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Elliptic interface problems have wide applications in engineering and science. Non-body-fitted grid has the advantage of saving the
cost of mesh generation. In this paper, we propose a Petrov-Galerkin formulation using non-body-fitted grid for solving elliptic
interface problems. In this method, adaptive mesh refinement is employed for cells with large errors. The new mesh still has all
triangles being right triangles of the same shape. Numerical experiments show side-by-side comparison that to obtain the same
accuracy, our new method has much less overall CPU time compared with the previous method even with some cost on mesh
generation.

1. Introduction

Elliptic interface problems have wide applications in a variety
of disciplines, such as electromagnetism, fluid dynamics,
and material science. There are two types of grids used for
solving such problems: the body-fitted grid and non-body-
fitted grid. For the body-fitted grid,mesh generationhasmore
computational cost than the non-body-fitted grid.Thequality
of the triangles is also an issue that needs special care. We
focus on the discussion using non-body-fitted grid.

In the past three decades, much attention has been paid
to the numerical solution of elliptic interface problems on
non-body-fitted regular Cartesian grids since the pioneering
work of Peskin [1] on the first-order accurate immersed
boundary method. Motivated by the immersed boundary
method, to improve accuracy, in [2], the immersed interface
method (IIM) was presented. The method achieves second-
order accuracy by incorporating the interface conditions
into the finite difference stencil in a way that preserves the
interface conditions in both solution and its flux in the
normal direction, [𝑢] ̸= 0 and [𝛽𝑢𝑛] ̸= 0. The corresponding
linear system is sparse but may not be symmetric or positive
definite if there is a jump in the coefficient.

Naturally, the standard finite element method has the
property of symmetricity and positive definiteness. However,
it used body-fitted grid. Can finite elementmethod be applied
using non-body-fitted grid? In [3], the immersed finite
element (IFE) method is introduced for interface problems
with homogeneous jump conditions. The idea is that the test
and trial function basis are the same and are continuous but
not smooth across the interface in an interface triangle. In [4],
the method is generalized to deal with nonhomogeneous flux
jump condition. In [5], the partially penalized IFE method is
introduced to penalize the discontinuity of the IFE function
on neighboring interface triangles. There are some work in
the IFE formulation in three dimensions aswell, such as [6, 7].

As mentioned above, special treatment is required to use
the IFE on non-homogeneous jump conditions. Is it possible
for a finite element method to handle non-homogeneous
jump conditions the same way as homogeneous jump con-
ditions? In [8], a non-traditional finite element formulation
for solving elliptic equations with smooth or sharp-edged
interfaces was proposed with non-body-fitting grids for [𝑢] ̸=0 and [𝛽𝑢𝑛] ̸= 0. It achieved second-order accuracy in the𝐿∞ norm for smooth interfaces and about 0.8th order for
sharp-edged interfaces. In [9, 10], the method is analyzed and
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implemented in three dimensions.The resulting linear system
is non-symmetric but positive definite.

In [11], the matched interface and boundary (MIB)
method was proposed to solve elliptic equations with smooth
interfaces. In [12], the MIB method was generalized to treat
sharp-edged interfaces. With an elegant treatment, second-
order accuracy was achieved in the 𝐿∞ norm. In [13], the
MIB method was extended to three-dimensional interface
problems. Also, there has been a large body of work from
the finite volume perspective for developing high order
methods for elliptic equations in complex domains, such as
[14, 15] for two-dimensional problems and [16] for three-
dimensional problems. Another class of methods is the
Boundary Condition Capturing Method [17–19]. In [20, 21],
gradient recovery techniques were developed to improve the
accuracy of gradient computation.

In this paper, based on our early work on non-traditional
finite element method using a non-symmetric weak formu-
lation with uniform Cartesian grid, we improve the perfor-
mance by using adaptive mesh refinement on the cells where
the numerical error is large. The main idea is as follows: first,
we use two different uniform Cartesian coarse grids so that
we could compare their results to find at which cells the error
is larger. Then, we do adaptive mesh refinement for these
cells. Finally, we use our non-symmetric weak formulation
on this non-uniform grid. For most problems the large errors
occur only around the interface and therefore an alternative
method refining around the interface is also proposed.We do
present an example in which large errors occur away from the
interface though. All triangles are right triangles of the same
shape in the new grid. This grid is just a minor modification
from the uniform Cartesian grid and the mesh generation
cost is very low. However, since smaller triangles are used
where the error is large, in the end the 𝐿∞ error is reduced.
Numerical results show that to obtain the same L-infinity
error, this new method needs much less overall CPU time
compared with the previous method.

2. Equations and Weak Formulation

In this section, we briefly go through the equations and
weak formulation in our previous work [8]. This is the
foundation of our adaptive refinement method in this paper.
Before adaptive refinement, the only difference between our
previous work and the work in this paper is that the uniform
triangular mesh is different.

Consider an open bounded domain Ω ⊂ 𝑅2. Let Γ be an
interface of co-dimension 1, which dividesΩ into twodisjoint
open subdomains, Ω− and Ω+, hence Ω = Ω− ∪ Ω+ ∪ Γ.

We seek solutions of the variable coefficient elliptic
equation away from the interface Γ given by

−󳶚 ⋅ (𝛽 (x) 󳶚𝑢 (x)) = 𝑓 (x) , x ∈ Ω \ Γ, (1)

in which x = (𝑥1, 𝑥2) denotes the spatial variables. The
coefficient 𝛽(x) is assumed to be a 2 × 2 matrix that is
uniformly elliptic on each disjoint subdomain, Ω− and Ω+,
and its components are continuously differentiable on each
disjoint subdomain, but they may be discontinuous across

the interface Γ. The right-hand side 𝑓(x) is assumed to lie in𝐿2(Ω).
Given functions 𝑎 and 𝑏 along the interface Γ, we

prescribe the jump conditions

[𝑢]Γ (x) ≡ 𝑢+ (x) − 𝑢− (𝑥) = 𝑎 (x)
[(𝛽󳶚𝑢) ⋅ n]Γ (x) ≡ n ⋅ (𝛽+ (x) 󳶚𝑢+ (x)) − n

⋅ (𝛽− (x) 󳶚𝑢− (x)) = 𝑏 (x) .
(2)

The “±” superscripts refer to limits taken from within the
subdomains Ω±.

Finally, the boundary conditions are given by

𝑢 (x) = 𝑔 (x) , x ∈ 𝜕Ω. (3)

The jump conditions are enforced strongly in the local
system. Also, the flux jump condition appears in the weak
formulation.

We introduce the weak solution by the standard proce-
dure of multiplying (1) by a test function 𝜓 and integration by
parts:

∫
Ω+

𝛽󳶚𝑢 ⋅ 󳶚𝜓 + ∫
Ω−

𝛽󳶚𝑢 ⋅ 󳶚𝜓 = ∫
Ω

𝑓𝜓 − ∫
Γ

𝑏𝜓, (4)

where 𝜓 is in 𝐻10 (Ω). Note that although the test function𝜓 is the same as in the standard finite element method, the
function 𝑢 is not a linear combination of such basis functions.
Instead, the jump conditions are enforced strongly.

3. Numerical Method

In this paper, we restrict ourselves to a rectangular domainΩ = (𝑥min, 𝑥max) × (𝑦min, 𝑦max) in the plane. Given positive
integers 𝐼 and 𝐽, set Δ𝑥 = (𝑥max − 𝑥min)/𝐼 and Δ𝑦 =(𝑦max −𝑦min)/𝐽. We define a uniform Cartesian grid (𝑥𝑖, 𝑦𝑗) =(𝑥min + 𝑖Δ𝑥, 𝑦min + 𝑗Δ𝑦) for 𝑖 = 0, . . . , 𝐼 and 𝑗 = 0, . . . , 𝐽. Each(𝑥𝑖, 𝑦𝑗) is called a grid point. For the case 𝑖 = 0, 𝐼 or 𝑗 = 0, 𝐽, a
grid point is called a boundary point; otherwise it is called an
interior point. The grid size is defined as ℎ = max(Δ𝑥, Δ𝑦) >0.

Two sets of grid functions are needed and they are
denoted by

𝐻1,ℎ = {𝜔ℎ = (𝜔𝑖,𝑗) : 0 ≤ 𝑖 ≤ 𝐼, 0 ≤ 𝑗 ≤ 𝐽} (5)

and

𝐻1,ℎ0 = {𝜔ℎ = (𝜔𝑖,𝑗) ∈ 𝐻1,ℎ : 𝜔𝑖,𝑗 = 0 if 𝑖 = 0, 𝐼 or 𝑗
= 0, 𝐽} (6)

Cut every rectangular region [𝑥𝑖, 𝑥𝑖+1] × [𝑦𝑗, 𝑦𝑗+1] into
four pieces of right triangular regions. Collecting all those
triangular regions, we obtain a uniform triangulation 𝑇ℎ :⋃𝐾∈𝑇ℎ 𝐾; see Figure 1. This is slightly different from the
triangulation in our previous work [8] for convenience of
adaptive mesh refinement.

We call a cell 𝐾 an interface cell if its vertices belong to
different subdomains; we write 𝐾 = 𝐾+ ∪ 𝐾−. 𝐾+ and 𝐾− are
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Figure 1: A uniform triangulation.
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Figure 2: Cells.

separated by a straight interface segment Γℎ𝐾. We call a cell 𝐾
a regular cell if all its vertices belong to the same subdomain,
either Ω+ or Ω−; see Figure 2.

In order to introduce our non-traditional finite element
method, two finite element isomorphism mappings are
needed from coefficient vector to finite element functions.
The first one is 𝑇ℎ : 𝐻1,ℎ 󳨀→ 𝐻10 (Ω). For any 𝜓ℎ ∈ 𝐻1,ℎ0 ,𝑇ℎ(𝜓ℎ) is a standard continuous piecewise linear function,
which is a linear function in every triangular cell and 𝑇ℎ(𝜓ℎ)
matches 𝜓ℎ on grid points. The second one 𝑈ℎ is constructed
as follows. For any𝑢ℎ ∈ 𝐻1,ℎwith𝑢ℎ = 𝑔ℎ at boundary points,𝑈ℎ(𝑢ℎ) is a piecewise linear function and matches 𝑢ℎ on grid
points. It is a linear function in each regular cell, just like the
first extension operator 𝑈ℎ(𝑢ℎ) = 𝑇ℎ(𝑢ℎ) in a regular cell. In
each interface cell, it consists of two pieces of linear functions;
one is on 𝐾+ and the other is on 𝐾−.

In each cell, we shall construct an approximate solution𝑢ℎ to the interface problem taking into account the jump
conditions.

Case 1. If 𝐾 is a regular cell (see Figure 2(a)), we can have the
following equation:

∫
𝐾

𝛽∇𝑈ℎ (𝑢ℎ) ⋅ ∇𝑇ℎ (𝜓ℎ) = ∫
𝐾

𝑓𝑇ℎ (𝜓ℎ) . (7)

Case 2. If 𝐾 is an interface cell (see Figure 2(b)), notice that
points 2, 3, 4, 5 are coplanar, and the value of point 5 can be
denoted as a linear combination of the values of points 2, 3, 4:𝑢5 = 𝑐1𝑢2 + 𝑐2𝑢3 + 𝑐3𝑢4. Then a local system defined on the
interface cell 𝐾 can be constructed as

[𝑢]4 = 𝑎4,
[𝑢]5 = 𝑎5,

𝑐1𝑢2 + 𝑐2𝑢3 + 𝑐3𝑢4 = 𝑢5,
[(𝛽󳶚𝑢) ⋅ n]6 = 𝑏6,

(8)

where point 6 is the midpoint of the line segment from 4 to 5.
Solve this local system and get the values of 𝑢±4 , 𝑢±5 , which

are denoted by the linear combinations of 𝑢1, 𝑢2, 𝑢3. Then we
have the following equation:

∫
𝐾+

𝛽∇𝑈ℎ (𝑢ℎ) ⋅ ∇𝑇ℎ (𝜓ℎ) + ∫
𝐾−

𝛽∇𝑈ℎ (𝑢ℎ)
⋅ ∇𝑇ℎ (𝜓ℎ)

= ∫
𝐾+

𝑓𝑇ℎ (𝜓ℎ) + ∫
𝐾−

𝑓𝑇ℎ (𝜓ℎ) − ∫
Γℎ𝐾

𝑏𝑇ℎ (𝜓ℎ) .
(9)
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Input: Triangulation set 𝑇, interior point set 𝑃
Output: New triangulation set 𝑇, new interior point set 𝑃
1: Let 𝑡𝑛 be the length of triangulation 𝑇
2: for 𝑖 = 1 to 𝑡𝑛 do
3: if 𝑇𝑖’s refine sign is equal to 1 then
4: 𝑠 ←󳨀 1, 𝑖𝑡 ←󳨀 1
5: while s=1 do
6: Let (𝑥, 𝑦) be the right angle point of 𝑇𝑖
7: Let (𝑥𝑚, 𝑦𝑚) be the middle point of the hypotenuse of 𝑇𝑖
8: Let 𝑇𝑗 be the triangle next to 𝑇𝑖 and share the hypotenuse with 𝑇𝑖
9: (𝑥𝑛, 𝑦𝑛) ←󳨀 2(𝑥𝑚, 𝑦𝑚) − (𝑥, 𝑦)
10: if (𝑥𝑚, 𝑦𝑚) is on the boundary then
11: 𝑠 ←󳨀 0 (see cell 𝐾10,8,13 in Figure 3)
12: else if (𝑥𝑛, 𝑦𝑛) ∈ 𝑃 then
13: 𝑠 ←󳨀 0 (see cell 𝐾9,6,7 in Figure 3)
14: else
15: 𝑠 ←󳨀 1, 𝑖𝑡 ←󳨀 𝑖𝑡 + 1, 𝑇𝑖 ←󳨀 𝑇𝑗, add 𝑇𝑖 into a triangle set 𝑁𝑇 (see cell 𝐾15,4,7 in Figure 3)
16: end if
17: end while
18: for 𝑗 = 𝑖𝑡 down to 1 do
19: 𝑇𝑖 ←󳨀 𝑁𝑇𝑗
20: Let (𝑥, 𝑦) be the right angle point of 𝑇𝑖
21: Let (𝑥𝑚, 𝑦𝑚) be the middle point of the hypotenuse of 𝑇𝑖
22: (𝑥𝑛, 𝑦𝑛) ←󳨀 2(𝑥𝑚, 𝑦𝑚) − (𝑥, 𝑦)
23: if (𝑥𝑚, 𝑦𝑚) is on the boundary then
24: Connect (𝑥, 𝑦) and (𝑥𝑚, 𝑦𝑚), separate the original cell into two new cells,

delete the original cell from 𝑇 and add two new cells into 𝑇
25: else if (𝑥𝑛, 𝑦𝑛) ∈ 𝑃 then
26: Connect (𝑥, 𝑦) and (𝑥𝑚, 𝑦𝑚), separate the two cells into four new cells,

delete the two cells from 𝑇, add four new cells into 𝑇,
and add the new point (𝑥𝑚, 𝑦𝑚) into 𝑃

27: end if
28: end for
29: end if
30: end for

Algorithm 1: Adaptive mesh refinement.

Putting all the cells together, we propose the following
method.

Method 1. Find a discrete function 𝑢ℎ ∈ 𝐻1,ℎ, such that 𝑢ℎ =𝑔ℎ on boundary points so that, for all 𝜓ℎ ∈ 𝐻1,ℎ0 , we have

∑
𝐾∈𝑇ℎ

(∫
𝐾+

𝛽∇𝑈ℎ (𝑢ℎ) ⋅ ∇𝑇ℎ (𝜓ℎ) + ∫
𝐾−

𝛽∇𝑈ℎ (𝑢ℎ)

⋅ ∇𝑇ℎ (𝜓ℎ)) = ∑
𝐾∈𝑇ℎ

(∫
𝐾+

𝑓𝑇ℎ (𝜓ℎ)

+ ∫
𝐾−

𝑓𝑇ℎ (𝜓ℎ) − ∫
Γℎ𝐾

𝑏𝑇ℎ (𝜓ℎ)) .

(10)

In order to improve the efficiency of our method, we
introduce the adaptive refinement method to get a refined
mesh. The idea is to use the error scale of the coarse grid
to get the refinement triangulation set. First calculate the
numerical result of the uniform coarse grids using (𝑛𝑥, 𝑛𝑦)
and (2𝑛𝑥, 2𝑛𝑦) grid points in both 𝑥 and 𝑦 directions, then

use this numerical result to get the numerical error |𝑒(𝑛𝑥,𝑛𝑦)|
on the corresponding points. Based on the error scale on
different grid points, we can decide the refinement scale of
each triangulation and then get the refined mesh with our
adaptive refinementmethod;we call thismesh adaptivemesh.
The detailed algorithm is given in Algorithm 1.

Remark. When it comes to numerical computation of inter-
face problems, the major part of the error is from the region
around the interface, so the refined mesh around this region
needs to be the smallest triangulation. This is why we propose
the adaptive mesh with further refinement on the interface,
called adaptive interface mesh.

4. Numerical Experiments

In all numerical experiments below, the level-set function𝜙(𝑥, 𝑦), the coefficients 𝛽±(𝑥, 𝑦), and the solutions

𝑢 = {{{
𝑢+ (𝑥, 𝑦) , in Ω+
𝑢− (𝑥, 𝑦) , in Ω− (11)
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Table 1: Numerical results of Example 2 with different mesh.

Mesh 𝑁 󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩∞ CPU Time
Uniform Mesh 404101 1.35e-3 6392.5s
Adaptive Mesh 147664 1.32e-3 2218.3s
Adaptive Interface Mesh 18249 1.28e-3 120.8s

31 2

4 16 5

9 10 14

11 12 13

6 715 8

17

Figure 3: Refined mesh.

are given. Hence

𝑓 = −∇ ⋅ (𝛽∇𝑢) ,
𝑎 = 𝑢+ − 𝑢−,
𝑏 = (𝛽+∇𝑢+) ⋅ n − (𝛽−∇𝑢−) ⋅ n

(12)

on the whole domain Ω. 𝑔 is obtained as a proper Dirichlet
boundary condition, since the solutions are given.

In Examples 2, 4, and 5, we solve the problem in the
rectangular domain Ω = [−1, 1] × [−1, 1]. In Example 3, we
solve the problem in the rectangular domain Ω = [0, 1] ×[0, 1]. 𝑁 is the number of interior points, and 𝑁1/2 is the
number of points in one dimension. The 𝐿∞ norm and the
energy norm in the whole domain Ω are measured in the
following ways:

󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩∞ = max
𝑥∈Ω

󵄨󵄨󵄨󵄨󵄨𝑢 − 𝑢ℎ󵄨󵄨󵄨󵄨󵄨 ,
󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩𝛽 = √∫

Ω
(󳶚 (𝑢 − 𝑢ℎ))𝑇 𝛽 (󳶚 (𝑢 − 𝑢ℎ)) = √∫

Ω+
(󳶚 (𝑢 − 𝑢ℎ))𝑇 𝛽 (󳶚 (𝑢 − 𝑢ℎ)) + ∫

Ω−
(󳶚 (𝑢 − 𝑢ℎ))𝑇 𝛽 (󳶚 (𝑢 − 𝑢ℎ)).

(13)

Example 2. The level-set function 𝜙, the coefficients 𝛽±, and
the solution 𝑢± are given as follows:

𝜙 (𝑥, 𝑦) = 𝑥2 + 𝑦2 − 0.15,
𝛽+ (𝑥, 𝑦) = 1000 (𝑥2 + 3 cos (𝑥)

cos (𝑥) 𝑦2 + 2) ,

𝛽− (𝑥, 𝑦) = (𝑥2 + 3 cos (𝑥)
cos (𝑥) 𝑦2 + 2) ,

𝑢+ (𝑥, 𝑦) = sin (5𝑥𝑦) + 1,
𝑢− (𝑥, 𝑦) = sin (10𝑥𝑦) .

(14)

Table 1 shows the error and CPU time on uniform
triangular mesh, adaptive mesh, and adaptive interface mesh.
From this table we can see that the adaptive mesh method
has a better result than the uniform mesh method, and the
method with adaptive interface mesh is significantly faster
and more accurate than the other two methods. The left and
right of Figure 4 are a comparison of the adaptive mesh,
the numerical solution, and the numerical error using the
adaptive mesh method with 3663 interior points (left) and
the adaptive interface meshmethod with 4167 interior points
(right). The error plots do not include the outside boundary
points where the solution is given with no error. From
Figure 4(e) we can see that the maximum error comes from
the area around the interface. Therefore we refine this place
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(a) Grids of Adaptive Mesh (b) Grids of Adaptive Interface Mesh

(c) Numerical Solution of Adaptive Mesh (d) Numerical Solution of Adaptive Interface Mesh

(e) Numerical Error of Adaptive Mesh (f) Numerical Error of Adaptive Interface Mesh

Figure 4: Numerical results of Example 2.

with the smallest triangulation. Figure 4(f) is the numerical
error after the refinement; it is clear in this figure that the error
around the interface has been decreased to the same scale as
the error away from the interface.

Example 3. The level-set function 𝜙, the coefficients 𝛽±, and
the solution 𝑢± are given as follows:

𝜙 (𝑥, 𝑦) = 𝑥 + 0.5,
𝛽+ (𝑥, 𝑦) = (𝑥2 + 1 0

0 𝑦2 + 1) ,

𝛽− (𝑥, 𝑦) = 1000 (𝑥2 + 1 0
0 𝑦2 + 1) ,

𝑢+ (𝑥, 𝑦) = 𝑥4 + 𝑥3 − 3𝑥2 + 2𝑦, 𝑥 > 0.5
𝑢+ (𝑥, 𝑦) = −74 (𝑥 − 0.5) + 2𝑦 − 916 , 𝑥 ≤ 0.5
𝑢− (𝑥, 𝑦) = 2𝑥 + 3𝑦 + 3.

(15)

The left and right of Table 2 show the error on uniform
triangular meshes and adaptive meshes with different grids,
respectively. From this table we can see that the method
with adaptive mesh is much faster than the method with
uniform mesh. We plot the adaptive mesh using the adaptive
mesh method with 5004 interior points in Figure 5(a). The
numerical solution and numerical error are shown in (b) and
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Table 2: Numerical results of Example 3 with different mesh.

UniformMesh Adaptive Mesh𝑁 󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩∞ CPU Time 𝑁 󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩∞ CPU Time
12641 3.02e-4 27.0s 4109 3.02e-4 21.3s
30505 1.27e-4 84.4s 8377 1.30e-4 37.4s
50881 7.69e-5 179.5s 16171 7.69e-5 73.0s
120541 3.27e-5 723.8s 30096 3.27e-5 155.7s
204161 1.94e-5 1789.4s 57391 1.94e-5 436.8s
479221 8.29e-6 18119.7s 106387 8.22e-6 1206.8s

Order: 1.98 Order: 2.17
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(d) 𝐿∞ error for different grids

Figure 5: Numerical results of adaptive mesh for Example 3.

(c) of Figure 5. After calculating the coarse grid error |𝑒(𝑛𝑥,𝑛𝑦)|,
we noticed that the error around the interface is smaller than
other areas away from the interface, so in this example we
do not need to use the adaptive interface method to get a
further refinement mesh around the interface, as we did in
Example 2. In Figure 5(c), it is clear that the maximum error
lies on the line𝑥 = 1, and fromFigure 5(a)we can see that our
method refines the grid around this line automatically and the

smallest triangulation lies exactly on 𝑥 = 1. Figure 5(d) is a
comparison of the 𝐿∞ error on uniform meshes and adaptive
meshes with different grid, which shows that the convergency
rate of the adaptivemesh is higher than the uniformmesh and
that the adaptive mesh can get to higher than second-order
accuracy in 𝐿∞ norm even when the coefficients are matrix
and the ratio 𝛽−/𝛽+ = 1000, which is more efficient than the
uniform mesh.
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Table 3: Numerical results of Example 4 with different mesh.

Mesh 𝑁 󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩𝛽 󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩∞ CPU Time
Adaptive IFEMMesh in [22] 4021 4.11e-2

Adaptive Mesh 933 4.41e-2 1.32e-3 15.3s
3417 1.32e-2 3.75e-4 22.0s

Adaptive Interface Mesh 2017 1.28e-2 3.84e-4 17.6s
3453 8.86e-3 1.65e-4 26.0s

Table 4: Numerical results of Example 5 with different mesh.

Mesh 𝑁 󵄩󵄩󵄩󵄩𝑒𝑢󵄩󵄩󵄩󵄩∞ CPU Time Order

Uniform Mesh

1105 6.65e-3 2.6s

1.58
8065 1.59e-3 18.5s
28561 5.61e-4 86.5s
99905 1.88e-4 561.3s
400513 6.59e-5 6448.1s

Adaptive Mesh

567 6.13e-3 3.6s

1.62
2385 1.56e-3 14.3s
9711 5.39e-4 66.2s
39038 1.82e-4 346.6s
155869 6.17e-5 3329.8s

Adaptive Interface Mesh

874 5.76e-3 5.8s

1.86
3037 1.42e-3 18.4s
11035 4.63e-4 72.0s
41714 1.35e-4 390.1s
161208 4.25e-5 3343.4s

Example 4. This example is taken from [22]. We use this
example to compare our method with the adaptive immersed
finite element method. The level-set function 𝜙, the coeffi-
cients 𝛽±, and the solution 𝑢± are given as follows:

𝜙 (𝑥, 𝑦) = 𝑥2 + 𝑦2 − 0.25,
𝛽+ (𝑥, 𝑦) = 1000,
𝛽− (𝑥, 𝑦) = 1,

𝑟 (𝑥, 𝑦) = √𝑥2 + 𝑦2,
𝑢+ (𝑥, 𝑦) = 𝑟31000 + (1 − 11000) 0.53,
𝑢− (𝑥, 𝑦) = 𝑟3.

(16)

Table 3 is a comparison of the numerical results and
CPU time of the adaptive IFEM mesh in [22], the adaptive
mesh, and adaptive interface mesh in this paper. From this
table we can see that our adaptive method with 933 interior
points gives a better result than the adaptive IFEM mesh
with 4021 interior points, and the result of our adaptive
interface mesh is better than the adaptive mesh. The left and
right of Figure 6 are a comparison of the adaptive mesh,
the numerical solution, and the numerical error using the
adaptive mesh method with 585 interior points (left) and
the adaptive interface mesh method with 825 interior points

(right). From this figure we can see that after the refinement
using the adaptive method, the maximum error comes from
area inside the interface but not exactly lies on the interface,
so the difference of the results between the adaptive interface
mesh and the adaptive mesh is not as large as it is in
Example 2.

Example 5. This example is taken from [8]. It is an interface
problem with a singular point. The level-set function 𝜙, the
coefficients 𝛽±, and the solution 𝑢± are given as follows. The
interface is Lipschitz continuous and it has a kink at (0, 0),
and 𝑢 is piecewise 𝐻2:

𝜙 (𝑥, 𝑦) = 𝑦 − 2𝑥, 𝑥 + 𝑦 > 0
𝜙 (𝑥, 𝑦) = 𝑦 + 𝑥2 , 𝑥 + 𝑦 ≤ 0

𝛽+ (𝑥, 𝑦) = 1,
𝛽− (𝑥, 𝑦) = 2 + sin (𝑥 + 𝑦) ,
𝑢+ (𝑥, 𝑦) = 8,
𝑢− (𝑥, 𝑦) = (𝑥2 + 𝑦2)5/6 + sin (𝑥 + 𝑦)

(17)

Figure 7 shows the jump of solution and flux in the
normal direction on the interface. Table 4 is a comparison of
the numerical results and CPU time of the uniform mesh,
adaptive mesh, and adaptive interface mesh with different
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Figure 6: Numerical results of Example 4.
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Figure 7: Jumps on the interface of Example 5.
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Figure 8: Numerical results of Example 5.

grids. All three methods can get to higher than 1.5th order
accuracy.The result of the method using the adaptive mesh is
obviously better than the method using the uniform mesh,
and the result of the method using the adaptive interface

mesh is slightly better result than the method using the
adaptive mesh, and the difference of the results of three
meshes gets clearer as the triangulation becomes smaller. The
left and right of Figure 8 are a comparison of the adaptive
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mesh, the numerical solution, and the numerical error using
the adaptive meshmethodwith 2385 interior points (left) and
the adaptive interface meshmethod with 3037 interior points
(right). In this example we can see that after the refinement
using the adaptive method, the maximum error lies around
the interface, so we further refined the mesh around the
interface and get a better result as shown in Figure 8(f).

5. Conclusion

In this paper, we proposed the adaptive refinement method to
solve the elliptic interface problems using a non-symmetric
weak formulation. The key idea is to use two uniform coarse
grids to find the location of the maximum error. Sometimes
this step can be omitted in practice because the cells with
maximum error often locates near the interface, but we
provided examples in which the cells with maximum errors
are away from the interface. After fixing the location of
the maximum error, we use the adaptive mesh refinement
method to reduce the maximum error, so that the error of the
whole area is of the same scale. Numerical experiments show
that the adaptive refinement method has remarkably higher
convergency and accuracy than the method using uniform
Cartesian grid, and for the same 𝐿∞ error the overall CPU
time is highly reduced using our new method. The study of
the three-dimensional form of this new method will be our
future work, so that we can solve problems that are more
practical.
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