
Research Article
An Efficient Heuristic Algorithm for Solving Connected Vertex
Cover Problem

Yongfei Zhang,1 JunWu,1 Liming Zhang,2,3 Peng Zhao,1

Junping Zhou ,1,2 andMinghao Yin 1,2

1College of Information Science and Technology, Northeast Normal University, Changchun 130117, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun 130012, China
3College of Computer Science and Technology, Jilin University, Changchun 130012, China

Correspondence should be addressed to Junping Zhou; zhoujp877@nenu.edu.cn

Received 26 January 2018; Revised 1 June 2018; Accepted 3 August 2018; Published 6 September 2018

Academic Editor: Haipeng Peng

Copyright © 2018 Yongfei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The connected vertex cover (𝐶𝑉𝐶) problem, which has many important applications, is a variant of the vertex cover problem,
such as wireless network design, routing, and wavelength assignment problem. A good algorithm for the problem can help us
improve engineering efficiency, cost savings, and resources consumption in industrial applications. In this work, we present an
efficient algorithmGRASP-CVC (Greedy Randomized Adaptive Search Procedure for ConnectedVertexCover) for𝐶𝑉𝐶 in general
graphs. The algorithm has two main phases, i.e., construction phase and local search phase. In the construction phase, to construct
a high quality feasible initial solution, we design a greedy function and a restricted candidate list. In the local search phase, the
configuration checking strategy is adopted to decrease the cycling problem. The experimental results demonstrate that GRASP-
CVC is better than other comparison algorithms in terms of effectivity and efficiency.

1. Introduction

The connected vertex cover (CVC), which was first intro-
duced by Garey and Johnson in paper [1], is one of the
classical combinatorial optimization problems. The problem
not only shows its great importance in theory, but also has
many significant industrial applications [2–5]. For example,
in the wireless network design, the vertices of the network
are connected by transmission links. Because network signals
damp with transmission, we want to place a minimum
number of relay stations on vertices in order to assure that
any two neighboring stations are connected and that every
transmission link is connected to a relay station. This is
the most direct application of the connected vertex cover
model in the industry. Designing a good algorithm to solve
this problem can not only improve work efficiency and save
money and labor cost, but also save natural resources and
reduce material waste. The problem is known to be NP-hard
even in the planar 2-connected graph of maximum degree 4
[6] and planar bipartite graph with maximum degree 4 [7], as
well as in 3-connected graph [8].

The 𝐶𝑉𝐶 problem has been studied for a long time, and a
lot of efforts have been devoted to it. To date, there are mainly
two types of algorithms to solve 𝐶𝑉𝐶, i.e., exact algorithms
and approximation algorithms. All existing exact algorithms
for 𝐶𝑉𝐶 are mainly FPT (fixed-parameter tractable) algo-
rithms in theory and these theoretical results are obtained
in worst case. For example, Moser [2] showed that 𝐶𝑉𝐶 was
fixed-parameter tractable using the tree width as a parameter
and proposed a dynamic programming algorithm running in
𝑂(2𝑤⋅𝑤3𝑤+2⋅𝑛) time, where𝑤was the treewidth and 𝑛was the
number of nodes of nice tree decomposition.With the desired
vertex cover size 𝑘 as parameter, Richter et al. [9] proposed
an improved algorithm with running time in O(2.7606𝑘) in
the worst case. Binkele-Raible [10] provided a better exact
algorithm with running time in𝑂(2.4882𝑘) in the worst case.
Because these exact algorithms failed to solve large graphs, a
lot of efforts have been devoted to approximation algorithms.
In the general graph, Savage [11] proposed the first constant
ratio algorithm and proved that the set of internal nodes of
any depth-first search tree was a solution of 2-approximation

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 3935804, 10 pages
https://doi.org/10.1155/2018/3935804

http://orcid.org/0000-0002-7258-9366
http://orcid.org/0000-0002-6226-2394
https://doi.org/10.1155/2018/3935804

2 Mathematical Problems in Engineering

for 𝐶𝑉𝐶 problem. In addition, Fujito and Doi [12] proposed
a 2-approximation algorithm for solving CVC, which ran
in 𝑂(log2𝑛) time using 𝑂(𝛿2(𝑚 + 𝑛)/ log 𝑛) processors on
an EREW-PRAM, where 𝑛 was the number of vertices, 𝑚
was the number of edges, and 𝛿 was the maximum vertex
degree. Fernau and Manlove [7] proved that 𝐶𝑉𝐶 was NP-
hard to approximate within 10√5 − 21 in general graphs
unless 𝑃 = 𝑁𝑃. Therefore, it is difficult to improve the
approximation ratio of approximation algorithms in general
graphs, which makes the researchers change their research
angle into the special graphs. Escoffier et al. [13] proved that
the 𝐶𝑉𝐶 problem was APX-complete in bipartite graphs
of maximum degree 4 and was polynomial time solvable
in chordal graphs. In addition, they also showed that CVC
was 5/3-approximable for a class of special graphs (where
solving the minimum vertex cover problem used polynomial
time) and a polynomial time approximation algorithm for
𝐶𝑉𝐶 in planar graphs was presented. Cardinal and Levy
[14] proposed an approximation algorithm in dense graphs
and the algorithm approximated the 𝐶𝑉𝐶 problem with a
ratio strictly less than 2 in dense graphs. The first polynomial
time approximation algorithm in unit disk graphs for 𝐶𝑉𝐶
problem was proposed in [3]. Li et al.[15] proved that the
𝐶𝑉𝐶 problem was still NP-hard for 4-regular graphs and
provided a lower bound for the problem. Moreover, they
proposed two approximation schemes for this problem in
4-regular graphs with approximation ratio 3/2 and 4/3 +
𝑂(1/𝑛), respectively. Although the exact algorithms for 𝐶𝑉𝐶
can provide an optimal solution, they are hard and time
consuming to deal with large scale instances. Furthermore,
although some approximation algorithms for 𝐶𝑉𝐶 can get
good performance in special graphs, they are usually not
suitable for dealing with general graphs, and the state-of-
the-art approximation methods in general graphs can only
provide an approximate ratio 2, which is often not enough
in practice. This yields a new challenge for us to devise a
heuristic algorithm for 𝐶𝑉𝐶 that can deal with large general
graphs and obtain the best possible approximate solutions
within a reasonable time.

In this article, the heuristic algorithm GRASP-CVC for
𝐶𝑉𝐶 in general graphs is proposed and this algorithm can
obtain a relatively good solutionwithin a reasonable time.The
heuristic algorithm GRASP-CVC is based on the framework
of greedy randomized adaptive search procedure (𝐺𝑅𝐴𝑆𝑃)
[16]. The algorithm GRASP-CVC has two main phases, i.e.,
construction phase and local search phase. In the construc-
tion phase, the GRASP-CVC tries to construct a feasible
initial solution greedily. During this phase, we design a greedy
function to help evaluate the benefit of adding a vertex to the
current solution. Besides, we construct a restricted candidate
list (𝑅𝐶𝐿) to assist in constructing a high quality initial
solution in this phase. In the local search phase, the initial
solution is further improved. To prevent the local search
from suffering severe cycling problem, the configuration
checking (𝐶𝐶) strategy is adopted in the search. Relying on
the𝐶𝐶, we avoid many unnecessary searches during the local
search procedure and greatly improve the efficiency of the
GRASP-CVC. Once the local search phase cannot explore

a better solution anymore, which means the local search
phase reaches a local optima, the GRASP-CVC then restarts
a new iteration and repeats the construction and local search
phases until reaching the maximum iteration times. The best
found solution will be the final solution after all iterations are
used up. The experimental results demonstrate that GRASP-
CVC is better than other comparison algorithms in terms of
effectivity and efficiency. Moreover, the GRASP-CVC obtains
solutions of almost the same size in 10 times of running,
which demonstrates its stability.

The rest of this paper is structured as follows. Some
relevant definitions and background knowledge will be intro-
duced in the next section. In Section 3, the algorithmGRASP-
CVC will be introduced and the two main components will
be discussed in detail. Experimental evaluations and analyses
will be shown in Section 4. Conclusions and future work will
be given in the last section.

2. Preliminaries

In this section, some definitions and background knowledge
are provided. From now on, unless otherwise stated, we only
consider the CVC problem on an undirected graph 𝐺 =
(𝑉, 𝐸), where 𝑉 = {V1, V2, . . . , V𝑛} is the vertices set and
𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} is the edges set. In addition, each edge
𝑒𝑖 = (V𝑘, V𝑗)(1 ⩽ 𝑖 ⩽ 𝑚, 1 ⩽ 𝑘, 𝑗 ⩽ 𝑛, 𝑘 ̸= 𝑗) is a 2-element
tuple on𝑉 and we define vertices V𝑘 and V𝑗 as the endpoints of
edge 𝑒𝑖. For a vertex subset𝐶 ⊆ 𝑉 and an edge 𝑒𝑖, if𝐶 contains
no endpoint of 𝑒𝑖, we say 𝑒𝑖 is uncovered by 𝐶; otherwise, we
say 𝑒𝑖 is covered by 𝐶.

Definition 1 (vertex cover, VC). Given a graph 𝐺 = (𝑉, 𝐸), a
subset of vertices 𝐶 ⊆ 𝑉 is a vertex cover (𝑉𝐶) of 𝐺 if each
edge in 𝐸 has at least one endpoint in 𝐶.

Definition 2 (minimum vertex cover, MVC). Given a graph
𝐺 = (𝑉, 𝐸), the minimum vertex cover (𝑀𝑉𝐶) problem is to
compute a 𝑉𝐶 of minimum cardinality in 𝐺.

Definition 3 (induced subgraph, IS). Given two graphs 𝐺 =
(𝑉, 𝐸) and 𝐺 = (𝑉, 𝐸), where 𝑉 ⊆ 𝑉 and 𝐸 = {(V, 𝑢) |
V, 𝑢 ∈ 𝑉 ∧ (V, 𝑢) ∈ 𝐸}, 𝐺 is called an induced subgraph (IS)
of 𝐺.

Definition 4 (connected graph). A graph is a connected graph
if there is a path between every pair of vertices.

Definition 5 (connected vertex cover, CVC). Given a con-
nected graph 𝐺 = (𝑉, 𝐸), the connected vertex cover (𝐶𝑉𝐶)
problem is to determine a subset 𝐶 ⊆ 𝑉 with minimum
cardinality such that 𝐶 satisfies the following two conditions:
(1) 𝐶 is a vertex cover; (2) the IS induced by 𝐶 is a connected
graph.

In order to help the readers to understand the concepts
given above, we provide an example in Figure 1. Figure 1(a) is
a graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} and 𝐸 =
{(𝑎, 𝑐), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑒), (𝑒, 𝑓), (𝑒, 𝑔)}. Figure 1(b) presents
an induced subgraph by the vertex set 𝑉1 = {𝑐, 𝑒} that is just
the solution of the 𝑀𝑉𝐶 problem of 𝐺. Because the induced

Mathematical Problems in Engineering 3

a

b

c d e

g

f

(a)

c e

(b)

edc

(c)

Figure 1: An example for MVC and CVC.

subgraph in Figure 1(b) is not connected, the vertex set 𝑉1 =
{𝑐, 𝑒} is not the solution of the 𝐶𝑉𝐶 problem of 𝐺. By adding
a vertex 𝑑 to 𝑉1 , we obtain a new vertex set 𝑉2 = {𝑐, 𝑑, 𝑒}.
The subgraph induced by 𝑉2 is shown in Figure 1(c). From
Figure 1(c), we can notice that the vertex set𝑉2 is the minimal
vertex subset that satisfies the following: (1) subgraph induced
by𝑉2 is connected; (2) the vertex set𝑉

2 covers all edges in 𝐸.

Thus, 𝑉2 is a solution for the 𝐶𝑉𝐶 problem of 𝐺. From the
example, we see that the size of the optimal 𝑀𝑉𝐶 solution
provides a lower bound for the size of the optimal 𝐶𝑉𝐶
solution. In the following, we will present the conclusion in
Theorem 6.

Theorem 6. The size of the optimal 𝑀𝑉𝐶 solution provides a
lower bound for the size of the optimal 𝐶𝑉𝐶 solution.

Proof. Given an undirected graph 𝐺, we suppose the size of
the optimal 𝑀𝑉𝐶 solution is 𝑁 and the size of the optimal
𝐶𝑉𝐶 solution is 𝑀. Then we will analyze the theorem cases
individually.

Case 1. There is a connected optimal solution of𝑀𝑉𝐶. Under
this circumstance, the 𝑀𝑉𝐶 solution is also a 𝐶𝑉𝐶 solution.
Thus, we have 𝑀 = 𝑁.

Case 2. There is no connected solution among all of the
optimal solutions of𝑀𝑉𝐶. Under this condition, it is impos-
sible that 𝑀 = 𝑁. Then we will prove the conclusion by
using reduction to absurdity. Suppose there exists a 𝐶𝑉𝐶
solution that 𝑀 ⩽ 𝑁. Under this condition, according to the
definitions of 𝐶𝑉𝐶 and 𝑀𝑉𝐶, we know the 𝐶𝑉𝐶 solution
is an 𝑀𝑉𝐶 solution as well. So, we get one 𝑀𝑉𝐶 solution
whose size is smaller than𝑁. However, this is a contradiction
with the previous assumption that𝑁 is the size of the optimal
𝑀𝑉𝐶 solution.

In total, we finally reach the conclusion that 𝑀 ⩾ 𝑁,
which means that the optimal 𝑀𝑉𝐶 solution size provides
a lower bound for the size of the optimal 𝐶𝑉𝐶 solution.

3. GRASP-CVC Algorithm for CVC

GRASP-CVC (Greedy Randomized Adaptive Search Proce-
dures for Connected Vertex Cover problem) is a multistart
metaheuristic, which consists of two main phases: construc-
tion phase and local search phase. An initial solution is con-
structed firstly in the construction phase, and then the local
search phase attempts to find the existence of a better solution
by exploring the neighborhood of the initial solution.The two

1 initialize the solution 𝐶∗;
2 for 𝑖 = 1 to 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do
3 𝐶 = 𝐺𝑟𝑒𝑒𝑑𝑦𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑠𝑒𝑒𝑑);
4 𝐶 = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝐶);
5 if |𝐶| < |𝐶∗| then
6 𝐶∗ = 𝐶;
7 end
8 end
9 return 𝐶∗

Algorithm 1: GRASP-CVC(𝑀𝑎𝑥𝐼𝑡𝑒𝑟, 𝑠𝑒𝑒𝑑).

phases are executed repeatedly until reaching the termination
condition, and then the GRASP-CVC takes the best found
solution as the final output. The pseudocode of GRASP-
CVC is outlined in Algorithm 1. At first, the solution 𝐶∗
is initialized (line 1). Then the algorithm enters an iteration
loop (lines 2–8). In each iteration, an initial 𝐶𝑉𝐶 solution
𝐶 is generated firstly by the construction procedure (line 3),
and then in the local search procedure (line 4), GRASP-CVC
starts its search from 𝐶 trying to find a better solution. If 𝐶
possesses fewer vertices than the current best solution 𝐶∗,
𝐶∗ will be updated by 𝐶 (lines 5-6). When the GRASP-CVC
reaches the maximum iteration times, 𝐶∗ will be returned as
the final solution (line 9). During the construction, we design
a greedy function and construct a restricted candidate list to
help to construct a high quality feasible solution. Moreover,
in the local search, we adopt the configuration checking to
reduce the cycling problem.The two phases will be discussed
in detail in the next two subsections.

3.1. Construction Phase. Before introducing the construction
phase, we shall give the definitions of greedy function and
restricted candidate list (𝑅𝐶𝐿) that play important roles in the
construction phase.

3.1.1. Greedy Function and RCL. To evaluate the benefit of
adding V to the current solution, a greedy function 𝑠𝑐𝑜𝑟𝑒(V)
is designed, which is quite important for the construction
of 𝑅𝐶𝐿 as well. In order to introduce the greedy function,
we firstly propose some relevant definitions. We say vertices
𝑢 and V are neighbors of each other if there is an edge
between them, and we use 𝑁(𝑢) = {V | (𝑢, V) ∈ 𝐸}
denoting the neighbor set of vertex 𝑢. The neighbor vertices
set of a solution 𝐶, denoted as 𝑁(𝐶), can be calculated as
follows:

4 Mathematical Problems in Engineering

1 𝐶 = Φ;
2 𝑅𝐶𝐿 = {V | V ∈ 𝑉 ∧ 𝑠𝑐𝑜𝑟𝑒(V) ≥ 𝑠𝑐𝑜𝑟𝑒(𝑢), ∀𝑢 ∈ 𝑉};
3 initialize the 𝑠𝑐𝑜𝑟𝑒 of each vertex according to Formula(2);
4 while 𝐶 is not a connected vertex cover do
5 choose a vertex V from 𝑅𝐶𝐿 randomly;
6 𝐶 = {V} ∪ 𝐶;
7 update 𝑠𝑐𝑜𝑟𝑒 of each vertex;
8 𝑅𝐶𝐿 = {V | V ∈ 𝑁(𝐶) ∧ 𝑠𝑐𝑜𝑟𝑒(V) ⩾ 𝑠𝑐𝑜𝑟𝑒(𝑢), ∀𝑢 ∈ 𝑁(𝐶)};
9 end
10 return 𝐶

Algorithm 2: GreedyConstruction(𝑠𝑒𝑒𝑑).

𝑁(𝐶) = {V | V ∉ 𝐶, V ∈ 𝑁 (𝑢) , 𝑢 ∈ 𝐶, 𝑁 (𝑢)

= {V | (𝑢, V) ∈ 𝐸}}
(1)

For a given vertex V, the greedy function 𝑠𝑐𝑜𝑟𝑒(V) can be
calculated by

𝑠𝑐𝑜𝑟𝑒 (V) = 𝑐𝑜𝑠𝑡 (𝐶) − 𝑐𝑜𝑠𝑡 (𝐶) (2)

In Formula (2), 𝐶 is the current solution. If V is in 𝐶, 𝐶 =
𝐶 \ {V} (“\” means removing the vertex V from 𝐶); otherwise,
𝐶 = 𝐶 ∪ {V}. Moreover, 𝑐𝑜𝑠𝑡(𝐶) is also a function calculated
by

𝑐𝑜𝑠𝑡 (𝐶) = {𝑒 | 𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜V𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶} (3)

From the formula, we can know that the function 𝑐𝑜𝑠𝑡(𝐶)
is to compute the total number of edges uncovered by 𝐶. In
addition, when V is in 𝐶, 𝑠𝑐𝑜𝑟𝑒(V) is a negative number.

Using the greedy function 𝑠𝑐𝑜𝑟𝑒(V), we can identify those
vertices that are most beneficial to the current solution.
Moreover, the greedy function is an indispensable part in the
construction of 𝑅𝐶𝐿.

The𝑅𝐶𝐿 consists of the vertices that aremost beneficial to
the current solution 𝐶. In the construction phase, one vertex
is chosen randomly from 𝑅𝐶𝐿. And to construct a feasible
initial solution, we select vertices from𝑅𝐶𝐿.The construction
of 𝑅𝐶𝐿 is described in

𝑅𝐶𝐿 = {V | V ∈ 𝑁 (𝐶) ∧ 𝑠𝑐𝑜𝑟𝑒 (V) ⩾ 𝑠𝑐𝑜𝑟𝑒 (𝑢) , ∀𝑢

∈ 𝑁 (𝐶)}
(4)

Clearly, the elements of 𝑅𝐶𝐿 are the vertices set having
the highest 𝑠𝑐𝑜𝑟𝑒 in the premise of not destroying the
connectivity of 𝐶.

3.1.2. Construction Procedure. After the necessary descrip-
tions of greedy function and 𝑅𝐶𝐿, we shall discuss the greedy
construction procedure in detail. The greedy construction
procedure GreedyConstruction is outlined in Algorithm 2.

In the beginning, the connected vertex cover 𝐶 is ini-
tialized (line 1) and the 𝑠𝑐𝑜𝑟𝑒 of each vertex is initialized
according to Formula (2) (line 2). The 𝑅𝐶𝐿 is initialized to
the vertices with the highest 𝑠𝑐𝑜𝑟𝑒 among the vertices set 𝑉
(line 3).Then, the procedure enters the main loop (lines 4–8).

In each loop, a vertex V is chosen from the 𝑅𝐶𝐿 randomly
and added to the construction solution 𝐶 (lines 5-6). After
the operations of lines 5 and 6, the 𝑠𝑐𝑜𝑟𝑒 of each vertex is
updated according to Formula (2) (line 7). At the end of the
loop, the 𝑅𝐶𝐿 is updated (line 8). The loop is executed until
𝐶 is constructed to be a solution of 𝐶𝑉𝐶, and then 𝐶 will be
returned at the end of the construction procedure (line 10).

3.2. Local Search Phase. In this subsection, we shall introduce
the configuration checking (𝐶𝐶) strategy and discuss the
working process of the local search phase in detail.

3.2.1. Configuration Checking Strategy. Greedy strategy is
usually an important part in the local search algorithms. It
helps to lift the performance of the local search algorithms on
large and hard instances.However, the greedy strategy usually
also makes the local search algorithms easier to fall into
the cycling problem (which means the algorithm visits the
same part of the solution space repeatedly). Up to now, many
efficient strategies have been used to handle this problem [17–
20]. Configuration checking (𝐶𝐶) [21] strategy is one of those
strategies and has been applied to some problems successfully
[21–25]. Therefore, we adopt the 𝐶𝐶 strategy to avoid the
cycling problem in the local search.

Before introducing the 𝐶𝐶, we shall give the concept of
vertex state. The vertex state of a vertex V indicates whether
V is located in the current solution. We can use a Boolean
value 1 to represent that V is in the current solution and
0 to represent that V is not in the current solution. The
configuration of a vertex V, which can be denoted by an n-
dimensional Boolean vector 𝑐V (where 𝑛 is the number of
neighbor vertices of V), is the states of all its neighbor vertices.

The main idea of the 𝐶𝐶 strategy is that a vertex V
is forbidden to add back to the current solution if its
configuration keeps unchanged after it was removed from
the current solution last time. This strategy is intuitive and
reasonable in avoiding cycling problem, as it prevents the
search from facing the same scenario again. For example, for
a V ∈ 𝐶, suppose its configuration is 𝑐V0 = (0, 1, 0, 1) after
removing V out of 𝐶, then after several steps of searching,
V is selected again according to the greedy function value
and suppose its configuration is 𝑐V1 now. When 𝑐V0 = 𝑐V1,
i.e., configuration not changed, if V is added back to the 𝐶,
then the search goes back to the same situation before V

Mathematical Problems in Engineering 5

1 initialize each element value of 𝐶ℎ𝑎𝑛𝑔𝑒 array to 1;
2 𝐶∗ = 𝐶;
3 while 𝑡𝑟𝑢𝑒 do
4 if 𝐶 is a vertex cover then
5 if 𝐶 is connected then
6 if |𝐶| < |𝐶∗| then
7 𝐶∗ = 𝐶;
8 end
9 else
10 return 𝐶∗;
11 end
12 drop a vertex 𝑢 with the highest score from 𝐶 and update the 𝐶ℎ𝑎𝑛𝑔𝑒 array;
13 continue;
14 end
15 choose an uncovered edge 𝑒 randomly;
16 choose a vertex V ∈ 𝑒 such that 𝐶ℎ𝑎𝑛𝑔𝑒[V] = 1 with a higher score,𝐶 = {V} ∪ 𝐶 and update the 𝐶ℎ𝑎𝑛𝑔𝑒 array;
17 end

Algorithm 3: LocalSearch(𝐶).

was removed out of 𝐶 in last time and the same solution
space will be searched repeatedly. However, this situation
will not occur when 𝑐V0 ̸= 𝑐V1, i.e., configuration changed
(e.g., 𝑐V1 = (1, 1, 0, 1)). A Boolean array 𝐶ℎ𝑎𝑛𝑔𝑒 is used to
implement the 𝐶𝐶 strategy. The element in the array 𝐶ℎ𝑎𝑛𝑔𝑒
is 𝐶ℎ𝑎𝑛𝑔𝑒[V], which denotes whether the configuration of
vertex V is changed after it was removed from the current
solution last time. We use 𝐶ℎ𝑎𝑛𝑔𝑒[V] = 1 to represent that
the configuration of vertex v is changed, and 𝐶ℎ𝑎𝑛𝑔𝑒[V] = 0
to represent that the configuration of vertex v is not changed.
Only the vertex Vwhose𝐶ℎ𝑎𝑛𝑔𝑒[V] = 1 is allowed to be added
to the current solution in the local search process. In the
process of local search, the values of 𝐶ℎ𝑎𝑛𝑔𝑒 are updated
according the rules below [21].

(i) Rule 1: In the beginning, for each vertex V, set
𝐶ℎ𝑎𝑛𝑔𝑒[V] to 1.

(ii) Rule 2: When removing V from 𝐶, reset 𝐶ℎ𝑎𝑛𝑔𝑒[V] to
0.

(iii) Rule 3:When 𝑢 changes its state, for each V ∈N(𝑢)\C,
𝐶ℎ𝑎𝑛𝑔𝑒[V] is set to 1.

3.2.2. Local Search Procedure. In this subsection, the local
search procedure is discussed at length. Themain steps of the
LocalSearch are listed in Algorithm 3.

The local search procedure performs as follows. In the
first place, all elements of the 𝐶ℎ𝑎𝑛𝑔𝑒 are initialized to 1 (line
1), which means that all vertices are allowed to be added to
the current solution in the beginning. Next, the local optimal
solution 𝐶∗ is initialized as 𝐶, where 𝐶 is generated by the
construction phase (line 2).Then, in the loop (lines 3–17), the
LocalSearch(𝐶) checks the feasibility of the current solution
𝐶. If 𝐶 is a 𝐶𝑉𝐶 solution which has a smaller vertex number
than 𝐶∗, then 𝐶∗ will be updated by𝐶 and a vertex Vwith the
highest 𝑠𝑐𝑜𝑟𝑒will be removed from𝐶, and then the procedure
starts the next cycle (lines 4–14). If 𝐶 is a 𝑉𝐶 but not a
𝐶𝑉𝐶 anymore after V is removed, whichmeans the procedure
reaches a local optimal solution, then 𝐶∗ will be returned

as the final result of the local search procedure (lines 9–11).
If 𝐶 is not a 𝑉𝐶 anymore after V is removed, the procedure
chooses an uncovered edge 𝑒 randomly and then chooses a
vertex V ∈ 𝑒 such that 𝐶ℎ𝑎𝑛𝑔𝑒[V]=1 with a higher 𝑠𝑐𝑜𝑟𝑒, and
adds to𝐶 = {V}∪𝐶 (lines 15-16).The𝐶ℎ𝑎𝑛𝑔𝑒 array is updated
according to Rule 2 and Rule 3 when a vertex changes its state
(lines 12,16).

3.3. Time Complexity Analysis. In this subsection, we discuss
the time complexity of the main components of the GRASP-
CVC algorithm.

First, we analyze the process for constructing the initial
solution in the algorithm. In each loop, we need to update
the 𝑠𝑐𝑜𝑟𝑒 for |𝑉| vertices, and scan |𝑁(𝐶)| vertices in order to
update the𝑅𝐶𝐿. If every timewe add a vertex to𝐶,𝑑 edges are
covered on average. Then, we can get a solution in 𝑂(|𝐸|/𝑑 ∗
(|𝑉| + |𝑁(𝐶)|)) = 𝑂(|𝐸| ∗ |𝑉|).

Next, we analyze the time complexity of the local search
algorithm. In this part, there are three operations that affect
the running time of the algorithm: dropping a vertex from
C (Algorithm 3, line 12), choosing an uncovered edge (Algo-
rithm 3, line 15), and updating the Change array (Algorithm 3,
lines 12 and 16). Since the number of vertexes in C is |𝐶|,
the first operation can be done in a time of 𝑂(|𝐶|). In our
implementation, wemaintain a set to record uncovered edges,
so an uncovered edge can be chosen in 𝑂(1). The time
complexity of the third operation depends on the degree of
the operated vertex, and therefore this work can be done in
O(𝛿), where 𝛿 is the maximum degree of the vertices. Thus,
the time complexity of the local search is 𝑂(|𝐶| + 1 + 𝛿) =
𝑂(|𝐶| + 𝛿).

Overall, the run-time complexity of the GRASP-CVC is
𝑂(|𝐸| ∗ |𝑉| + |𝐶| + 𝛿).

4. Computational Experiments

During this section, the effectivity and efficiency of the
GRASP-CVC algorithm are evaluated by performing some

6 Mathematical Problems in Engineering

1 initialize the population 𝑃 with 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 different individuals and compute the fitness value of each individual;
2 𝐶∗ = select one individual with minimum fitness value from 𝑃;
3 while not reach the cutoff time do
4 Sort individuals in 𝑃 according to fitness in ascending order;
5 Select the top 𝐸𝑙𝑖𝑡𝑒𝑁𝑢𝑚 individuals as elite individuals to pass directly to the next generation;
6 for 𝑠𝑡𝑒𝑝 = 1 to (𝑃𝑜𝑝𝑆𝑖𝑧𝑒 − 𝐸𝑙𝑖𝑡𝑒𝑁𝑢𝑚)/2 do
7 Select two individuals 𝐼𝑛𝑑1 and 𝐼𝑛𝑑2 through the tournament selection method in the remaining individuals;
8 Perform crossover operations on 𝐼𝑛𝑑1 and 𝐼𝑛𝑑2 with probability 𝐶𝑟𝑜𝑃𝑟𝑜𝑏 to generate two new individuals 𝐼𝑛𝑑1 and 𝐼𝑛𝑑2;
9 Perform mutation operations on 𝐼𝑛𝑑1 and 𝐼𝑛𝑑2 with probability 𝑀𝑢𝑡𝑃𝑟o𝑏;
10 end
11 𝐶 = an individual with the minimum fitness value in the new population 𝑃;
12 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶∗) then
13 𝐶∗ = 𝐶;
14 end
15 end
16 return 𝐶∗;

Algorithm 4: GA (𝑃𝑜𝑝𝑆𝑖𝑧𝑒, 𝐸𝑙𝑖𝑡𝑒𝑁𝑢𝑚, 𝐶𝑟𝑜𝑃𝑟𝑜𝑏,𝑀𝑢𝑡𝑃𝑟𝑜𝑏, 𝑐𝑢𝑡𝑜𝑓𝑓, and 𝑠𝑒𝑒𝑑).

comparison experiments. We compare the GRASP-CVC
algorithm with genetic algorithm (GA) for CVC designed
by us and the current best approximate algorithm (2-
approximation algorithm) we know in general graphs [12].
Genetic algorithm for CVC is an evolutionary algorithm
using techniques inspired by natural evolution. Since GA has
achieved good results in other combinatorial optimization
problems, we compare our algorithm GRASP-CVC against
GA. The main steps of the GA for CVC are listed in
Algorithm 4 and the algorithm performs as follows. In the
first place, to initialize the population 𝑃, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 different
individuals are generated randomly. Each individual is a
sequence of 0, 1 of length 𝑛, where 𝑛 is the number of vertices
in the graph, 1 indicates that the corresponding vertex is in
the solution, and 0 indicates that it is not in the solution. The
fitness value of each individual is calculated while generating
the individual (line 1). The fitness value is the number of 1
in the sequence, and the smaller the fitness, the better the
solution. For example, if both individuals 𝑖𝑛𝑑1(001010) and
𝑖𝑛𝑑2(100011) are feasible solutions, the fitness values of 𝑖𝑛𝑑1
and 𝑖𝑛𝑑2 are 2 and 3, respectively, and the solution 𝑖𝑛𝑑1 is
better than the solution 𝑖𝑛𝑑2. Next, select an individual with
minimum fitness value from 𝑃 as the current best solution
𝐶∗ (line 2). Then, in main loop (lines 3–15), the algorithm
sorts the individuals in 𝑃 according to the fitness value in
ascending order and selects 𝐸𝑙𝑖𝑡𝑒𝑁𝑢𝑚 individuals as the
elites to pass directly to the next generation (lines 4,5). To
generate (𝑃𝑜𝑝𝑆𝑖𝑧𝑒−𝐸𝑙𝑖𝑡𝑒𝑁𝑢𝑚) new individuals, the𝑓𝑜𝑟 loop
is iterated (𝑃𝑜𝑝𝑆𝑖𝑧𝑒−𝐸𝑙𝑖𝑡𝑒𝑁𝑢𝑚)/2 times (lines 6–10). In each
iteration of the 𝑓𝑜𝑟 loop, two individuals 𝑖𝑛𝑑1 and 𝑖𝑛𝑑2 are
selected from the remaining individuals using tournament
selection method firstly (line 7). Then, crossover operation
is performed on 𝑖𝑛𝑑1 and 𝑖𝑛𝑑2 with probability 𝐶𝑟𝑜𝑃𝑟𝑜𝑏 to
get two new individuals 𝑖𝑛𝑑1 and 𝑖𝑛𝑑2 (line 8). When two
individuals perform the crossover operation, the algorithm
first randomly selects a position in the sequence and then
exchanges the sequence after the position. For example,
if the two individuals are 𝑖𝑛𝑑1(011010) and 𝑖𝑛𝑑2(100011),

respectively, and the crossover position is the fourth position,
then the two new individuals after the crossover operation
are 𝑖𝑛𝑑1(011011) and 𝑖𝑛𝑑2(100010). Next, mutation operation
is performed on 𝑖𝑛𝑑1 and 𝑖𝑛𝑑2with probability𝑀𝑢𝑡𝑃𝑟𝑜𝑏 (line
9). When performing the mutation operation, the algorithm
randomly selects a position in the sequence and flips the value
at that position; that is, 1 becomes 0, and 0 becomes 1. After
the crossover and mutation operations, if the individual is
no longer a feasible solution, each time we randomly change
a 0 in the sequence to 1 until the individual becomes a
feasible solution again. Individuals obtained in the above
operations form a new population 𝑃. If the individual with
the minimum fitness in the 𝑃 is better than current best
solution 𝐶∗, 𝐶∗ is updated with 𝐶 (line 11–14). Finally,
the algorithm returns the optimal solution 𝐶∗ found after
the time is exhausted (line 16). Owing to the fact that the
researches on CVC problem mainly focused on theoretical
studies, there is no available approximation 𝐶𝑉𝐶 solver, so
we implement the 2-approximation algorithm proposed in
[12]. We implement the algorithms GRASP-CVC, GA, and
the 2-approximation algorithm in the C++ programming
language. All of the experiments are carried on a work station
under windows 7 operating system, 3.30GHZ CPU and 8GB
memory.

4.1. Benchmark Instances. In the experiments, we choose two
well-known benchmarks in the field of 𝑀𝑉𝐶 research, the
DIMACS and BHOSLIB instance sets. DIMACS benchmark
contains both structured and randomized instances. The
structured instances are generated from practical problems,
like coding theory, Keller conjecture, and so on.The random-
ized instances are generated from the stochastic models, such
as brock instances. The scale of these problem instances is
from 50 vertices and 1000 edges to more than 5500 vertices
and 5 million edges. BHOSLIB benchmark is famous for its
hardness. The benchmark instances are transformed from
𝑆𝐴𝑇 instances that are generated in the phase transition
area. And the instances in the phase transition area have

Mathematical Problems in Engineering 7

been proved hard. From the two benchmarks, we select 37
DIMACS benchmark instances and 40 BHOSLIB benchmark
instances, which are all employed in the best 𝑀𝑉𝐶 solver
[25].

4.2. Experiment Parameter Settings. Before reporting the
experimental results, we shall introduce some parameter
settings.

(i) GRASP-CVC: There are two main parameters: max-
imum number of iterations (𝑀𝑎𝑥𝐼𝑡𝑒𝑟) and random
number (random 𝑠𝑒𝑒𝑑). According to our experimen-
tal experience, we set 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 to 5000 and random
seed to an interval from 1 to 10. This is because in
order to evaluate the robustness of GRASP-CVC, we
executed ten times for each instance and for each time
used different random seeds.

(ii) GA for CVC: There are six parameters: popula-
tion size (𝑃𝑜𝑝𝑆𝑖𝑧𝑒), the number of elite individuals
(𝐸𝑙𝑖𝑡𝑒𝑁𝑢𝑚), crossover probability (𝐶𝑟𝑜𝑃𝑟𝑜𝑏), muta-
tion probability (𝑀𝑢𝑡𝑃𝑟𝑜𝑏), cutoff time (𝑐𝑢𝑡𝑜𝑓𝑓), and
random number (random 𝑠𝑒𝑒𝑑). In our experiments,
we set the first five parameters to 20, 10, 0.85, 1/𝑛 (𝑛 is
the number of vertices of the input instance), and 1000
seconds, respectively. And for the same consideration
as GRASP-CVC, we set different random seeds (1 to
10) in ten times running.

In addition, for the sake of comparison between GRASP-
CVC and GA for CVC, we also set a cut-off time to 1000
seconds to the two algorithms.

4.3. Experimental Results. In this subsection, we will provide
the computational results of GRASP-CVC (GRASP-CVC)
GA for CVC (GA) and the 2-approximation algorithm
(2-Aprox) on the two chosen benchmarks. In the results,
we provide the following information: the number of ver-
tices and edges of each instance (|𝑉|, |𝐸|), the best known
size of the 𝑀𝑉𝐶 solution (𝑀𝑉𝐶), the best solution size
solved by the corresponding algorithms (𝑏𝑒𝑠𝑡), the average
size of solutions solved by the corresponding algorithms
(𝑎V𝑔), and the average time consumed by the correspond-
ing algorithms (𝑡𝑖𝑚𝑒). In addition, the 𝑀𝑉𝐶 size with
star (∗) has been proved to be the optimal size of 𝑀𝑉𝐶
solution.

In Table 1, we present the experimental results on
DIMACS benchmark. As is shown in the table, GRASP-CVC
finds the better quality CVC than GA and 2-Aprox on all
the 37 DIMACS instances. On many instances, the solutions
found by GRASP-CVC are very close to the optimal MVC
and it even finds the solutions of the same size as optimal
MVC on 10 instances in a very short time, which means
it finds the optimal CVC solutions on these 10 instances.
Besides, the GRASP-CVC consumes less time compared
to GA on most of the instances, which indicates that the
GRASP-CVC is very efficient. Moreover, the GA fails to
find a solution within the cut-off time on several instances
(C2000.9.mis, C2000.5.mis, C4000.5.mis, and so on), so
the column for GA is marked as “𝑁/𝐴”. Another point

worth noting is that though the 2-Aprox takes less time
compared to the other algorithms, its solutions are not so
satisfactory.

Table 2 provides the results on BHOSLIB benchmark.
We can get the same conclusion as on DIMACS that the
GRASP-CVC performs better than the other two algorithms
on BHOSLIB instances, even though it takes much more
time than 2-Aprox. The solutions found by GRASP-CVC
are close to the optimal MVC and the columns 𝑏𝑒𝑠𝑡 and
𝑎V𝑔 of GRASP-CVC have the same values on almost all
of the instances, which means that the GRASP-CVC gets
almost solutions of the same size in each of the 10 times
of running, and this also demonstrates the stability of the
GRASP-CVC.

The comparative and experimental analyses above show
that the GRASP-CVC possesses very good effectiveness and
efficiency for CVC problem. It performs better than the
other two algorithms in solution quality and outperforms
the GA whether in solution quality or in time consumption.
Moreover, the GRASP-CVC gets almost solutions of the same
size in each of the 10 times running, which demonstrates the
stability of the GRASP-CVC.

5. Conclusion

In this paper, a heuristic algorithm GRASP-CVC for con-
nected vertex cover problem was proposed. A greedy
function and a restricted candidate list (𝑅𝐶𝐿) were pro-
posed to help in constructing a high quality initial solu-
tion. Furthermore, the configuration checking (𝐶𝐶) strat-
egy was employed to reduce the cycling problem and
improve the efficiency of the search. Experimental results
demonstrate that GRASP-CVC works better than the com-
parison algorithms, which validates the effectiveness and
efficiency of our GRASP-CVC solver. In the future, we
will further study various heuristic methods and hope to
design a more powerful heuristic algorithm to deal with
𝐶𝑉𝐶.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was fully supported by the National Natural
Science Foundation of China under Grants No. 61370156, No.
61403076, and No. 61763003; Research Fund for the Doctoral
Program of Higher Education No. 20120043120017; Program
for New Century Excellent Talents in University No. NCET-
13-0724; the Large-Scale Scientific Instrument and Equip-
ment Sharing Project of Jilin Province (20150623024TC-03);

8 Mathematical Problems in Engineering

Table 1: Experimental results on DIMACS Instances.

Instance V,E MVC 2-Aprox GA GRASP-CVC
time best avg time best avg time best avg

𝑏𝑟𝑜𝑐𝑘200 2.𝑚𝑖𝑠 200,10024 188∗ <0.01 198 199.7 412.81 194 194 0.04 190 190
𝑏𝑟𝑜𝑐𝑘200 4.𝑚𝑖𝑠 200,6811 183∗ <0.01 195 197.2 790.61 191 191.8 1.4 184 184
𝑏𝑟𝑜𝑐𝑘400 2.𝑚𝑖𝑠 400,20014 371∗ <0.01 396 397.5 736.09 391 391.6 6.2 376 376
𝑏𝑟𝑜𝑐𝑘400 4.𝑚𝑖𝑠 400,20035 367∗ <0.01 396 396.6 947.48 390 391.8 10.29 376 376
𝑏𝑟𝑜𝑐𝑘800 2.𝑚𝑖𝑠 800,111434 776∗ <0.01 798 798.2 523.34 794 794.9 35.04 780 780
𝑏𝑟𝑜𝑐𝑘800 4.𝑚𝑖𝑠 800,111957 774∗ <0.01 798 798.1 382.88 795 795.4 174 780 780
𝐶125.9.𝑚𝑖𝑠 125,787 91∗ <0.01 116 117.4 617.34 103 103.8 <0.01 91 91
𝐶250.9.𝑚𝑖𝑠 250,3141 206∗ <0.01 240 243.2 740.32 230 230.8 2.38 207 207
𝐶500.9.𝑚𝑖𝑠 500,12418 443∗ <0.01 491 494.2 797.98 483 484.9 12.05 448 448
𝐶1000.9.𝑚𝑖𝑠 1000,49421 932 <0.01 994 995.7 21.39 987 989.1 66.33 939 939
𝐶2000.9.𝑚𝑖𝑠 2000,199468 1920 <0.01 1992 1992.3 N/A N/A N/A 96.85 1933 1933
𝐶2000.5.𝑚𝑖𝑠 2000,999164 1984 <0.01 1998 1998 N/A N/A N/A 942.59 1986 1986.1
𝐶4000.5.𝑚𝑖𝑠 4000,3997732 3982 0.03 3998 3998.2 N/A N/A N/A 400.23 3986 3986
𝐷𝑆𝐽𝐶500.5.𝑚𝑖𝑠 500,62126 487∗ <0.01 498 499.6 289.4 495 495.7 2.42 487 487
𝐷𝑆𝐽𝐶1000.5.𝑚𝑖𝑠 1000,249674 985∗ <0.01 998 999.8 585.69 996 996.7 887.52 986 986
𝑔𝑒𝑛200 𝑝0.9 44.𝑚𝑖𝑠 200,1990 156∗ <0.01 189 192.8 796.34 179 180.1 0.06 164 164
𝑔𝑒𝑛200 𝑝0.9 55.𝑚𝑖𝑠 200,1990 145∗ <0.01 186 191.5 675.44 177 179.6 0.06 156 156
𝑔𝑒𝑛400 𝑝0.9 55.𝑚𝑖𝑠 400,7980 345∗ <0.01 388 391.5 772.41 382 382.8 72.48 358 358
𝑔𝑒𝑛400 𝑝0.9 65.𝑚𝑖𝑠 400,7980 335∗ <0.01 389 390.9 789.76 383 383.4 18.81 354 354
𝑔𝑒𝑛400 𝑝0.9 75.𝑚𝑖𝑠 400,7980 325∗ <0.01 391 393.1 782.04 382 382.7 2.8 357 357
ℎ𝑎𝑚𝑚𝑖𝑛𝑔8 − 4.𝑚𝑖𝑠 256,11776 240∗ <0.01 255 255.9 478.87 248 249.3 0.02 240 240
ℎ𝑎𝑚𝑚𝑖𝑛𝑔10 − 4.𝑚𝑖𝑠 1024,89600 984∗ <0.01 1023 1023.5 613.39 1018 1018.8 273.01 990 990
𝑘𝑒𝑙𝑙𝑒𝑟4.𝑚𝑖𝑠 171,5100 160∗ <0.01 170 170.1 839.79 163 163.7 3.93 160 160
𝑘𝑒𝑙𝑙𝑒𝑟5.𝑚𝑖𝑠 776,74710 749∗ <0.01 775 775.6 272.85 768 770.7 4.64 756 756
𝑘𝑒𝑙𝑙𝑒𝑟6.𝑚𝑖𝑠 3361,1026582 3302 <0.01 3360 3360.1 N/A N/A N/A 82.16 3324 3324
𝑀𝐴𝑁𝑁 𝑎27.𝑚𝑖𝑠 378,702 252∗ <0.01 290 293.8 621.91 281 283.9 0.05 260 260
𝑀𝐴𝑁𝑁 𝑎45.𝑚𝑖𝑠 1035,1980 690∗ <0.01 765 766.4 956.81 830 838.1 0.85 704 704
𝑀𝐴𝑁𝑁 𝑎81.𝑚𝑖𝑠 3321,6480 2221 <0.01 2353 2357.6 878.8 3093 3104 5.10 2241 2241
𝑝 ℎ𝑎𝑡300 − 1.𝑚𝑖𝑠 300,33917 292∗ <0.01 298 298 473.69 296 296.1 0.11 292 292
𝑝 ℎ𝑎𝑡300 − 2.𝑚𝑖𝑠 300,22922 275∗ <0.01 298 298 516.16 291 291.9 0.64 275 275
𝑝 ℎ𝑎𝑡300 − 3.𝑚𝑖𝑠 300,11460 264∗ <0.01 294 296 691.7 287 288.1 0.34 264 264
𝑝 ℎ𝑎𝑡700 − 1.𝑚𝑖𝑠 700,183651 689∗ <0.01 698 699.8 155.67 697 697.3 7.78 689 689
𝑝 ℎ𝑎𝑡700 − 2.𝑚𝑖𝑠 700,122922 656∗ <0.01 700 700 95.72 689 691.3 1.79 656 656
𝑝 ℎ𝑎𝑡700 − 3.𝑚𝑖𝑠 700,61640 638∗ <0.01 694 695.9 30.67 688 688.9 176.31 638 638
𝑝 ℎ𝑎𝑡1500 − 1.𝑚𝑖𝑠 1500,839327 1488∗ <0.01 1500 1500 N/A N/A N/A 19.73 1489 1489.1
𝑝 ℎ𝑎𝑡1500 − 2.𝑚𝑖𝑠 1500,555290 1435∗ <0.01 1498 1498.1 N/A N/A N/A 27.61 1438 1438
𝑝 ℎ𝑎𝑡1500 − 3.𝑚𝑖𝑠 1500,277006 1406 <0.01 1496 1496 N/A N/A N/A 210.48 1409 1409

Mathematical Problems in Engineering 9

Table 2: Experimental results on BHOSLIB Instances.

Instance V,E MVC 2-Aprox GA GRASP-CVC
time best avg time best avg time best avg

𝑓𝑟𝑏30 − 15 − 1.𝑚𝑖𝑠 450,17827 420∗ <0.01 449 449.6 996.69 439 440.2 11.37 424 424
𝑓𝑟𝑏30 − 15 − 2.𝑚𝑖𝑠 450,17874 420∗ <0.01 447 448.4 826.6 438 440.2 7.87 425 425
𝑓𝑟𝑏30 − 15 − 3.𝑚𝑖𝑠 450,17809 420∗ <0.01 449 449.7 915.5 438 440.2 13.43 424 424
𝑓𝑟𝑏30 − 15 − 4.𝑚𝑖𝑠 450,17831 420∗ <0.01 448 449.3 885.97 439 439.9 15.24 424 424
𝑓𝑟𝑏30 − 15 − 5.𝑚𝑖𝑠 450,17794 420∗ <0.01 448 449.3 593.41 439 440.2 25.61 423 423
𝑓𝑟𝑏35 − 17 − 1.𝑚𝑖𝑠 595,27856 560∗ <0.01 592 593.7 890.5 584 586.1 29.45 565 565
𝑓𝑟𝑏35 − 17 − 2.𝑚𝑖𝑠 595,27847 560∗ <0.01 592 592.8 801.11 585 586.1 8.54 565 565
𝑓𝑟𝑏35 − 17 − 3.𝑚𝑖𝑠 595,27931 560∗ <0.01 592 592.7 850.7 583 585.2 2.7 565 565
𝑓𝑟𝑏35 − 17 − 4.𝑚𝑖𝑠 595,27842 560∗ <0.01 592 593.6 868.33 585 586.1 172.98 565 565
𝑓𝑟𝑏35 − 17 − 5.𝑚𝑖𝑠 595,28143 560∗ <0.01 594 594.5 688.65 585 585.9 34.48 565 565
𝑓𝑟𝑏40 − 19 − 1.𝑚𝑖𝑠 760,41314 720∗ <0.01 758 759 897.75 750 751.7 187.74 728 728
𝑓𝑟𝑏40 − 19 − 2.𝑚𝑖𝑠 760,41263 720∗ <0.01 757 758 22.05 750 751.2 213.66 726 726
𝑓𝑟𝑏40 − 19 − 3.𝑚𝑖𝑠 760,41095 720∗ <0.01 758 759.2 797.46 749 751.3 101.08 725 725
𝑓𝑟𝑏40 − 19 − 4.𝑚𝑖𝑠 760,41605 720∗ <0.01 757 758.1 920 749 751.5 8.39 726 726
𝑓𝑟𝑏40 − 19 − 5.𝑚𝑖𝑠 760,41619 720∗ <0.01 758 759 715.9 751 751.6 33.32 725 725
𝑓𝑟𝑏45 − 21 − 1.𝑚𝑖𝑠 945,59186 900∗ <0.01 944 944.4 460.03 935 936.4 665.53 908 908
𝑓𝑟𝑏45 − 21 − 2.𝑚𝑖𝑠 945,58624 900∗ <0.01 942 943.3 437.63 936 937.1 83.9 908 908
𝑓𝑟𝑏45 − 21 − 3.𝑚𝑖𝑠 945,58245 900∗ <0.01 941 943 65.3 936 937.1 479.14 908 908
𝑓𝑟𝑏45 − 21 − 4.𝑚𝑖𝑠 945,58549 900∗ <0.01 941 942.6 597.27 935 936.4 135.22 907 907
𝑓𝑟𝑏45 − 21 − 5.𝑚𝑖𝑠 945,58579 900∗ <0.01 943 943.7 847.46 936 937.2 235.15 909 909
𝑓𝑟𝑏50 − 23 − 1.𝑚𝑖𝑠 1150,80072 1100∗ <0.01 1146 1147.6 509.18 1141 1142.9 409.1 1109 1109
𝑓𝑟𝑏50 − 23 − 2.𝑚𝑖𝑠 1150,80851 1100∗ <0.01 1147 1148.6 86.18 1139 1142 87.47 1110 1110
𝑓𝑟𝑏50 − 23 − 3.𝑚𝑖𝑠 1150,81068 1100∗ <0.01 1147 1148.1 110.17 1139 1142 414.19 1110 1110
𝑓𝑟𝑏50 − 23 − 4.𝑚𝑖𝑠 1150,80258 1100∗ <0.01 1147 1148.5 94.35 1141 1142.7 431.32 1110 1110
𝑓𝑟𝑏50 − 23 − 5.𝑚𝑖𝑠 1150,80035 1100∗ <0.01 1147 1148.3 125.77 1141 1142.3 837.10 1109 1109
𝑓𝑟𝑏53 − 24 − 1.𝑚𝑖𝑠 1272,94227 1219∗ <0.01 1269 1270.7 180.82 1263 1265 695.54 1230 1230
𝑓𝑟𝑏53 − 24 − 2.𝑚𝑖𝑠 1272,94289 1219∗ <0.01 1269 1270.4 210.55 1259 1263.9 390.44 1230 1230
𝑓𝑟𝑏53 − 24 − 3.𝑚𝑖𝑠 1272,94127 1219∗ <0.01 1270 1271.2 173.43 1262 1264.2 552.58 1229 1229
𝑓𝑟𝑏53 − 24 − 4.𝑚𝑖𝑠 1272,94308 1219∗ <0.01 1270 1270.4 225.5 1264 1264.9 588.66 1229 1229
𝑓𝑟𝑏53 − 24 − 5.𝑚𝑖𝑠 1272,94226 1219∗ <0.01 1270 1270.6 154.67 1263 1264.9 95.67 1230 1230
𝑓𝑟𝑏56 − 25 − 1.𝑚𝑖𝑠 1400,109676 1344∗ <0.01 1398 1399.1 226.86 1390 1392.3 90.55 1357 1357
𝑓𝑟𝑏56 − 25 − 2.𝑚𝑖𝑠 1400,109401 1344∗ <0.01 1397 1397.3 234.39 1389 1391.7 412.38 1353 1353
𝑓𝑟𝑏56 − 25 − 3.𝑚𝑖𝑠 1400,109379 1344∗ <0.01 1397 1398.6 306.88 1391 1392.7 190.64 1356 1356
𝑓𝑟𝑏56 − 25 − 4.𝑚𝑖𝑠 1400,110038 1344∗ <0.01 1398 1399 411.44 1392 1392.4 47.17 1356 1356
𝑓𝑟𝑏56 − 25 − 5.𝑚𝑖𝑠 1400,109601 1344∗ <0.01 1397 1398.4 262.55 1392 1392.8 616.93 1355 1355
𝑓𝑟𝑏59 − 26 − 1.𝑚𝑖𝑠 1534,126555 1475∗ <0.01 1533 1533.2 276.64 1525 1527 656.15 1487 1487
𝑓𝑟𝑏59 − 26 − 2.𝑚𝑖𝑠 1534,126163 1475∗ <0.01 1531 1532.5 351.89 1523 1526.2 100.06 1488 1488
𝑓𝑟𝑏59 − 26 − 3.𝑚𝑖𝑠 1534,126082 1475∗ <0.01 1531 1532.5 366.51 1526 1527.2 495.53 1489 1489
𝑓𝑟𝑏59 − 26 − 4.𝑚𝑖𝑠 1534,127011 1475∗ <0.01 1531 1532.4 300 1525 1525.9 319.41 1487 1487
𝑓𝑟𝑏59 − 26 − 5.𝑚𝑖𝑠 1534,125982 1475∗ <0.01 1533 1533.3 258.46 1525 1527.2 662.72 1487 1487

The Natural Science Foundation for Youths of Jilin Province
(20160520104JH).

References

[1] M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree
problem is NP-complete,” SIAM Journal on Applied Mathemat-
ics, vol. 32, no. 4, pp. 826–834, 1977.

[2] H. Moser, Exact algorithms for generalizations of vertex
cover [M.S. thesis], Fakultät für Mathematik und Informatik,
Friedrich-Schiller-Universität Jena, 2005.

[3] Z. Zhang, X. Gao, andW.Wu, “PTAS for connected vertex cover
in unit disk graphs,” Theoretical Computer Science, vol. 410, no.
52, pp. 5398–5402, 2009.

[4] P.Guo, J.Wang,X.H.Geng,C. S.Kim, and J.-U.Kim, “A variable
threshold-value authentication architecture for wireless mesh

10 Mathematical Problems in Engineering

networks,” Journal of Internet Technology, vol. 15, no. 6, pp. 929–
935, 2014.

[5] J. Shen, H. Tan, J. Wang, J. Wang, and S. Lee, “A novel routing
protocol providing good transmission reliability in underwater
sensor networks,” Journal of Internet Technology, vol. 16, no. 1,
pp. 171–178, 2015.

[6] P. L. K. Priyadarsini and T.Hemalatha, “Connected vertex cover
in 2-connected planar graph with maximum degree 4 is NP-
complete,” International Journal of Mathematical, Physical and
Engineering Sciences, vol. 2, no. 1, pp. 51–54, 2008.

[7] H. Fernau and D. F. Manlove, “Vertex and edge covers with
clustering properties: complexity and algorithms,” Journal of
Discrete Algorithms, vol. 7, no. 2, pp. 149–167, 2009.

[8] T. Watanabe, S. Kajita, and K. Onaga, “Vertex covers and
connected vertex covers in 3-connected graphs,” in Proceedings
of the IEEE International Sympoisum on Circuits and Systems,
vol. 2, pp. 1017–1020, Singapore, Singapore, 1991.

[9] D. Mölle, S. Richter, and P. Rossmanith, “Enumerate and
expand: improved algorithms for connected vertex cover and
tree cover,”Theory of Computing Systems, vol. 43, no. 2, pp. 234–
253, 2008.

[10] D. Binkele-Raible, Amortized Analysis of Exponential Time-and
Parameterized Algorithms: Measure & Conquer and Reference
Search Trees, Praca doktorska, University of Trier, Trier, Ger-
many, 2010.

[11] C. Savage, “Depth-first search and the vertex cover problem,”
Information Processing Letters, vol. 14, no. 5, pp. 233–235, 1982.

[12] T. Fujito and T. Doi, “A 2-approximation NC algorithm for
connected vertex cover and tree cover,” Information Processing
Letters, vol. 90, no. 2, pp. 59–63, 2004.

[13] B. Escoffier, L. Gourvès, and J. Monnot, “Complexity and
approximation results for the connected vertex cover problem
in graphs and hypergraphs,” Journal of Discrete Algorithms, vol.
8, no. 1, pp. 36–49, 2010.

[14] J. Cardinal and E. Levy, “Connected vertex covers in dense
graphs,” in APPROX 2008, RANDOM 2008: Approximation,
Randomization and Combinatorial Optimization. Algorithms
and Techniques, vol. 5171 of Lecture Notes in Computer Science,
pp. 35–48, Springer, Berlin, Germany, 2008.

[15] Y. Li, Z. Yang, andW.Wang, “Complexity and algorithms for the
connected vertex cover problem in 4-regular graphs,” Applied
Mathematics and Computation, vol. 301, pp. 107–114, 2017.

[16] M. G. C. Resende and C. C. Ribeiro, “GRASP: Greedy random-
ized adaptive search procedures,” in Search Methodologies, pp.
287–312, Springer, 2014.

[17] Y. Zhou, H. Zhang, R. Li, and J. Wang, “Two local search
algorithms for partition vertex cover problem,” Journal of
Computational and Theoretical Nanoscience, vol. 13, no. 1, pp.
743–751, 2016.

[18] X. Li, J. Zhang, andM. Yin, “Animalmigration optimization: an
optimization algorithm inspired by animalmigration behavior,”
Neural Computing and Applications, vol. 24, no. 7-8, pp. 1867–
1877, 2014.

[19] Y. Wang, S. Cai, and M. Yin, “Two efficient local search
algorithms formaximumweight clique problem,” inProceedings
of the 30th AAAI Conference on Artificial Intelligence, AAAI
2016, pp. 805–811, Phoenix, Ariz, USA, February 2016.

[20] Y.Wang,M. Yin,D.Ouyang, andL. Zhang, “A novel local search
algorithm with configuration checking and scoring mechanism
for the set k-covering problem,” International Transactions in
Operational Research, vol. 24, no. 6, pp. 1463–1485, 2017.

[21] S. Cai, K. Su, and A. Sattar, “Local search with edge weighting
and configuration checking heuristics for minimum vertex
cover,” Artificial Intelligence, vol. 175, no. 9-10, pp. 1672–1696,
2011.

[22] C. Luo, S. Cai, W. Wu, and K. Su, “Double configuration check-
ing in stochastic local search for satisfiability,” in Proceedings of
the 28th AAAI Conference on Artificial Intelligence, AAAI 2014,
26th Innovative Applications of Artificial Intelligence Conference,
IAAI 2014 and the 5th Symposium on Educational Advances in
Artificial Intelligence, EAAI 2014, pp. 2703–2709, Québec City,
Canada, July 2014.

[23] C. Luo, S. Cai,W.Wu, Z. Jie, and K. Su, “CCLS: an efficient local
search algorithm for weighted maximum satisfiability,” IEEE
Transactions on Computers, vol. 64, no. 7, pp. 1830–1843, 2015.

[24] J. Gao, J. Wang, and M. Yin, “Experimental analyses on phase
transitions in compiling satisfiability problems,” Science China
Information Sciences, vol. 58, no. 3, pp. 1–11, 2015.

[25] S. Cai, K. Su, C. Luo, and A. Sattar, “NuMVC: an efficient
local search algorithm for minimum vertex cover,” Journal of
Artificial Intelligence Research, vol. 46, pp. 687–716, 2013.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

