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In this work the problem of chaos suppression for a class of continuous chemical reactor with chaotic dynamics is tackled via a
nonlinear control strategy.The proposed controller is developed under the framework of optimal control theory, where a functional
is proposed tomaximize the chemical reaction rate via a proposed Lagrangian-type which contains directly the state equation of the
reacting system, avoiding the problems of Lagrange, the Hamiltonian formulation, and consequently the explicit constraints to the
system. This allows solving in an easier form the optimization problem in comparison with the standard methods. This procedure
allows suppressing the chaotic behavior of the reacting system by stabilizing the reaction rate term by leading it to an extreme value.
Numerical experiments are done in order to show the satisfactory performance of the proposed methodology.

1. Introduction

The stabilization of nonlinear systems with complex or
chaotic behavior has been analyzed from several years ago.
In particular, the stabilization via nonlinear controllers with
regulation purposes in chemical reactors is also a classi-
cal task for processes engineers; the control of chemical
reactors has been done via linear PID, adaptive, predictive,
I/O linearizing, fuzzy, neural, and optimal controllers with
success [1–6]. Awidely employed control strategy is related to
the optimal control theory, considering external or without
constraints. For improved reactor operation, the need to
implement optimal operational trajectories, which include
maximum productivity and optimal cost, for example, leaded
to the tracking trajectory control problem, where the optimal
control designs have been successful [7–10]. In optimal
control approach, the Hamiltonian techniques have been
applied to nonlinear processes, where the corresponding
Hamiltonian equations must be developed to include nonlin-
ear constraints and construct an adequate functional which
is named objective function; in order to obtain a controller
for the required task, as common in optimal control theory,
here the Pontryagin’s maximum (or minimum) principle is
used to find the best possible control for taking a dynamical

system from one state to another, especially in the presence
of constraints for the state variables and input controls [10].
Also, in optimal control theory the corresponding functional
(objective function) to be maximizing or minimized only
contains in its structure nonlinear terms of the state variables
and the control input in order to generate a control law
design for a specific purpose. In this work a Lagrangian based
directly on the state equation of the chemical reactor with
chaotic behavior is proposed, in order to develop a functional
to stabilize the reactor’s operation in a critical point the reac-
tion rate, suppressing the complex oscillations in the process.

2. Control Design

The fundamental framework of the optimal control theory
lies on the calculus of variations, which is related to the
basic trajectory optimization problem, where a functional
F(L(∙)) fl R𝑞 󳨀→ R is a scalar cost function or cost index
or performance index, which needs to be maximizing or
minimizing; this objective is reached by solving the corre-
sponding Euler-Lagrange equation:

𝜕L
𝜕𝑥1 − 𝑑

𝑑𝑥2 (
𝜕L
𝜕𝑥̇1) = 0 (1)
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The termL is known as the Lagrangian of the system under
study.

In general the cost functional F can be represented as

F = 𝜓 (𝑥𝑓, 𝑡𝑓) + ∫𝑡𝑓
𝑡0

L (𝑡, 𝑥, 𝑢) 𝑑𝑡 (2)

where 𝜓(𝑥𝑓, 𝑡𝑓) is an algebraic term to be minimized (or
maximized) at final conditions, subject to the following
constraints:

(i)

𝑥̇ fl
𝑑𝑥
𝑑𝑡 = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 (3)

The above equation is the state equation.
Here, 𝑥 ∈ R𝑛 is the state variable vector, 𝑓(𝑥) : R𝑛 󳨀→

R𝑛 is a nonlinear vector field, where 𝑓(𝑥) ⊂ Σ ∈ 𝐶∞ andΣ is a compact set, 𝑔(𝑥) is a smooth and invertible bounded
function, and 𝑢 ∈ R𝑚, with 𝑚 ≤ 𝑛 is the control input.

(ii)

𝜔 (𝑥𝑓, 𝑡𝑓) = 0 (4)

The vector 𝜔 represents the terminal constraints.

(iii)

𝑥 (𝑡0) = 𝑥0 (5)

which represent the initial conditions.
The case related to the solving of (2) subject to constraints

(2)–(5) is known as the Problem of Bolza [11, 12]. Particular
cases, where the functional is defined as F = 𝜓(𝑥𝑓, 𝑡𝑓) or
F = ∫𝑡𝑓

𝑡0
L(𝑡, 𝑥, 𝑢)𝑑𝑡 subject to the same constraints (2)-

(5), are classified as the Problem of Mayer or the Problem of
Lagrange, respectively [13, 14].

Note that the solutions of the above-mentioned problems
can be complex given the nonlinear nature of the cost
functional and the corresponding constraints; an alternative
methodology consists of avoiding the nonlinear constraints
by incorporating them to the cost functional via the Hamilto-
nian formulation [8], which is an augmented cost functional
with the following structure:

F = 𝜓 (𝑥𝑓, 𝑡𝑓)
+ ∫𝑡𝑓
𝑡0

(L (𝑡, 𝑥, 𝑢) + 𝜆𝑇 [𝑓 (𝑥) , 𝑢 − ̇𝑥]) 𝑑𝑡 (6)

As mentioned above, the solution of (6) also can be complex
by the highly nonlinearities of the augmented functional.

Now, let us consider the following functional form:

F (L) = ∫𝑇
0
L (𝑥, 𝑥̇, 𝑢) 𝑑𝑡 (7)

Now, it is needed to determine the extreme value of functional
(7); therefore,

𝛿F (L) = ∫𝑇
0

𝛿L (𝑥, 𝑥̇, 𝑢) 𝑑𝑡 (8)

The differential form of the corresponding Lagrangian L is
giving by

𝛿L (𝑥, 𝑥̇, 𝑢) = 𝜕L
𝜕𝑥 𝛿𝑥 + 𝜕L

𝜕𝑥̇ 𝛿𝑥̇ + 𝜕L
𝜕𝑢 𝛿𝑢 (9)

Substituting (9) into (8),

𝛿F (L) = ∫𝑇
0

(𝜕L
𝜕𝑥 𝛿𝑥 + 𝜕L

𝜕𝑥̇ 𝛿𝑥̇ + 𝜕L
𝜕𝑢 𝛿𝑢)𝑑𝑡 (10)

The following terms of the differential form of the Lagrangian
are now represented as

𝜕L
𝜕𝑥 𝛿𝑥 = 𝜕L

𝜕𝑥 𝛿𝑥𝛿𝑢
𝛿𝑢 = 𝜕L

𝜕𝑥
𝛿𝑢
𝑢󸀠 (11)

where
𝛿𝑢
𝛿𝑥 fl 𝑢󸀠 (12)

and integrating by parts

∫𝑇
0

𝜕L
𝜕𝑥̇ 𝛿𝑥̇ 𝑑𝑡 = 𝜕L

𝜕𝑥̇ 𝛿𝑥|𝑇0 − ∫𝑇
0

𝑑
𝑑𝑡 (𝜕L

𝜕 ̇𝑥 ) 𝛿𝑥 𝑑𝑡 (13)

Now, from (3) the following is considered:

𝑓 (𝑥) = ̇𝑥 − 𝑔 (𝑥) 𝑢 (14)

The particular Lagrangian for (7) is proposed as

L (𝑥, 𝑥̇, 𝑢) ≡ 𝑥̇ − 𝑔 (𝑥) 𝑢 (15)

Note that the proposed Lagrangian only contains information
of the corresponding state equation of the systemunder study.

Therefore, from (15) and (10)
𝜕L
𝜕𝑥 = −𝑔󸀠 (𝑥) 𝑢;
𝜕L
𝜕𝑥̇ = 1;
𝜕L
𝜕𝑢 = −𝑔 (𝑥)

(16)

Then

∫𝑇
0

𝑑
𝑑𝑡 (𝜕L

𝜕𝑥̇ ) 𝛿𝑥̇ 𝑑𝑡 = 0 (17)

𝜕L
𝜕𝑥̇ 𝛿𝑥|𝑇0 = 0 (18)

because 𝛿𝑥|0 = 0 and 𝛿𝑥|𝑇 = 0.
Finally, from (9), (10), and (16)-(18)

𝛿F (L)
𝛿𝑢 = ∫𝑇

0
( 𝑢
𝑢󸀠𝑔󸀠 (𝑥) + 𝑔 (𝑥)) 𝑑𝑡 (19)

The extreme value of functional (19) is then determined by
the following restriction:

𝛿F (L)
𝛿𝑢 = 0 (20)

Equivalently,

𝛿L (𝑥, ̇𝑥, 𝑢) = 𝑢
𝑢󸀠𝑔󸀠 (𝑥) + 𝑔 (𝑥) = 0 (21)
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Figure 1: Scheme of the operation of the continuous chemical
reactor.

From (21), the differential equation to describe the corre-
sponding control law 𝑢 to stabilize the system (3) in an
extreme point can be obtained, without considering any
explicit constraints, as follows:

𝑢󸀠 = −𝑔󸀠 (𝑥)
𝑔 (𝑥) 𝑢 (22)

Solving (22),

𝑢 (𝑥) = 𝑢0 exp(∫𝑇
0

−𝑔󸀠 (𝑥 (𝑡))
𝑔 (𝑥 (𝑡)) 𝑑𝑡) (23)

where 𝑢0 is the initial condition of (22).

3. Application Example

From several years ago experimental evidence of chaotic
behavior in chemical reacting systems exists, since the cor-
responding chemical species act as reactive, intermediates,
and products, where reversible and autocatalytic chemical
paths are generally present and hyperchaotic dynamics can
undoubtedly be found [15, 16]. In particular, the chemical
reactors are process equipment designed to produce high
value compounds or products from the corresponding reac-
tions via a chemical transformation, to reach this important
objective, process analysis must be performed in order to
determinate steady-states multiplicity, open-loop instabilities
between others, to select under thermodynamic and kinetic
restrictions, the optimal operating regions which maximize
the reactor’s productivity, process security, and operation
cost, where the closed-loop operation is frequently needed
to keep the reactor’s variables in the selected set points. The
continuous reactor operation consists of a multicomponent
inlet flow F, which feeds the chemical reactions to the process
equipment; the corresponding chemical reactions are carried
out inside the reactor with a multicomponent output flow,
where a specific set of state variables (𝑥1 in this case) can
be measured to give feedback to the control algorithm and
generate the control actions by the corresponding actuator,
in this case the control valve, as can be observed in Figure 1.

If the control input u is assumed constant with a nominal
value, the corresponding operation is in open-loop regimen.
The main task of the control input is to compensate via the
input flow manipulation, the residence time in the chemical
reactor under the proposed control law (see (23)) to reach an
extremum seeking of the corresponding reaction rate.

In particular, the mathematical model presented by [17]
is considered, where, via mass conservation principle, a four-
state dynamics system is proposed. For the kinetic model
developing, several assumptions are considered; the chemical
reactions are carried out in perfect homogeneous conditions
in a well stirred tank reactor under isothermal operation,
first-order kinetic is considered for the reactions from 𝑋4
to 𝑋1 and 𝑋2 and 𝑋1 to 𝑋2, the reactive 𝑋1 catalyzes the
production of the compound 𝑋3, the two reactions from 𝑋1
are catalyzed by 𝑋2 and 𝑋3, the reaction from 𝑋4 is also
catalyzed by 𝑋3, and all the chemical species are involved in
autocatalytic reactions and they are mathematically modeled
by Michaelis-Menten structures [17].

The following general chemical kinetic pathway is pro-
posed:

𝑋1 󳨀→ 𝑋∗1 󳨀→ 𝑋2 + 𝑋3
𝑋1 ←→ 𝑋4 󳨀→ 𝑋2
𝑋2 󳨀→ 2𝑋∗2 󳨀→ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
𝑋3 󳨀→ 2𝑋∗3 󳨀→ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
𝑋4 󳨀→ 2𝑋∗4 󳨀→ 𝑋3 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

(24)

where 𝑋∗𝑖 for i= 1, 2, 3, 4 are the corresponding activate
chemical complexes, which are assumed in pseudo steady
state, as usual.

This kinetic model is extended to continuous reac-
tor’s operation, showing complex (chaotic) oscillations. The
mathematical model is represented by the following set of
nonlinear ordinary differential equations and represents the
mass balances for each one of the chemical compounds in
terms of the corresponding mass concentrations.

Mass Balances

̇𝑥1 = 𝑑0 + 𝑘8𝑥4 − 𝑘1 𝑥1𝑥2𝑥1 + 𝐾 − 𝑘2 𝑥1𝑥3𝑥1 + 𝐾
+ (𝑥1,𝑖𝑛 − 𝑥1) 𝑢

(25)

̇𝑥2 = 𝑘3𝑥1 + 𝑘4𝑥2 + 𝑘9𝑥4 − 𝑘5 𝑥2𝑥2 + 𝐾 + (𝑥2,𝑖𝑛 − 𝑥2) 𝑢 (26)

̇𝑥3 = 𝑑1 + 𝑘6𝑥1𝑥3 − 𝑘7𝑥3 + (𝑥3,𝑖𝑛 − 𝑥3) 𝑢 (27)

̇𝑥4 = (𝑘10 − 𝑘8 − 𝑘9) 𝑥4 − 𝑘11 𝑥3𝑥4𝑥4 + 𝐾 + (𝑥4,𝑖𝑛 − 𝑥4) 𝑢 (28)

Here, 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4] is the vector of mass concentra-
tions. The set of kinetic parameters is given as follows: 𝑘1 =
1.0; 𝑘2 = 1.0; 𝑘3 = 1.0; 𝑘4 = 0.25; 𝑘5 = 152.5; 𝑘6 = 1.0; 𝑘7 =
130; 𝑘8 = 0.001; 𝑘9 = 1.0; 𝑘10 = 1.051; 𝑘11 = 0.5; K = 0.001. The
inlet concentrations to the reactor are as follows: 𝑥1,𝑖𝑛 = 150;
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𝑥2,𝑖𝑛 = 𝑥3,𝑖𝑛 = 𝑥4,𝑖𝑛 = 0, and the nominal value of the control
input is considered as u = 0.015. The corresponding initial
conditions are𝑥10 =129.1; 𝑥20 = 76.06; 𝑥30 = 0.5895; and 𝑥40 =
21.38, 𝑑0 =90; 𝑑1 = 2.2 are constant disturbances which are
included to simulate realistic process operation. As usual for
this processes, let us consider that the control input is defined
as u = F/V, where 𝐹 is the volumetric inlet flow and 𝑉 is the
volume of the reactor, which is assumed as constant as usual
for this systems.

Now, for this application case, let us consider the state
equation (21) to construct the corresponding Lagrangian:

F (L) = ∫𝑇
0

( ̇𝑥1 − (𝑥1,𝑖𝑛 − 𝑥1) 𝑢) 𝑑𝑡 (29)

Taking into account (14), note that

𝑓 (𝑥) = 𝑑0 + 𝑘8𝑥4 − 𝑘1 𝑥1𝑥2𝑥1 + 𝐾 − 𝑘2 𝑥1𝑥3𝑥1 + 𝐾 (30)

Here:

𝑔 (𝑥) = (𝑥1,𝑖𝑛 − 𝑥1) (31)

As observed, (31) represents the input and output mass flows,
where

𝑔󸀠 (𝑥) = −1 (32)

Applying (31)-(32) to (23), the corresponding control law is
giving by

𝑢 (𝑥) = (𝑥1,𝑖𝑛 − 𝑥1)−𝑢0 (33)

Noting the simple structure of the resulting controller, the
controller’s structure is properly model free and only needs
online measurements of the state variable 𝑥1 and some
parameters as the inlet concentration 𝑥1,𝑖𝑛 and the initial
condition of the control input 𝑢0; these parameters are easily
available for the standard operation of this kind of process;
these characteristics would allow its real time implementa-
tion.

4. Results and Discussion

Numerical experiments were done in order to show the
performance of the proposed control strategy. The numerical
simulations were carried out employing ODE 23s Matlab
library to solve the dynamic model of the chemical reactor,
under the parametric and initial conditions described above.
In this analysis a Single-Input Single Output (SISO) closed-
loop operation is considered, where the state equation to
be controlled corresponds to the state variable 𝑥1. Firstly,
the open-loop behavior of the bioreactor shown in Figures
2–5 observed the complex (chaotic) oscillations in the cor-
responding time series and the phase portraits; as previously
reported in [17], the system keep positive Lyapunov indexes
confirming the complexity of the oscillations. In order to
show the performance of the proposed methodology, the
proposed controller is activated at t = 100; here the effect of
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Figure 2: Open-loop dynamic behavior of the mass concentration
of 𝑥1.
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Figure 3: Open-loop 2D phase portrait.
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Figure 8: Closed-loop 3D phase portrait.

the control action in the corresponding reaction rate term
is observed; Figure 6 shows that the oscillating behavior is
suppressed after an overshot and a settling time of 15 time
units, reaching to a stable and constant value of -20 units in
the reaction rate; therefore, Figure 7 shows the corresponding
effect in the mass concentration of the chemical specie 𝑥1
which increase to a fixed value to 131.7 units; this is an
important issue such that this means that the corresponding
reaction rate term is maximized by the proposed controller
as expected and in accordance with the corresponding
design. Figure 8 is related to the closed-loop behavior of
the trajectories in a 3D phase portrait, where the change in
the trajectory is observed in comparison with the open-loop
behavior; furthermore, in Figure 9 the control effort under
the proposed controller is observed; notice that the control
action acts almost immediately, with a small overshoot,
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Figure 9: Control Input effort.

−300
−250
−200
−150
−100

−50
0

50

Re
ac

tio
n 

Ra
te

0.95 0.96 0.97 0.98 0.99 1 1.01 1.020.94
CONTROL INPUT 

Figure 10: Reaction rate behavior versus control input action.

increasing its value and reaching the corresponding steady
state with realizable values. On the other hand, Figure 10 is
related to the evolution of the reaction rate term as a function
of the control input, as presented in the functional structure
of (23) and (33), and it can be seen that the reaction rate
reaches a stable equilibrium point 𝑓(𝑥𝑒𝑞) = -20, at u = 0.957,
in accordance with the previous figures.

5. Concluding Remarks

In this work an optimal control strategy to suppress the
chaotic behavior of a class of continuous chemical reactor
is presented. The proposed methodology is based on a
Lagrangian structurewhich includes directly the correspond-
ing state equations of the system under analysis, avoiding the
inclusion of implicit and nonlinear constraints as in the case
of the Problem of Bolza and Hamiltonian approaches. The
proposed strategy directly maximize the reaction rate term
following the corresponding optimal trajectory, leading to the
reactor trajectories to realizable and stable extreme values,
without excessive control efforts. Numerical experiments
show that the proposed control scheme is realizable keeping
a satisfactory performance.
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