paper uses Rolling Horizon Control (RHC)
strategy for UCAV formation real-time trajectory planning
[45]. Firstly, the time length of the initial planning is set
as 𝑇, and the time domain can be divided into 𝑛 phases.
In the process of executing current trajectory, entire phase
is not all carried out, but partial phase is executed, whose
time length is the execution time length 𝑙. When the current
trajectory phase is carried, the planner starts to plannext time
domain. Before UCAV formation reaches terminal position
of current time domain, new time domain is sent to the
execution unit. During the new time domain, planning is
repeated, and Figure 6 shows the rolling horizon policy. In
general, if the time domain length 𝑇 is longer, global optimal
solution performs better. However, the time domain must
be limited within the scope of onboard computer processing
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Figure 5: Online trajectory planning strategy.

competence. Meanwhile, the shorter time domain could lead
to execution timeliness of trajectory.

4.1.2. Trajectory Replanning. Online trajectory planning
strategy of the whole task process is divided into a serial of
domains which iterate each other and keep moving towards
the terminal position. And according to the changes of the
mission environment, the local trajectory must be adjusted
or replanned. The following definitions denote trajectory
replanning factors.

Definition 3. The trigger event of trajectory replanning
defined in the paper is (1) sudden threat and (2) the changes
of mission targets, which include their maneuvering and
number increasing and decreasing. When sudden threats
and the changes of target’s positions and target’s number are
detected in a certain position during a certain time domain,
the planner of UCAV formation receives the information and
starts to replan trajectory in a certain phase.Themethod how
the phase is ensured is denoted as next definition.

Definition 4. For ensuring the replanning phase, it is very
important to design the replanning region size, the starting
position, and the terminal position of replanning trajectory.

(1) The selection method of replanning region size must
follow the principle that UCAV member should be far from
threats with a certain distance as far as possible. The paper
assumes that the action radius of threat is 𝑟𝑑 and safe distance
between threat and UCAV member is Δ𝑅𝑑. The replanning
region length 𝑑𝑖 is denoted as follows.

𝑑𝑖 > 2𝑟𝑑 + Δ𝑅𝑑 (13)

(2) In addition to ensuring the length of replanning
region, the starting position and the terminal position must
be given to ascertain the replanning region. The paper

assumes that the threat position is 𝑇𝑑, trajectory replanning
calculating time is 𝜏0, UCAV current position is 𝑥0, and flight
speed is V0 during rolling horizon domain time:

𝑆0 = {{{{{
𝑇𝑑 − 𝑑𝑖2 , 𝑥0 + V0 ⋅ 𝜏0 ≤ 𝑇𝑑 − 𝑑𝑖2
𝑥0 + V0 ⋅ 𝜏0, 𝑥0 + V0 ⋅ 𝜏0 > 𝑇𝑑 − 𝑑𝑖2

(14)

𝑆𝑓 = 𝑆0 + 𝑑𝑖 (15)

where 𝑆0 is the starting position and 𝑆𝑓 is the terminal
position.

According to the above analysis of rolling horizon strat-
egy and replanning region, the online trajectory planning
steps of UCAV formation are shown as follows.

Step 1. According to the data information uploaded by the
integrated sensor in real time, the planner estimates whether
the trigger event of trajectory replanning occurs. If the event
occurs, turn Step 2; otherwise, continue to execute the offline
trajectory and repeat Step 1.

Step 2. Based on sudden threats and the changes of mission
targets, the replanning region length, the starting position,
and terminal position are quickly determined. Then, the
trajectory replanning is solved by hp adaptive pseudospectral
method; turn Step 3.

Step 3. UCAV formation executes replanning trajectory mis-
sion until the optimization conditions are satisfied; otherwise
turn Step 1.

4.2. Hp Adaptive Pseudospectral Method. When planner cal-
culates the offline trajectory of UCAV formation, the model
based on hp adaptive pseudospectral method is adopted.
Meanwhile, in the time domain when the trigger event



8 Mathematical Problems in Engineering

l

T

Iter i

Iter i+1

Iter i+p

Rolling
Axis

Time
Axis

Time Domain Length

Execution Time
Length

· · ·

· · ·

· · ·

··
·

xi
0 xi

1 xi
2 xi

n

xi+1
0 xi+1

1 xi+1
2 xi+1

n

x
i+p
0 x

i+p
1 x

i+p
2 x

i+p
n

Figure 6: Rolling horizon planning process.

of replanning trajectory is detected, the replanning trajec-
tory using hp adaptive pseudospectral method is executed.
According to the above analysis of UCAV formation trajec-
tory planning, the optimal control model is described as

𝐽 (𝑢) = Φ (𝑥0, 𝑡0,𝑥𝑓, 𝑡𝑓)
+ ∫𝑡𝑓

𝑡0

𝑔 (𝑥 (𝑡) ,𝑢 (𝑡) , 𝑡) 𝑑𝑡 (16)

�̇� = 𝑓 (𝑥, 𝑢, 𝑡)
𝑥 (𝑡0) = 𝑥0,
𝑥 (𝑡𝑓) = 𝑥𝑓

(17)

s.t. 𝐶 (𝑥,𝑢, 𝑡) ≤ 0 (18)

ℎ (𝑥0, 𝑡0,𝑥𝑓, 𝑡𝑓) = 0 (19)

where Φ(𝑥0, 𝑡0,𝑥𝑓, 𝑡𝑓) is Mayer index function in Bolza
problem, which can represent terminal constraints cost;𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) is Lagrange index function, which denotes
state cost; index function can consist of formula (12); sub-
scripts 0 and 𝑓 represent, respectively, planning initial time
and terminal time; formula (17) can consist of (1), (2), and
(7); formula (18) can be represented by trajectory constraint
set (6); formula (19) denotes boundary value constraints.

Because the trajectory planning model belongs to the
nonlinear optimal control model, it is difficult to solve the
analytical solution. At present, there are two main numerical
methods: indirect method and direct method [46]. The
solving accuracy of the indirect method is very high, but its
convergence radius is small. In addition to small convergence
radius, due to the complexity of the formula derivation
and the difficulty of boundary value problem, the indirect
method has been rarely used. On the contrary, because the
results obtained by the direct method can satisfy the KKT
conditions without calculating the costate variables, most
of the researchers all over the world tend to learn and use
direct method, but the accuracy of direct method is low.
According to difference of discrete object, the direct method

includes discrete state variables and discrete control variables.
The pseudospectral method belongs to the type where state
variables and control variables are discrete.

Pseudospectral method uses a set of orthogonal polyno-
mial functions as the primary functions to approximate state
variables. Firstly, the time interval is divided into a serial of
smaller time intervals, and a certain number of collocation
points are given. Then, according to the time intervals and
collocation points, the state variables are discretized, which
constitutes a nonlinear programming problem. Finally, the
problem can be solved by quadratic sequential programming.

In order to increase the accuracy and computational
efficiency of pseudospectral method, the paper adopts hp
adaptive pseudospectral method. In this section, a nonlinear
programming model is presented, and then hp adaptive
pseudospectral strategy is proposed.

4.2.1. Hp Adaptive Pseudospectral Strategy. Direct collocation
method uses a set of primary functions to approximate state
equation at a specific time interval and certain collocation
points. Most of direct collocation methods adopt h method,
which uses the fixed order for state estimation and divides
problem into multisegment. By increasing the number of
time intervals, the convergence of the numerical discretiza-
tion is guaranteed. In the regionwith themaximum trajectory
error, through increasing the number of time intervals, the
result can be guaranteed to keep in a certain range of
precision.

In recent years, the pseudospectral method has become
the main method to solve the problem of optimal control.
This method gives collocation points based on the accurate
integral rules and typical basis functions such as Chebyshev
polynomial or Lagrange interpolation polynomial. In con-
trast to hmethod, the pseudospectral method uses pmethod,
which converges by increasing the order number of polyno-
mials in a time interval. However, there are some drawbacks:
(i) when nonsmooth problem is handled by even using the
high-order polynomial, the approximation effectiveness is
not ideal, and the convergence rate of p method is very low;
(ii) when using high-order global interpolation polynomial,
the dimension increases rapidly.
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In order to improve the accuracy and computational effi-
ciency of the pseudospectral method, a newmethod, namely,
hp adaptive pseudospectral, is proposed by combining h
method and p method [47]. In the method, according to
the need of the algorithm and the number and the width
of the time interval, the polynomial orders in each time
interval are adaptively determined. Whether to increase
the number of time intervals or the polynomial order is
determined by the relative curvature of each time interval.
If the relative curvature is large enough, the current time
interval is subdivided; otherwise, the polynomial order of
current time interval is increased.

4.2.2. Method Procedure. According to the analysis of above
hp adaptive pseudospectral strategy, the specific procedure
for solving nonlinear optimal control problems based on
adaptive pseudospectral method is as follows.(1) Assuming that the current time is 𝑡 ∈ [𝑡0, 𝑡𝑓],
the current time domain is divided into 𝐾 time intervals,
whose cut-points are 𝑡0, ⋅ ⋅ ⋅ , 𝑡𝐾. In each time interval, the
transformation is performed as

𝜏 = 2𝑡 − 𝑡𝑘 − 𝑡𝑘−1𝑡𝑘 − 𝑡𝑘−1 , 𝑡𝑘−1 < 𝑡𝑘 (20)

where 𝑡𝑘−1 and 𝑡𝑘 are, respectively, starting point and terminal
point of the time interval 𝑘. By (20), 𝑡 ∈ [𝑡0, 𝑡𝑓] is converted
into 𝜏 ∈ [−1, +1], and the derivation of 𝜏 is given as follows.

𝑑𝜏𝑑𝑡 = 2𝑡𝑘 − 𝑡𝑘−1 (21)

Based on formula (21), the objective function of nonlinear
optimal control problem can be presented as follows.

𝐽 = Φ (𝑥(1) (−1) , 𝑡0,𝑥(𝐾) (+1) , 𝑡𝑓) + 𝐾∑
𝑘=1

𝑡𝑘 − 𝑡𝑘−12
⋅ ∫+1
−1

𝑔 (𝑥(𝑘) (𝜏) ,𝑢(𝑘) (𝜏) , 𝜏; 𝑡𝑘−1, 𝑡𝑘) 𝑑𝜏
(22)

Likewise, the state equations, path constraints, and
boundary value constraints are, respectively, represented as
follows.

𝑑𝑥(𝑘) (𝜏)𝑑𝜏 = 𝑡𝑘 − 𝑡𝑘−12 𝑓 (𝑥(𝑘) (𝜏) , 𝑢(𝑘) (𝜏) , 𝜏; 𝑡𝑘−1, 𝑡𝑘) (23)

𝐶(𝑥(𝑘) (𝜏) , 𝑢(𝑘) (𝜏) , 𝜏; 𝑡𝑘−1, 𝑡𝑘) ≤ 0 (24)

ℎ (𝑥(1) (−1) , 𝑡0,𝑥(𝐾) (+1) , 𝑡𝑓) = 0 (25)

In order to keep states continuous, the term 𝑥(𝑡−𝑘 ) = 𝑥(𝑡+𝑘 )
is established, where 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐾 − 1.(2) After the collocation points are determined, state
variables and control variables can be approximated by
interpolation polynomial. For continuous Bolza problem,

state variables of each time interval are approximately shown
as

𝑥(𝑘) (𝜏) ≈ 𝑋(𝑘) (𝜏) = 𝑁𝑘+1∑
𝑗=1

𝑋(𝑘)𝑗 𝐿(𝑘)𝑗 (𝜏) ,

𝐿(𝑘)𝑗 (𝜏) = 𝑁𝑘+1∏
𝑙=1
𝑙 ̸=𝑗

𝜏 − 𝜏(𝑘)
𝑙𝜏𝑗 − 𝜏(𝑘)
𝑙

(26)

where 𝜏 belongs to the scope [−1, +1]. 𝐿(𝑘)𝑗 (𝜏) is the basis of
Legendre polynomial, and 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑘+1. (𝜏(𝑘)1 , 𝜏(𝑘)2 , ⋅ ⋅ ⋅ ,𝜏(𝑘)𝑁𝑘 ) is the Legendre-Gauss-Radau (LGR) collocation points
set in the time interval 𝑘. 𝜏(𝑘)𝑁𝑘+1 is 1, which is terminal point
and not a collocation point. Similarly, control variables are
approximately represented as follows.

𝑢 (𝜏) ≈ 𝑈(𝑘) (𝜏) = 𝑁𝑘+1∑
𝑖=1

𝑈(𝑘)𝑖 �̂�(𝑘)𝑖 (𝜏) ,

�̂�(𝑘)𝑗 (𝜏) = 𝑁𝑘+1∏
𝑖=1
𝑖 ̸=𝑗

𝜏 − 𝜏(𝑘)𝑖𝜏𝑗 − 𝜏(𝑘)𝑖
(27)

(3) In this step, nonlinear optimal control problem is
discretized. Firstly, the state equation is discretized as follows.

𝑑𝑋(𝑘) (𝜏)𝑑𝜏 ≡ �̇�(𝑘) (𝜏) = 𝑁𝑘+1∑
𝑗=1

𝑋
(𝑘)
𝑗 �̇�(𝑘)𝑗 (𝜏) (28)

In a collocation point, the state equation can be approxi-
mately obtained as

𝑁𝑘+1∑
𝑗=1

𝑋
(𝑘)
𝑗 𝐷(𝑘)

𝑖𝑗 − 𝑡𝑘 − 𝑡𝑘−12 𝑓 (𝑋(𝑘)𝑖 ,𝑈(𝑘)𝑖 , 𝜏(𝑘)𝑖 ; 𝑡𝑘−1, 𝑡𝑘)
= 0

(29)

where 𝐷(𝑘)
𝑖𝑗 = �̇�(𝑘)𝑗 (𝜏(𝑘)𝑖 ), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑘, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑘 +1; 𝐷(𝑘)

𝑖𝑗 is Radau pseudospectral differential matrix in a time
interval, whose order is𝑁𝑘 × (𝑁𝑘 + 1).

Similarly, the discretization of the path constraints can be
denoted as follows.

𝐶(𝑋(𝑘)𝑖 ,𝑈(𝑘)𝑖 , 𝜏(𝑘)𝑖 ; 𝑡𝑘−1, 𝑡𝑘) ≤ 0,
𝑘 ∈ [1, ⋅ ⋅ ⋅ 𝐾] , 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑁𝑘

(30)

The discretization of the boundary value constraints can be
expressed as follows.

ℎ (𝑋(1)1 , 𝑡0,𝑋(𝐾)𝑁𝑘+1
, 𝑡𝐾) = 0 (31)

In order to ensure the continuity of the time interval, the
common endpoints of adjacent time interval should be equal.

𝑋(𝑘)
𝑁𝑘+1

= 𝑋(𝑘+1)
1 (32)



10 Mathematical Problems in Engineering

The objective function discretization is expressed as
follows.

𝐽 ≈ Φ (𝑋(1)1 , 𝑡0,𝑋(𝐾)𝑁𝐾+1
, 𝑡𝐾) + 𝐾∑

𝑘=1

𝑁𝑘∑
𝑗=1

(𝑡𝑘 − 𝑡𝑘−12 )
⋅ 𝜔(𝑘)𝑗 𝑔 (𝑋(𝑘)𝑗 ,𝑈(𝑘)𝑗 , 𝜏(𝑘)𝑗 ; 𝑡𝑘−1, 𝑡𝑘)

(33)

where 𝜔(𝑘)𝑗 represents the Legendre polynomial coefficient.
Through the above steps, the continuous nonlinear opti-

mal control problem is converted into a nonlinear program-
ming problem, which can be solved by nonlinear program-
ming method to obtain approximate solution of optimal
control problem. Hp adaptive pseudospectral method can
modify the number or the distribution of collocation points
by judging the relative curvature criterion. Meanwhile, the
method can also increase the polynomial order or subdivide
the current time interval.(4) Hp adaptive pseudospectral updating mechanism is
designed as follows.

In a collocation point of a time interval, the error 𝑎(𝑘)
𝑙𝑖

between state differential equation and its discretization
polynomial and the error 𝑏(𝑘)

𝑙𝑗
between the trajectory con-

straint condition and its discretization constraint condition
are compared:

�̇�(𝑘)𝑖 (𝑡(𝑘)𝑙 ) − 𝑓(𝑘)𝑖 (𝑋(𝑘)
𝑙 , 𝑈(𝑘)𝑙 , 𝑡(𝑘)𝑙 ) = 𝑎(𝑘)𝑙𝑖 (34)

𝐶(𝑘)𝑗 (𝑋(𝑘)
𝑙 , 𝑈(𝑘)𝑙 , 𝑡(𝑘)𝑙 ) = 𝑏(𝑘)𝑙𝑗 (35)

where these terms which include 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑖 ≤ 𝑛, and 1 ≤𝑗 ≤ 𝑠 really hold, in which 𝑛 is the number of state differential
equations and s is the number of constraint equations. If
each element of 𝑎(𝑘)

𝑙𝑖
and 𝑏(𝑘)

𝑙𝑗
is greater than permitted

deviation threshold value 𝜀, the current time interval can
be subdivided or the order of polynomial can be increased
[41].

5. Simulations and Analysis

Having taken the start and goal points of UCAV formation
collaborative trajectory, the approach based on hp adaptive
pseudospectral method in the simulated environment plans
the trajectory with multiconstraint. Firstly, the simulation
environment which includes operational environment and
computer environment is established. Then, two experiments
have been carried out, where the changeable threats and
missions are used to verify the validity and stability of the
approach. The first experiment analyzes how the offline
trajectory is generated and verifies that the approach is stable.
In the second experiment, the online trajectory planning is
studied based on the previous experiment, and the simulation
shows the method is feasible.

5.1. Scenario of Mission Environment. The simulation exper-
iments on cooperative trajectory planning of the classic two-
UCAV formation are carried out, which can verify the effec-
tiveness and stability of the approach. In the initial mission

Table 1: Positions of the threats.

Threat number Type Position/km
Threat-1 Radar-A (5,5)
Threat-2 SAM-A (4,10)
Threat-3 Radar-B (10,20)
Threat-4 Radar-B (15,10)
Threat-5 SAM-B (17,17)
Threat-6 SAM-B (23,15)

scenario, it is assumed that UCAV formation detects a target
at the position (20, 20, 0) km, whose type is the ground fixed
target. The current threats in this scenario are, respectively,
radars and antiaircraft missiles, whose positions distribution
is shown in Table 1, where SAM represents surface-to-air
missile or antiaircraft missile. The simulation parameters of
threats refer to [21]. The performance parameters of UCAV
are shown in Table 2.The simulation parameters of the initial
state and exiting battlefield state for UCAV formation are
presented in Table 3. The UCAV weapon is a certain semi-
active laser-guided missile, whose performance parameters
refer to [42]. The weight coefficient of the objective function
of UCAV formation cooperative trajectory planning model is
set as 𝜔1 = 𝜔2 = 𝜔3 = 𝜔4 = 0.25.

The setting parameters of hp adaptive pseudospectral
method are the same as those in [21]. In this paper, the
number scope of nodes is [6–12]. The state variables of
UCAV are X(𝑡) = [𝑥 𝑦 𝑧 V 𝛾 𝜓𝑎 𝑚 𝛼 𝛽 𝜇]𝑇, and the control
variables are U(𝑡) = [�̇� ̇𝛽 �̇� 𝛿]𝑇.

In this section, the approach described in the previous
section is run under the toolbox pseudospectral method
of Matlab 2014a, whose operating system is Windows 7
implemented under the processor Intel(R) Core(TM) i5-
3470.

5.2. Offline Scenarios. As a trajectory planner, the offline
trajectory is firstly resolved before the attack process is
performed. In order to verify the stability of UCAV formation
collaborative trajectory planning, the simulations of the
experiments from the points of different simulation scenarios
and pseudospectral method parameters are carried out.

5.2.1. Different Offline Simulation Scenarios

(1) Case 1. Based on the initial offline scenario environment,
the first experiment for the classic two-UCAV formation
collaborative trajectory planning is simulated to verify that hp
adaptive pseudospectral method is valid. Figures 7, 8, 9, and
10 show the results of formation trajectory, its control vari-
ables, state variables, and relative distance between members.

Firstly, Figure 7 presents, respectively, the 2-dimensional
and 3-dimensional trajectories of UCAV formation, where
the trajectory with blue line is leader trajectory and the trajec-
tory with cyan line is follower trajectory. In this experiment,
there are six threats that include two kinds of radars and two
kinds of SAMs. The radars consist of Radar-A and Radar-
B with different detection zones whose corresponding posi-
tions and performance parameters are given in Table 1 and
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Table 2: Parameters of UCAVmodel.

Parameters Value Parameters Value
UCAVmass 𝑚 = 13760kg

Angle

−180∘ ≤ 𝜓𝛼 ≤ 180∘
Characteristic area 𝑆 = 49.24m2 −89∘ ≤ 𝛾 ≤ 89∘
Fuel consumption coefficient 𝑐 = 6.377 × 10−6 −10∘ ≤ 𝛼 ≤ 30∘
Maximum flight height ℎmax = 12km −20∘ ≤ 𝛽 ≤ 20∘
Weapon mass 𝑚𝑤 = 300kg −60∘ ≤ 𝜇 ≤ 60∘
Weapon speed V𝑤 = 360m/s

Angle change rate
−30∘ ≤ �̇� ≤ 30∘

Maximum overload 𝑛max = 6.8g −10∘ ≤ ̇𝛽 ≤ 10∘
Speed 82m/s ≤ V𝑢 ≤ 590m/s −30∘ ≤ �̇� ≤ 30∘

Table 3: Parameters of formation.

Parameters UCAV
Leader Follower

Phase Beginning(t0) Withdrawal(tt) Beginning(t0) Withdrawal(tt)𝑡[s] 0 100 0 100(𝑥, 𝑦, 𝑧) [km] (0,1,1.8) (29,30,0.3) (0,0,2.5) (29,30,1.3)
V [m/s] 250 free 210 free𝑚 [kg] 15680 >=13760 15680 >=13760𝛾 [ ∘] 0 free 10 free𝜓 [ ∘] 60 free 0 free𝛼 [ ∘] 0 free 0 free𝛽 [ ∘] 0 free 0 free𝜇 [ ∘] 0 free 0 free𝑅safe[m] 700

[21], respectively. Meanwhile, the different detection zones
are modeled as different dimension hemispheres shown in
Figure 7. As with radars, due to different attack areas, SAMs
which include SAM-A and SAM-B are simulated as different
dimension attacking hemispheres, and their corresponding
specific positions and performance parameters are shown in
Table 1 and [21], respectively. Compared with the scale of
trajectory planning space, the size of target which includes
airport, building, and other important infrastructures is very
small. In Figure 7, the target whose corresponding position
and performance parameters are mentioned in previous
section is simulated as a black point. As can be seen from
Figure 7, UCAV formation does not pass through the threat
zones and uses the height advantage to avoid the threat zone.
According to the display of trajectory, the planned trajectory
is smooth, which can conform to the feasibility of UCAV
actual flight trajectory.

Then, the control variables and state variables changing
curves of UCAV formation are, respectively, shown in Figures
8 and 9, where the variables are divided into leader’s variables
and follower’s variables. As expected from Figure 8, in
the whole trajectory planning process, the control variables
which consist of the change rate of attack angle, the change
rate of sideslip angle, the change rate of roll angle, and the
throttle are within the ranges set in Table 2. The flight state
variables include UCAV speed, climb angle, course angle,
mass change, attack angle, sideslip angle, and roll angle. In
Figure 9, all flight attitude variables meet the constraints of

UCAV formation collaborative trajectory planning. As can be
seen from Figure 8(d), the leader whose mass reduces drops
the weapons in 60s to attack the target. Due to decreasing
of leader’s mass, in order to keep the corresponding flight
attitude stable, the control must be changed. Because of the
first threat zone, in starting phase, the control variables are
adjusted to avoid the threat zone and keep the formation
stable.

Lastly, Figure 10 presents the change of the relative
distance marked in blue solid line between UCAV formation’s
members. In Figure 10, the blue dotted line represents the
minimum safe distance which is 0.7km. It can be seen
from the figure that the number of equivalent collisions in
planned trajectory is zero, which can meet the condition of
no collision. Meanwhile, with task execution time increasing,
because the tasks of members are different, the relative
distance between leader and follower increases firstly and
decreases later. On the whole, the runtime of UCAV for-
mation collaborative trajectory planning is 138.66s, and the
objective function is 193.64.

(2) Case 2. In order to verify the stability of the approach
about operational environment, the new mission environ-
ment is simulated. In this new mission, the UCAV formation
attacks two targets, whose positions are, respectively, (15, 23,
0) km and (20, 18, 0) km. The type of two targets is the
ground fixed target. The new threats are added into the orig-
inal environment, whose distribution situation is shown in
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Figure 7: UCAV formation trajectories in case 1.
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Figure 8: Control variables curves in case 1.

Table 4. The parameters of the new threats, the performance
parameters of UCAV, and the UCAV weapons parameters
are the same as the parameters of former experiment. At the
same time, it is assumed that theUCAVweapons for attacking
targets are enough. Through simulating the new experiment
with new operational environment, where UCAV formation
attacks two targets, the results are presented in Figures 11, 12,
13, and 14.

Figure 11 shows the 2-dimensional and 3-dimensional
trajectories of UCAV formation in the new environment. The
new threats are marked with dotted circles in Figure 11(a) and

Table 4: Positions of new threats.

Threat number Type Position/km
Threat-7 SAM-A (8.5,8.5)
Threat-8 SAM-B (19,21)

dotted hemispheres in Figure 11(b). Meanwhile, targets and
other threats are simulated with different marks as in case
1. As can be seen from the figures, the planned trajectory is
relatively smooth and conforms to the performability of flight
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Figure 9: State variables curves in case 1.
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Figure 10: Relative distance variation curve in case 1.
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Figure 11: UCAV formation trajectories in case 2.

trajectory. According to the information reflected from the
figures, the planned trajectory increases properly the length
to avoid the threat zones.

The control variables and the state variables are, respec-
tively, given in Figures 12 and 13. On the whole, in the process
of total trajectory planning, the control variables and the state
variables can meet the constraints of collaborative trajectory
planning. Due to the addition of threat zones, in order to
avoid the threat zones, the UCAV formation makes some
maneuvers, and the control variables and state variables are
notmore stable than case 1. In Figure 12(d), it can be seen that
the leader drops weapons to attack target 1 at 67.75s, and the
follower drops the weapons to attack target 2 at 67.95s. Due to
dropping of weapons, the UCAV mass decreases.

Figure 14 presents the relative distance variation curve
marked in red between members of UCAV formation, which
is bigger than blue minimum safe distance and can satisfy
the constraint conditions of collision-free. On the whole,

the runtime of UCAV formation collaborative trajectory
planning is 194.17s, which is longer than case 1. And the
objective function is 229.56, which is more than case 1.
Because of the addition of threat zones, the addition of
calculation can increase runtime and objective function
value.

Based on the analysis of above two simulation experi-
ments, the UCAV formation collaborative trajectory plan-
ning approach based on hp adaptive pseudospectral method
is feasible and effective.

5.2.2. Different Pseudospectral Method Parameters. In order
to verify the stability of the approach, the offline trajectory
planning approach based on hp adaptive pseudospectral
method is stable under different operational environments
and, in addition, a serial of simulation experiments are
carried out in scopes of different nodes. According to the
definition of hp adaptive strategy, the number of nodes in
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Figure 12: Control variables curves in case 2.

Table 5: Different nodes scopes in case 1.

Node scope Planning runtime/s Obj. function value
[2-3] 48.50 194.22[3-5] 73.00 193.72[5-8] 120.63 193.50[8-12] 173.11 193.26

each interval time is controlled by a certain scope. In order
to present the impact of nodes on the trajectory planning, we
select four experiments about different scopes, whose results
are shown in Tables 5 and 6, Figures 15 and 16.

Aimed at case 1 of Section 5.2.1, the new experiments
under different nodes scopes are simulated to obtain the
results in Table 5 and Figure 15. In Table 5, the planning
runtimes and objective function values under different nodes
scopes are shown. It can be seen from the table that as the
number of nodes increases, the planning runtime increases,
and the planning objective function value decreases. Fig-
ure 15 shows the 3-dimensional spatial trajectories of UCAV
formation under different nodes scopes. As the number
of nodes increases, the planning trajectory becomes more
precise.

With regard to case 2 of Section 5.2.1, the experiments
are carried out to verify the stability of the approach fur-
ther. The results in Table 6 and Figure 16 are similar to
the results in above experiments. In summary, with node

number increasing, the planning runtime becomes longer,
but the accuracy is higher. Through comparing the new
experiment results of case 1 and case 2, it can be obtained
that with threat zones increasing, the increasing of nodes
can make objective function values greater and runtime
longer. Therefore, before planning trajectory, according to
the environment, we must select an appropriate node scope
to balance the relation between runtime and calculating
accuracy.

5.3. Online Scenarios. In order to verify the feasibility and
validity of online collaborative trajectory planning method,
based on offline experiments, two experiments under dif-
ferent dynamic environments are carried out. There are two
dynamic environments which include sudden threats and
mission changing.

(1) Case 1. The case 1 experiment based on sudden threats
is simulated to verify the feasibility and effectiveness of
approach based on hp adaptive pseudospectral. In online
scenario environment based on the initial setting of offline
scenario, UCAV formation can detect a new threat SAM-
B at 10s, whose position is (10, 7, 0) km. Because the
replanning approach needs faster running speed, the node
scope of local planning is [3–5]. Based on the online plan-
ning strategy, the flight trajectory that does not satisfy the
flight path constraints must be replanned. The replanning
region should meet the runtime of local replanning, so
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Figure 13: Control variables curves in case 2.
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Figure 14: Relative distance variation curve in case 2.
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Figure 15: 3-Dimensional trajectories under different nodes scopes in case 1.

Table 6: Different nodes scopes in case 2.

Node scope Planning runtime/s Obj. function value
[2-3] 194.34 218.34[3-5] 456.34 217.74[5-8] 540.00 216.25[8-12] 981.75 215.47
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Figure 16: 3-Dimensional trajectories under different nodes scopes in case 2.

we select 15s as rolling time domain length and 10s as
execution length. Figures 17, 18, 19, and 20 show the results
of formation trajectory, its control variables, state variables,
and relative distance between members under dynamic
environment.

Firstly, in Figure 17, the formation collaborative trajectory
based on sudden threats is presented, where the blue and cyan
trajectories are the original offline trajectories of leader and
follower, respectively, and the red and magenta trajectories
are the execution parts of local replanned trajectories of
leader and follower, respectively. As can be seen in the
figure, when the original trajectory does not meet the threat
zone constraint, the replanned trajectory avoids the threat
zone.

Then, the control variables and state variables of online
trajectory planning are shown in Figures 18 and 19, respec-
tively, where the red curves are parameters variation curves of
replanning. On the whole, all variables satisfy the constraints
of UCAV formation collaborative trajectory planning. Com-
pared with blue and cyan variation curves, the red and
magenta variation curves are not more stable. Due to sudden
threat zone that is detected at 10s, in order to avoid the sudden
threat, the UCAV formation must adopt some maneuverings

to sacrifice length cost and decrease threat cost. In the
replanning process, replanning region time is from 25s to
45s.

Lastly, Figure 20 shows the relative distance curves which
are marked with red solid line between members of UCAV
formation in execution time of replanning phase and blue
solid line in offline phase, respectively. In the figure, the
relative distance is greater than the minimum safe distance
which is marked with blue dotted line. In the general, while
selecting fewer nodes, the replanning runtime is 14.74s, and
objective function is 56.34.

(2) Case 2. After we verify the feasibility and effectiveness of
approach based on hp adaptive pseudospectral, the stability
of online trajectory planning needs to be verified by other
online scenarios. Due to the limitation of paper length,
we select another dynamic environment in case 2, which
combines addition and maneuvering of mission and sudden
threat. In case 2, at 50s, the formation receives the new
mission and detects new threat. In this scenario, newmission
target is carried out by leader, whose position is (17, 22,
0) km. The initial target is carried out by follower, whose
position changes from the original position point (20, 20,
0) km to the position point (20, 18.5, 0) km. Meanwhile,
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Figure 17: Replanned trajectories in case 1.
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Figure 18: Control variables of replanned trajectories in case 1.

the new threat SAM-B is detected, whose position is (19.5,
21, 0) km. According to the definition of online trajectory
planning strategy, the replanned region execution time must
be less than rolling domain time. Hence, the approach selects
the nodes scope [3–5]. At the same time, we select 10s
as replanned region execution time and 15s as the rolling

domain time.Through simulating new dynamic environment
in case 2, Figures 21, 22, 23, and 24 are obtained.

Figure 21 shows UCAV formation trajectories planning
in new mission environment, which include 2-dimensional
trajectory and 3-dimensional trajectory. As can be seen in
the figure, when blue trajectory does not meet the threat
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Figure 19: State variables of replanned trajectories in case 1.
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Figure 20: Relative distance variation curve of replanned trajectories in case 1.
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Figure 21: Replanned trajectories in case 2.

constraints, the red trajectory which is replanned based on
hp adaptive pseudospectral method avoids the threat zone
and executes the dropping of weapons that are used for
attacking targets. Meanwhile, due to synergy of UCAVs,
in order to avoid colliding with leader, the cyan trajectory
of follower needs to be replanned, and then the magenta
trajectory is simulated as shown in Figure 21. In Figures
22 and 23, the control parameters and state parameters
variation curves are presented, respectively, where red and
magenta curves represent the replanned trajectory parame-
ters. According to display of figures, these variables satisfy
the collaborative trajectory planning constraints. Because
of avoiding the sudden threat and target addition, the

UCAV formation must do some maneuverings, and the
formation trajectory is not more stable than offline planned
trajectory. In the replanning process, replanning region
time is from 65s to 85s. Figure 24 presents the relative
distance variation curves marked in red between members
of formation during replanned phase, which is bigger than
minimum safe distance that is 0.7km and meets the condi-
tions of noncollision constraint. On the whole, the replan-
ning runtime is 14.67s and the objective function value is
56.37.

Through combining case 1 and case 2, the approach
denoted in the paper can verify the feasibility and stability of
the online trajectory planning method.
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Figure 22: Control variables of replanned trajectories in case 2.

6. Conclusion

This paper presents a novel approach based on hp adap-
tive pseudospectral method to plan online collaborative
trajectory for UCAV formation. The method is proposed
to efficiently replan formation trajectories based on offline
trajectories in dynamic environment. The collaborative tra-
jectory planning model adopts kinematics/dynamics model
of UCAV and formation relative motion model to compute
more realistic trajectories. The continuous nonlinear optimal
control problem is transformed into the nonlinear pro-
gramming problem, which uses hp adaptive pseudospectral
method to generate trajectories. For online collaborative
trajectory planning, the hp adaptive pseudospectral method
is applied iteratively and the replanned trajectories are gener-
ated in a subproblem defined by the horizon when a trigger
event occurs.

The main advantage of the proposed approach is to
consider dynamic environments, relative motion charac-
teristic, and UCAV kinematics/dynamics model together.
Most of the papers published on pseudospectral method
consider only one vehicle. Another novel aspect is to consider
the experiments of offline trajectory planning and online
trajectory replanning.

In terms of offline trajectory planning, the simulation
results of the static experiments show that the collabo-
rative trajectory planning approach based on hp adaptive

pseudospectral method achieves the goal of searching the
optimal trajectory. In other words, online scenario exper-
iments have been carried out to denote that the online
collaborative trajectory replanning approach with using hp
adaptive pseudospectral method and rolling horizon strategy
is effective and stable.

The online trajectory planning of multiple UCAVs which
include classical two UCAVs and three or more UCAVs is
a very complex problem, where the task allocation problem
and anticollision problem need to be considered. Meanwhile,
as the number of UCAVs increases, due to the high time-
consuming computation of more nodes and the limitation
of variable number setting in hp adaptive pseudospectral
method, it is necessary to combine hp adaptive pseudospec-
tral method withmetaheuristic optimization algorithm men-
tioned in previous literature. The approach is the next
research orientation in the future.
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Figure 23: State variables of replanned trajectories in case 2.
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