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In this paper, the polynomial solutions in terms of Jacobi’s elliptic functions of the KdV equation with a self-consistent source (KdV-
SCS) are presented. The extended (𝐺󸀠/𝐺)-expansion method is utilized to obtain exact traveling wave solutions of the KdV-SCS,
which finally are expressed in terms of the hyperbolic function, the trigonometric function, and the rational function. Meanwhile
we find the Lie point symmetry and Lie symmetry group and give several group-invariant solutions for the KdV-SCS. Finally, we
supplement the results of the Painlevé property in our previous work and get the Bäcklund transformations of the KdV-SCS.

1. Introduction

It is well known that the soliton equations with self-consistent
sources (SESCSs) can exhibit abundant nonlinear dynamics
compared to soliton equations themselves and have impor-
tant physical applications [1]. These SESCSs are usually used
to describe interactions between different solitary waves and
are relevant in some problems related with hydrodynamics,
solid state physics, or plasma physics [2–4]. The sources
appear in solitary waves with nonconstant velocity and lead
to a variety of dynamics of physical models [2]. For example,
the KdV equation with a self-consistent source (KdV-SCS)
describes the interaction of long and short capillary-gravity
waves [5, 6]. During the past four decades or so searching
for explicit solutions of nonlinear evolution equations by
using various different methods is the main goal for many
researchers. Many powerful methods to construct exact solu-
tions of nonlinear evolution equations have been established
and developed, which can be used to deal with the SESCSs
as well. For instance, some equations with self-consistent
sources have been studied by the inverse scattering method
[5, 7], Darboux transformation method [8, 9], and Hirota
method [10–12].

In recent years, many effectively straightforward methods
have been proposed such as the Jacobi elliptic function

expansion method [13, 14], the tanh-function expansion
method [15, 16], the F-expansion method [17, 18], and the(𝐺󸀠/𝐺)-expansionmethod [19–21].Motivated by the previous
works, we focus our attention on the following nonlinear
partial differential equations (PDEs):𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 12𝑢𝑢𝑥 = (V2)

𝑥
, (1a)

V𝑥𝑥 + 2𝑢V = 𝜆V, (1b)

where 𝜆 is an arbitrary constant. In fact, (1a)-(1b) is a reduced
form of the KdV equation with source [22, 23].

The general KdV-SCS has been discussed from various
aspects, such that, with Wronskian technique, the mixed
rational-soliton solutions for the KdV-SCS are obtained [22].
The complexion solutions of the KdV-SCS are presented by
the Darboux transformation [23]. The soliton solutions for
the KdV hierarchy with self-consistent sources are obtained
by the inverse scattering method [5].The integration of KdV-
SCS and higher KdV-SCS in the class of periodic functions
are, respectively, studied in [24, 25]. However, the Jacobi’s
elliptic function solutions, the group-invariant solutions by
the Lie group approach [26], and the extended (𝐺󸀠/𝐺)-
expansion method for the KdV-SCS have not been presented.

This paper is organized as follows. In Section 2, we
construct the polynomial solutions in terms of Jacobi’s elliptic
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functions for (1a)-(1b). In Section 3, using the extended(𝐺󸀠/𝐺)-expansion method, we obtain the exact traveling
wave solutions of (1a)-(1b). In Section 4, we give the group-
invariant solutions of (1a)-(1b) by the Lie group approach. In
Section 5, the results of the Painlevé property for (1a)-(1b) are
supplemented. Section 6 is a brief conclusion.

2. Jacobi’s Elliptic Function Solutions

In this section we mainly construct the polynomial solutions
of (1a)-(1b) in terms of Jacobi’s elliptic functions [27].

Consider the following tripled Riccati equations:

𝑓󸀠 = 𝑔ℎ,
𝑔󸀠 = −𝑓ℎ,
ℎ󸀠 = −𝑀2𝑓𝑔,

(2)

where 󸀠 = 𝑑/𝑑𝜉 and modulus 0 < 𝑀 < 1, which have three
solutions as listed 𝑓 = sn (𝜉;𝑀) ,𝑔 = cn (𝜉;𝑀) ,ℎ = dn (𝜉;𝑀) . (3)

Solutions (3) satisfy

sn2 (𝜉;𝑀) = 1 − cn2 (𝜉;𝑀) ,
dn2 (𝜉;𝑀) = 1 − 𝑀2sn2 (𝜉;𝑀) . (4)

Step J1. Transform (1a)-(1b) to ODEs.
To begin with, by using the travelling wave transforma-

tion, 𝜉 = 𝑘𝑥 + 𝜔𝑡, (5)

where 𝜉 is referred to the traveling wave variable and 𝑘 and𝜔 represent the amplitude and velocity of the traveling wave,
respectively, and setting 𝑈(𝜉) = 𝑢(𝑥, 𝑡),𝑉(𝜉) = V(𝑥, 𝑡), system
(1a)-(1b) is transformed into the following nonlinear ordinary
differential equations (ODEs):𝜔𝑈 + 6𝑘𝑈2 − 𝑘𝑉2 + 𝑘3𝑈󸀠󸀠 = 0, (6a)

𝑘2𝑉󸀠󸀠 + 2𝑈𝑉 − 𝜆𝑉 = 0, (6b)

while 󸀠 = 𝑑/𝑑𝜉.
Step J2. Determine the expressions of the polynomial solu-
tions.

Suppose that the solution of (6a)-(6b) can be expressed as
the following finite series:

𝑈 (𝜉) = 𝑚∑
𝑖=0

𝑎𝑖𝑓𝑖 + 𝑚∑
𝑖=1

𝑏𝑖𝑔𝑓𝑖−1 + 𝑚∑
𝑖=1

𝑐𝑖ℎ𝑓𝑖−1,
𝑉 (𝜉) = 𝑛∑

𝑖=0

𝐴 𝑖𝑓𝑖 + 𝑛∑
𝑖=1

𝐵𝑖𝑔𝑓𝑖−1 + 𝑛∑
𝑖=1

𝐶𝑖ℎ𝑓𝑖−1, (7)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝐴 𝑖, 𝐵𝑖, and 𝐶𝑖 are constants to be determined
later and the positive integers 𝑚,𝑛 are determined by balanc-
ing the highest nonlinear terms and the highest-order partial
derivative terms in (6a)-(6b) [28]. Then we get 𝑚 = 𝑛 = 2,
and

𝑈 (𝜉) = 𝑎0 + 𝑎1𝑓 + 𝑎2𝑓2 + 𝑏1𝑔 + 𝑏2𝑔𝑓 + 𝑐1ℎ + 𝑐2ℎ𝑓,𝑉 (𝜉) = 𝐴0 + 𝐴1𝑓 + 𝐴2𝑓2 + 𝐵1𝑔 + 𝐵2𝑔𝑓 + 𝐶1ℎ+ 𝐶2ℎ𝑓.
(8)

Step J3. Derive the algebraic system for the coefficients 𝑎𝑖, 𝑏𝑖,𝑐𝑖, 𝐴 𝑖, 𝐵𝑖, and 𝐶𝑖.
Substituting (8) into (6a)-(6b) and repeatedly applying

(4) and (2), and collecting all terms of same power of 𝑓, 𝑔, ℎ
together and setting each coefficient of the polynomials to
zero, we get a system of algebraic equations for the unknowns𝑎𝑖, 𝑏𝑖, 𝑐𝑖,𝐴 𝑖,𝐵𝑖,𝐶𝑖,𝑀, 𝑘, and𝜔, which on solving gives five sets
of solutions for an algebraic system omitted here.

Step J4. Build and test the Jacobi’s elliptic function solutions.
Substituting the above five sets of solutions separately into

(8) and replacing 𝑓, 𝑔, ℎ with (3), we get the Jacobi’s elliptic
function solutions for (1a)-(1b) as follows.

Solution 1:𝑢 (𝑥, 𝑡)
= 12 3𝑘2𝜆 − 𝜆𝐴0 + 12𝑘4 − 3𝑘2𝐴03𝑘2 − 𝐴0

− 34 𝐴0 (4𝑘2 − 𝐴0)3𝑘2 − 𝐴0 sn2 (𝜉;𝑀) ,
V (𝑥, 𝑡) = 𝐴0 − 32 𝐴0 (4𝑘2 − 𝐴0)3𝑘2 − 𝐴0 sn2 (𝜉;𝑀) ,
𝑀 = ±1𝑘√ 4𝑘2𝐴0 − 𝐴2012𝑘2 − 4𝐴0 ,𝐴0
= 30𝑘3 + 6𝑘𝜆 + 𝜔 ± √−300𝑘6 + 36𝑘2𝜆2 + 12𝑘𝜆𝜔 + 𝜔210𝑘 .

(9)

Solution 2:𝑢 (𝑥, 𝑡)
= 12 3𝑘2𝜆 + 𝜆𝐴0 + 12𝑘4 + 3𝑘2𝐴03𝑘2 + 𝐴0

+ 34 𝐴0 (4𝑘2 + 𝐴0)3𝑘2 + 𝐴0 sn2 (𝜉;𝑀) ,
V (𝑥, 𝑡) = 𝐴0 − 32 𝐴0 (4𝑘2 + 𝐴0)3𝑘2 + 𝐴0 sn2 (𝜉;𝑀) ,
𝑀 = ±1𝑘√−4𝑘2𝐴0 + 𝐴2012𝑘2 + 4𝐴0 ,
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𝐴0
= −30𝑘3 + 6𝑘𝜆 + 𝜔 ± √−300𝑘6 + 36𝑘2𝜆2 + 12𝑘𝜆𝜔 + 𝜔210𝑘 .

(10)

Solution 3:

𝑢 (𝑥, 𝑡) = 𝑘2𝑀22 + 𝜆2 − 𝑘2𝑀2sn2 (𝜉;𝑀) ,
V (𝑥, 𝑡) = ±√𝜔𝑘 + 2𝑘4𝑀2 + 6𝑘2𝜆 − 4𝑘4dn (𝜉;𝑀) . (11)

Solution 4:

𝑢 (𝑥, 𝑡) = 𝑘22 + 𝜆2 − 𝑘2𝑀2sn2 (𝜉;𝑀) ,
V (𝑥, 𝑡) = ±√2𝑘4 − 4𝑘4𝑀2 + 𝜔𝑘 + 6𝑘2𝜆𝑀cn (𝜉;𝑀) . (12)

Solution 5:

𝑢 (𝑥, 𝑡) = 12𝑘2 + 12𝑘2𝑀2 + 𝜆2 − 𝑘2𝑀2sn2 (𝜉;𝑀) ,
V (𝑥, 𝑡)

= ±√−𝑘 (2𝑘3 + 2𝑘3𝑀2 + 𝜔 + 6𝑘𝜆)𝑀sn (𝜉;𝑀) ,
(13)

where 𝜉 = 𝑘𝑥+𝜔𝑡, 𝑘,𝜔 are arbitrary constants and 0 < 𝑀 < 1.
According to sn(𝜉; 0) = sin(𝜉), sn(𝜉; 1) = tanh(𝜉),

cn(𝜉; 0) = cos(𝜉), cn(𝜉; 1) = sech(𝜉), and cn(√𝑚𝜉; 1/𝑚) =
dn(𝜉;𝑚), the above solutions can be expressed in terms of
hyperbolic functions and the trigonometric functions. When
setting 𝑀 = 1 in (9), we get 𝐴0 = 2𝑘2 and 𝐴0 = 6𝑘2.
Substituting𝐴0 = 2𝑘2 into (9) and applying tanh2𝜉+sech2𝜉 =1, we get the following typical travelling wave solution from
(9):

𝑢 (𝑥, 𝑡) = 𝜆2 + 3𝑘2sech2 (𝑘𝑥 + 𝜔𝑡) ,
V (𝑥, 𝑡) = −4𝑘2 + 6𝑘2sech2 (𝑘𝑥 + 𝜔𝑡) . (14)

Likewise, when making 𝑀 = 1 in (10)-(13), we can also get
solutions in terms of hyperbolic functions. It shows that the
Jacobi’s elliptic function expansion method is more general
than that of the hyperbolic function expansion method [29].

3. Extended (𝐺󸀠/𝐺)-Expansion
Method to KdV-SCS

3.1. Description of the Extended (𝐺󸀠/𝐺)-Expansion Method.
Let us have a look at the extended (𝐺󸀠/𝐺)-expansion method
briefly. For a given nonlinear PDE,

𝐹 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑡, 𝑢𝑥𝑥, 𝑢𝑡𝑡, . . .) = 0, (15)

where 𝑢 = 𝑢(𝑥, 𝑡) and 𝐹 is a polynomial about 𝑢(𝑥, 𝑡) and its
various partial derivatives.

To begin with, using the following traveling wave trans-
formation,

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , 𝜉 = 𝑘𝑥 + 𝜔𝑡, (16)
Equation (15) reduces to the following ODE:

𝑃 (𝑈,𝑈󸀠, 𝑈󸀠󸀠, . . . , 𝑈(𝑛)) = 0, (17)

where 󸀠 = 𝑑/𝑑𝜉.
Suppose that the solution of (17) can be expressed as a

finite series in (𝐺󸀠/𝐺)
𝑈 (𝜉) = 𝑚∑

𝑖=0

𝑎𝑖 (𝐺󸀠𝐺 )𝑖 , 𝑎𝑚 ̸= 0, 𝑚 ∈ N, (18)

where we let 𝐺 = 𝐺(𝜉) satisfy the following ODE instead of
that form in [30]

𝐺𝐺󸀠󸀠 = 𝛼𝐺󸀠2 + 𝛽𝐺𝐺󸀠 + 𝛾𝐺2, (19)

where 𝑎𝑖(𝑖 = 0, 1, 2, . . . , 𝑚), 𝛼, 𝛽, 𝛾 are constants to be deter-
mined later, and the positive integer𝑚 can be determined the
same as before.

Substituting (18) alongwith (19) into (17) and equating the
coefficients of each power of𝐺󸀠/𝐺 to zeros, we obtain a system
of algebraic equations for the unknowns 𝑎𝑖(𝑖 = 1, 2, . . . , 𝑚), 𝑘,
and 𝜔. Then we can determine the unknowns.

Equation (19) possesses solutions listed below.
When 𝛽2 − 4(𝛼 − 1)𝛾 > 0, 𝛼 ̸= 1,

𝐺󸀠𝐺 = 𝛽2 − 2𝛼 + √𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉)) . (20)

When 𝛽2 − 4(𝛼 − 1)𝛾 < 0, 𝛼 ̸= 1,
𝐺󸀠𝐺 = 𝛽2 − 2𝛼 + √−𝛽2 + 4𝛼𝛾 − 4𝛾 (−𝐶1 sin ((1/2)√−𝛽2 + 4𝛼𝛾 − 4𝛾𝜉) + 𝐶2 cos((1/2)√−𝛽2 + 4𝛼𝛾 − 4𝛾𝜉))

(2 − 2𝛼) (𝐶1 cos ((1/2)√−𝛽2 + 4𝛼𝛾 − 4𝛾𝜉) + 𝐶2 sin ((1/2)√−𝛽2 + 4𝛼𝛾 − 4𝛾𝜉)) . (21)
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When 𝛽2 − 4(𝛼 − 1)𝛾 = 0, 𝛼 ̸= 1,
𝐺󸀠𝐺 = − 𝜉𝛽 + 2 + 𝐶1𝛽2 (𝜉𝛼 − 𝜉 + 𝐶1𝛼 − 𝐶1) . (22)

In (20)-(22), 𝐶1, 𝐶2 are arbitrary constants.
Therefore, by the sign of the discriminant 𝛽2 − 4(𝛼 − 1)𝛾,

we can obtain the exact solutions of (15).

3.2. Application of the KdV-SCS. In this section, we demon-
strate the extended𝐺󸀠/𝐺-expansion method on the KdV-SCS
(1a)-(1b).

Introducing the travelling wave transformations

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) ,
V (𝑥, 𝑡) = 𝑉 (𝜉) , (23)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, 𝑘, 𝜔 will be determined later. Similar to
the strategy in Step J1, substituting 𝑈(𝜉) = 𝑈, 𝑉(𝜉) = 𝑉 into
((1a)-(1b)), one can transform (1a)-(1b) into nonlinear ODEs
as (6a)-(6b).

Now, we make the ansatz 𝑈(𝜉) = ∑𝑚𝑖=0 𝑎𝑖(𝐺󸀠/𝐺)𝑖, 𝑉(𝜉) =∑𝑛𝑖=0 𝑏𝑖(𝐺󸀠/𝐺)𝑖 for the solutions of (6a)-(6b). Likewise, using
the homogeneous balance method we obtain 𝑚 = 𝑛 =2. Therefore, the solutions of (6a)-(6b) have the following
extended forms:

𝑈 (𝜉) = 𝑎0 + 𝑎1 (𝐺󸀠𝐺 ) + 𝑎2 (𝐺󸀠𝐺 )2 ,
𝑉 (𝜉) = 𝑏0 + 𝑏1 (𝐺󸀠𝐺 ) + 𝑏2 (𝐺󸀠𝐺 )2 . (24)

Substituting (24) and (19) into (6a)-(6b) and collecting all
terms with the same power of 𝐺󸀠/𝐺 together, the left-hand
sides of (6a)-(6b) are converted into other polynomials in𝐺󸀠/𝐺. Equating each coefficient of the polynomials to zero
yields a set of simultaneous algebraic equations for 𝑘, 𝜔,𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, and 𝑏2 omitted here. Solving the algebraic
system leads to several types of travelingwave solutions under
various parameter constraints for the KdV-SCS ((1a)-(1b)).

Case 1. 𝛽2 − 4𝛼𝛾 + 4𝛾 > 0, 𝛼 ̸= 1.
In this case, we get five sets traveling wave solutions of the

KdV-SCS (1a)-(1b).

Solution 1. The first set of the unknowns under this
condition reads𝑘 = 𝑘,

𝜔 = 𝑘(4𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 6𝜆
+ 8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆 ) ,

𝑎0 = −𝑘2𝛾𝛼 + 𝑘2𝛾 + 𝜆2 ,
𝑎1 = −𝛽 (𝛼 − 1) 𝑘2,
𝑎2 = − (1 − 𝛼)2 𝑘2,
𝑏0 = ±12𝛽𝑘√−8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆 ,
𝑏1 = ±√−8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆 (𝛼 − 1) 𝑘,
𝑏2 = 0.

(25)

Substituting (25) into (24), we get the following solution
expression equations:

𝑈 (𝜉) = −𝑘2𝛾𝛼 + 𝑘2𝛾 + 𝜆2 − 𝛽 (𝛼 − 1) 𝑘2 (𝐺󸀠𝐺 )
− (1 − 𝛼)2 𝑘2 (𝐺󸀠𝐺 )2 , (26a)

𝑉(𝜉) = ±12𝛽𝑘√−8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆
± √−8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆 (𝛼 − 1)
⋅ 𝑘 (𝐺󸀠𝐺 ) .

(26b)

Whence, from the ansatz (26a)-(26b) together with (20),
the first set of traveling wave solutions in terms of hyperbolic
functions to (1a)-(1b) reads

𝑢 (𝑥, 𝑡) = −𝑘2𝛾𝛼 + 𝑘2𝛾 + 𝜆2 − 𝛽 (𝛼 − 1)
⋅ 𝑘2(√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉)) + 𝛽2 − 2𝛼)
− (1 − 𝛼)2
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⋅ 𝑘2(√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉)) + 𝛽2 − 2𝛼)

2

,
(27a)

V (𝑥, 𝑡) = ±12𝛽𝑘√−8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆 ± √−8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆 (𝛼 − 1)
⋅ 𝑘(√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉)) + 𝛽2 − 2𝛼) , (27b)

where 𝐶1 and 𝐶2 are arbitrary constants and the traveling
wave variable is

𝜉 = 𝑘𝑥 + 𝑘(4𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 6𝜆
+ 8𝑘2𝜆𝛾𝛼 − 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆24𝑘2𝛾𝛼 − 𝑘2𝛽2 − 4𝑘2𝛾 − 2𝜆 +8𝑘2𝜆𝛾𝛼
− 2𝑘2𝛽2𝜆 − 8𝑘2𝜆𝛾 − 6𝜆2)2 𝑡.

(28)

Solution 2. The second set of the unknowns under this
condition reads

𝑘 = ±√ 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝜔 = ∓√ 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾𝜆,
𝑎0 = −𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,
𝑎1 = − 3𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑎2 = − 3𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑏0 = ±𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)4𝛼𝛾 − 𝛽2 − 4𝛾 ,

𝑏1 = ± 6𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑏2 = ± 6𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 .

(29)

Substituting (29) into (24), we get the following solution
expression equations:

𝑈 (𝜉) = −𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾)
− 3𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )
− 3𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )2 ,

(30a)

𝑉 (𝜉) = ±𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)4𝛼𝛾 − 𝛽2 − 4𝛾
± 6𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )
± 6𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )2 .

(30b)

Whence, from the ansatz (30a)-(30b) together with (20),
the second set of traveling wave solutions in terms of
hyperbolic functions to (1a)-(1b) reads

𝑢 (𝑥, 𝑡) = −𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾)
− 3𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
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+ 𝛽2 − 2𝛼)

− 3𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,
(31a)

V (𝑥, 𝑡) = ±𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)4𝛼𝛾 − 𝛽2 − 4𝛾
± 6𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
+ 𝛽2 − 2𝛼)

± 6𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1 cosh((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,

(31b)

where 𝐶1 and 𝐶2 are arbitrary constants and the traveling
wave variable is

𝜉 = ±√ 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾𝑥 ∓ √ 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾𝜆𝑡
𝑤𝑖𝑡ℎ 𝜆 < 0. (32)

Solution 3. The third set of the unknowns under this
condition reads

𝑘 = ±√− 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝜔 = ∓√− 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾𝜆,
𝑎0 = 3𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,

𝑎1 = 3𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑎2 = 3𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑏0 = ± 6𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑏1 = ± 6𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑏2 = ± 6𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 .

(33)

Substituting (33) into (24), we get the following solution
expression equations:

𝑈 (𝜉) = 3𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 + 3𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )
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+ 3𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )2 ,
(34a)

𝑉 (𝜉) = ± 6𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ± 6𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )

± 6𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )2 .
(34b)

Whence, from the ansatz (34a)-(34b) together with (20),
the third set of traveling wave solutions in terms of hyperbolic
functions to (1a)-(1b) reads

𝑢 (𝑥, 𝑡) = 3𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾
+ 3𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)

+ 3𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,

(35a)

V (𝑥, 𝑡) = ± 6𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾
± 6𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)

± 6𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,

(35b)
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where 𝐶1 and 𝐶2 are arbitrary constants and the traveling
wave variable is

𝜉 = ±√− 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾𝑥 ∓ √− 𝜆4𝛼𝛾 − 𝛽2 − 4𝛾𝜆𝑡
𝑤𝑖𝑡ℎ 𝜆 > 0. (36)

Solution 4. The fourth set of the unknowns under this
condition reads

𝑘 = ±√ 3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾 ,
𝜔 = ±32√ 3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾𝜆,
𝑎0 = −𝜆 (5𝛾𝛼 + 𝛽2 − 5𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,
𝑎1 = − 9𝛽𝜆 (𝛼 − 1)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,
𝑎2 = − 9𝜆 (𝛼 − 1)22 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,
𝑏0 = ±3𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,

𝑏1 = ± 9𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑏2 = ± 9𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 .

(37)

Substituting (37) into (24), we get the following solution
expression equations:

𝑈 (𝜉) = −𝜆 (5𝛾𝛼 + 𝛽2 − 5𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾)
− 9𝛽𝜆 (𝛼 − 1)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) (𝐺󸀠𝐺 )
− 9𝜆 (𝛼 − 1)22 (4𝛼𝛾 − 𝛽2 − 4𝛾) (𝐺󸀠𝐺 )2 ,

(38a)

𝑉 (𝜉) = ±3𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾)
± 9𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )
± 9𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )2 .

(38b)

Whence, from the ansatz (38a)-(38b) together with (20),
the fourth set of traveling wave solutions in terms of hyper-
bolic functions to (1a)-(1b) reads

𝑢 (𝑥, 𝑡) = −𝜆 (5𝛾𝛼 + 𝛽2 − 5𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾)
− 9𝛽𝜆 (𝛼 − 1)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)

− 9𝜆 (𝛼 − 1)22 (4𝛼𝛾 − 𝛽2 − 4𝛾) (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1 cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2 sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,

(39a)
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V (𝑥, 𝑡) = ±3𝜆 (2𝛾𝛼 + 𝛽2 − 2𝛾)2 (4𝛼𝛾 − 𝛽2 − 4𝛾)
± 9𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
+ 𝛽2 − 2𝛼)

± 9𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,

(39b)

where 𝐶1 and 𝐶2 are arbitrary constants and the traveling
wave variable is

𝜉 = ±√ 3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾𝑥 ± 32√ 3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾𝜆𝑡
𝑤𝑖𝑡ℎ 𝜆 < 0. (40)

Solution 5. The fifth set of the unknowns under this
condition reads

𝑘 = ±√ −3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾 ,
𝜔 = ±32√ −3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾𝜆,
𝑎0 = 𝜆 (14𝛾𝛼 + 𝛽2 − 14𝛾)4 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,
𝑎1 = 9𝛽𝜆 (𝛼 − 1)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,
𝑎2 = 9𝜆 (𝛼 − 1)22 (4𝛼𝛾 − 𝛽2 − 4𝛾) ,
𝑏0 = ± 9𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,

𝑏1 = ± 9𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ,
𝑏2 = ± 9𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 .

(41)

Substituting (41) into (24), we get the following solution
expression equations:

𝑈 (𝜉) = 𝜆 (14𝛾𝛼 + 𝛽2 − 14𝛾)4 (4𝛼𝛾 − 𝛽2 − 4𝛾)
+ 9𝛽𝜆 (𝛼 − 1)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) (𝐺󸀠𝐺 )
+ 9𝜆 (𝛼 − 1)22 (4𝛼𝛾 − 𝛽2 − 4𝛾) (𝐺󸀠𝐺 )2 ,

(42a)

𝑉 (𝜉) = ± 9𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 ± 9𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )
± 9𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (𝐺󸀠𝐺 )2 . (42b)

Whence, from the ansatz (42a)-(42b) together with (20), the
fifth set of traveling wave solutions in terms of hyperbolic
functions to (1a)-(1b) reads

𝑢 (𝑥, 𝑡) = 𝜆 (14𝛾𝛼 + 𝛽2 − 14𝛾)4 (4𝛼𝛾 − 𝛽2 − 4𝛾)
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+ 9𝛽𝜆 (𝛼 − 1)2 (4𝛼𝛾 − 𝛽2 − 4𝛾) (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)

+ 9𝜆 (𝛼 − 1)22 (4𝛼𝛾 − 𝛽2 − 4𝛾) (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,
(43a)

V (𝑥, 𝑡) = ± 9𝛾𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾
± 9𝛽𝜆 (𝛼 − 1)4𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
+ 𝛽2 − 2𝛼)

± 9𝜆 (𝛼 − 1)24𝛼𝛾 − 𝛽2 − 4𝛾 (√𝛽2 − 4𝛼𝛾 + 4𝛾 (𝐶1sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))
(2 − 2𝛼) (𝐶1cosh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉) + 𝐶2sinh ((1/2)√𝛽2 − 4𝛼𝛾 + 4𝛾𝜉))

+ 𝛽2 − 2𝛼)
2

,

(43b)

where 𝐶1 and 𝐶2 are arbitrary constants and the traveling
wave variable is

𝜉 = ±√ −3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾𝑥 ± 32√ −3𝜆8𝛼𝛾 − 2𝛽2 − 8𝛾𝜆𝑡
𝑤𝑖𝑡ℎ 𝜆 > 0. (44)

Case 2. 𝛽2 − 4𝛼𝛾 + 4𝛾 < 0, 𝛼 ̸= 1.
In this case, each set of the unknowns and the corre-

sponding 𝑈(𝜉) and 𝑉(𝜉) on this occasion consists with that
in the case of 𝛽2 − 4𝛼𝛾 + 4𝛾 > 0. We only need to replace𝐺󸀠/𝐺 of each group of solutions in Case 1 to (21). So the other
five sets of traveling wave solutions are obtained and denoted
by solutions 6-10.

Solution 11.Theset of the unknowns under this condition
reads

𝑘 = ±√−𝑎2𝛼 − 1 ,
𝜔 = ∓3√−𝑎2𝜆𝛼 − 1 ,
𝑎0 = 14 2𝛼2𝜆 − 4𝛼𝜆 + 2𝜆 + 𝛽2𝑎2(𝛼 − 1)2 ,
𝑎1 = 𝛽𝑎2𝛼 − 1 ,
𝑏0 = ±12 √3𝜆𝑎2𝛽𝛼 − 1 ,
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𝑏1 = ±√3𝜆𝑎2,𝑏2 = 0.
(45)

Substituting (45) into (24) together with (22), we get the
eleventh set of travelling wave solutions in terms of rational
functions to (1a)-(1b) as follows:

𝑢 (𝑥, 𝑡) = 14 2𝛼2𝜆 − 4𝛼𝜆 + 2𝜆 + 𝛽2𝑎2(𝛼 − 1)2
− 12 𝛽𝑎2 (𝜉𝛽 + 2 + 𝐶1𝛽)(𝛼 − 1) (𝜉𝛼 − 𝜉 + 𝐶1𝛼 − 𝐶1)
+ 14 𝑎2 (𝜉𝛽 + 2 + 𝐶1𝛽)2(𝜉𝛼 − 𝜉 + 𝐶1𝛼 − 𝐶1)2 ,

(46a)

V (𝑥, 𝑡) = ±12 √3𝜆𝑎2𝛽𝛼 − 1 ∓ 12 √3𝜆𝑎2 (𝜉𝛽 + 2 + 𝐶1𝛽)𝜉𝛼 − 𝜉 + 𝐶1𝛼 − 𝐶1 , (46b)

where 𝐶1 is arbitrary constant and 𝑎2 < 0 and the traveling
wave variable is

𝜉 = ±√−𝑎2𝛼 − 1 𝑥 ∓ 3√−𝑎2𝜆𝛼 − 1 𝑡 𝑤𝑖𝑡ℎ 𝜆 < 0. (47)

4. Group-Invariant Solution

As that in [31], one can suppose that the system of (1a)-
(1b) admits a set of one-parameter (𝜀) Lie group of point
transformations:𝑥∗ = 𝑥,

𝑡∗ = 𝑡,
𝑢∗ = 𝑢 + 𝜀𝜎1 (𝑥, 𝑡, 𝑢, V) + 𝑂 (𝜖2) ,
V∗ = V + 𝜀𝜎2 (𝑥, 𝑡, 𝑢, V) + 𝑂 (𝜖2) .

(48)

As known, 𝜎1 and 𝜎2 are called the classical Lie point
symmetry of (1a)-(1b) which satisfy

𝑉1 = 𝜎1 𝜕𝜕𝑢 ,
𝜎1 = 𝑈 (𝑥, 𝑡, 𝑢, V) − 𝑋 (𝑥, 𝑡, 𝑢, V) 𝜕𝜕𝑥𝑢

− 𝑇 (𝑥, 𝑡, 𝑢, V) 𝜕𝜕𝑡𝑢,
𝑉2 = 𝜎2 𝜕𝜕V ,
𝜎2 = 𝑉 (𝑥, 𝑡, 𝑢, V) − 𝑋 (𝑥, 𝑡, 𝑢, V) 𝜕𝜕𝑥V

− 𝑇 (𝑥, 𝑡, 𝑢, V) 𝜕𝜕𝑡V,

(49)

where 𝑋(𝑥, 𝑡, 𝑢, V), 𝑇(𝑥, 𝑡, 𝑢, V), 𝑈(𝑥, 𝑡, 𝑢, V), and 𝑉(𝑥, 𝑡, 𝑢, V)
are infinitesimals, which can be obtained by solving a deter-
mining equations, and𝑉1,𝑉2 are the corresponding Lie point
symmetry generators of group (48). Obviously, 𝜎1 and 𝜎2
satisfy

𝜕𝜕𝜀𝐹 (𝑢 + 𝜀𝜎1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0 = 0,
𝜕𝜕𝜀𝐹 (V + 𝜀𝜎2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜀=0 = 0. (50)

Theorem 1. The determining equations possess the following
properties:

(i) 𝑈(𝑥, 𝑡, 𝑢, V) and 𝑉(𝑥, 𝑡, 𝑢, V) are linear functions about𝑢 and V, respectively, 𝑇(𝑥, 𝑡, 𝑢, V) is a function only about 𝑡,
and 𝑋(𝑥, 𝑡, 𝑢, V) is independent of 𝑢 and V.

(ii) 𝑋(𝑥, 𝑡, 𝑢, V), 𝑇(𝑥, 𝑡, 𝑢, V), 𝑈(𝑥, 𝑡, 𝑢, V), and 𝑉(𝑥, 𝑡, 𝑢, V)
satisfy the following equations:

{−3 𝜕𝜕𝑥𝑋 + 𝜕𝜕𝑡𝑇, 𝜕2𝜕𝑥2𝑋 − 2 𝜕2𝜕𝑥𝜕V𝑉,−3 𝜕2𝜕𝑥𝜕𝑢𝑈
+ 3 𝜕2𝜕𝑥2𝑋, 4V 𝜕𝜕𝑥𝑋 + 2V 𝜕𝜕V𝑉 − 2( 𝜕𝜕𝑢𝑈) V + 2𝑉,
− 𝜕3𝜕𝑥3𝑈 − 𝜕𝜕𝑡𝑈 + 2V 𝜕𝜕𝑥𝑉 − 12𝑢 𝜕𝜕𝑥𝑈,
− 24 ( 𝜕𝜕𝑥𝑋)𝑢 + 𝜕𝜕𝑡𝑋 + 𝜕3𝜕𝑥3𝑋 − 3 𝜕3𝜕𝑥2𝜕𝑢𝑈
− 12𝑈, −4 ( 𝜕𝜕𝑥𝑋)𝑢V + 2( 𝜕𝜕𝑥𝑋)𝜆V + 2( 𝜕𝜕V𝑉)
⋅ 𝑢V − ( 𝜕𝜕V𝑉)𝜆V − 2V𝑈 − 2𝑢𝑉 + 𝜆𝑉 − 𝜕2𝜕𝑥2𝑉, 𝜕𝜕𝑢
⋅ 𝑇, 𝜕𝜕V𝑇, 𝜕𝜕𝑥𝑇, 𝜕𝜕V𝑈, 𝜕𝜕𝑢𝑉, 𝜕𝜕𝑢𝑋, 𝜕𝜕V𝑋, 𝜕2𝜕V2𝑉, 𝜕3𝜕𝑥𝜕𝑢2
⋅ 𝑈} ,

(51)

which on solving yields

𝑋(𝑥, 𝑡, 𝑢, V) = (𝑥 + 12𝜆𝑡) 𝜃13 + 𝜃3,
𝑇 (𝑥, 𝑡, 𝑢, V) = 𝜃1𝑡 + 𝜃2,
𝑈 (𝑥, 𝑡, 𝑢, V) = −(2𝑢 − 𝜆) 𝜃13 ,
𝑉 (𝑥, 𝑡, 𝑢, V) = −23V𝜃1.

(52)

Once the infinitesimals 𝑋(𝑥, 𝑡, 𝑢, V), 𝑇(𝑥, 𝑡, 𝑢, V),𝑈(𝑥, 𝑡, 𝑢, V), and 𝑉(𝑥, 𝑡, 𝑢, V) are determined, we can
obtain the following Lie symmetry groups.
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In Lie symmetry group if 𝜃1 ̸= 0,
𝑥1 (𝜖) = (𝑥 − 6𝜆𝑡 + 3𝜃3 − 18𝜆𝜃2𝜃1 ) e(𝜃1/3)𝜖

+ (6𝜆𝑡 + 6𝜆𝜃2𝜃1 ) e𝜃1𝜖 + 12𝜆𝜃2 − 3𝜃3𝜃1 ,
𝑡1 (𝜖) = (𝑡 + 𝜃2𝜃1) e𝜃1𝜖 − 𝜃2𝜃1 ,
𝑢1 (𝜖) = (𝑢 − 𝜆2) e−(2𝜃1/3)𝜖 + 𝜆2 ,
V1 (𝜖) = Ve−(2𝜃1/3)𝜖.

(53)

Hence, solving the well-known characteristic equations gives
birth to the first group-invariant solution (the so-called
similarity solution)

𝑢 (𝑥, 𝑡) = 12𝜆 + 𝑈 (𝜉)(𝜃1𝑡 + 𝜃2)2/3 ,
V (𝑥, 𝑡) = 𝑉 (𝜉)(𝜃1𝑡 + 𝜃2)2/3 ,

(54)

where the similarity variable is

𝜉 = 𝑥
3√𝜃1𝑡 + 𝜃2 − 6𝜆𝑡

3√𝜃1𝑡 + 𝜃2 + 3𝜃3 − 18𝜆𝜃2
3√𝜃1𝑡 + 𝜃2𝜃1 (55)

and 𝑈(𝜉), 𝑉(𝜉) satisfy
𝑈󸀠󸀠󸀠 = −12𝑈𝑈󸀠 + 2𝑉𝑉󸀠 + 23𝜃1𝑈

− 13 − (𝜃1𝑡 + 𝜃2)2/3 𝑥𝜃1 + 6 (𝜃1𝑡 + 𝜃2)2/3 𝜃1𝜆𝑡 − 3 (𝜃1𝑡 + 𝜃2)2/3 𝜃3 + 18𝜆 (𝜃1𝑡 + 𝜃2)2/3 𝜃2𝜃1𝑡 + 𝜃2 𝑈󸀠, (56a)

𝑉󸀠󸀠 = −2𝑈𝑉, (56b)

When 𝜃1 = 0, we obtain another Lie symmetry group:

𝑥1 (𝜖) = 𝑥 + 𝜃3𝜖,𝑡1 (𝜖) = 𝑡 + 𝜃2𝜖,𝑢1 (𝜖) = 𝑢,
V1 (𝜖) = V.

(57)

Meanwhile the second group-invariant solution is character-
ized by 𝑢(𝑥, 𝑡) = 𝑈(𝜉), V(𝑥, 𝑡) = 𝑉(𝜉), and 𝑈(𝜉), 𝑉(𝜉) satisfy

𝑈󸀠󸀠󸀠 = 𝜃3𝜃2𝑈󸀠 − 12𝑈𝑈󸀠 + 2𝑉𝑉󸀠, (58a)

𝑉󸀠󸀠 = −2𝑈𝑉 + 𝜆𝑉, (58b)

where the similarity variable

𝜉 = 𝑥 − 𝜃3𝜃2 𝑡. (59)

5. The Painlevé Property of the KdV-SCS

We have explored the Painlevé property of (1a)-(1b) in [32],
where we only gave two principal branches. Now we obtain
other principal branches, and on the basis of that we give
more exact expansions of (1a)-(1b).

The expansions of (1a)-(1b) about the singular manifold
have the forms,

𝑢 (𝑥, 𝑡) = ∞∑
𝑗=0

𝑢𝑗 (𝑥, 𝑡) 𝜙 (𝑥, 𝑡)𝑗+𝜇 ,
V (𝑥, 𝑡) = ∞∑

𝑗=0

V𝑗 (𝑥, 𝑡) 𝜙 (𝑥, 𝑡)𝑗+] . (60)

By using the WTC Painlevé test [33], we first obtain the
following three principal branches:

(𝑖) : 𝑢 ∼ −𝜙2𝑥𝜙−2, V ∼ V0𝜙−1, V0 arbitrary;(𝑖𝑖) : 𝑢 ∼ −3𝜙2𝑥𝜙−2, V ∼ 6𝜙2𝑥𝜙−2;(𝑖𝑖𝑖) : 𝑢 ∼ −3𝜙2𝑥𝜙−2, V ∼ −6𝜙2𝑥𝜙−2.
(61)

Principal branch (i): it turns out that the branch (𝑖) is the
only principal branch, with resonances

𝑟 = −1, 0, 3, 4, 6. (62)

The resonance −1 is always present, since it corresponds to
the arbitrariness of 𝜙, while 𝑟 = 0 comes from the arbitrary
constant V0 in the leading order term of the expansion for V;
the other three values arise from arbitrary coefficients higher
up in the series for 𝑢, V, so that altogether there should be five
arbitrary constants appearing in these Laurent series.
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Next referring to the procedure in [34], we give the
truncated expansion forms for (𝑖) as follows:𝑢 = (ln𝜙)𝑥𝑥 + 𝑢̃, 𝑢̃ ≡ 𝑢2, (63a)

V = V0𝜙 + Ṽ, Ṽ ≡ V1, (63b)

where 𝑢, V, 𝜙, 𝑢2, V0, and V1 all are functions of 𝑥, 𝑡.
We can take the coefficients in the expansions (60) to be

functions of 𝑡 only, as this is referred to the ‘reduced ansatz’
of Kruskal [35]. So we get the coefficients of expansions (60)
for (𝑖) as follows:𝑢0 (𝑡) = −1,

V0 (𝑡) = V0 (𝑡) ;𝑢1 (𝑡) = 0,
V1 (𝑡) = 0;
𝑢2 (𝑡) = 112𝜓󸀠 (𝑡) − 112V0 (𝑡)2 ,
V2 (𝑡) = −𝜆2 V0 (𝑡) + 112V0 (𝑡) 𝜓󸀠 (𝑡) − 112V0 (𝑡)3 ;𝑢3 (𝑡) = 0,
V3 (𝑡) = V3 (𝑡) ;𝑢4 (𝑡) = 𝑢4 (𝑡) ,
V4 (𝑡) = −𝜆28 V0 (𝑡) + 𝜆24V0 (𝑡) 𝜓󸀠 (𝑡) − 𝜆24V0 (𝑡)3

− 1288V0 (𝑡) 𝜓󸀠 (𝑡)2 + 1144𝜓󸀠 (𝑡) V0 (𝑡)3
− 1288V0 (𝑡)5 − 12V0 (𝑡) 𝑢4 (𝑡) ;

𝑢5 (𝑡) = −13V0 (𝑡) V3 (𝑡) + 172𝜓󸀠󸀠 (𝑡) − 136V0 (𝑡) V󸀠0 (𝑡) ,
V5 (𝑡) = − 160V3 (𝑡) 𝜓󸀠 (𝑡) + 112V3 (𝑡) V0 (𝑡)2

− 1360V0 (𝑡) 𝜓󸀠󸀠 (𝑡) + 1180V0 (𝑡)2 V󸀠0 (𝑡)
+ 𝜆10V3 (𝑡) ;𝑢6 (𝑡) = 𝑢6 (𝑡) ,

V6 (𝑡) = 𝜆2288V0 (𝑡) 𝜓󸀠 (𝑡) − 𝜆2288V0 (𝑡)3
− 𝜆1728V0 (𝑡) 𝜓󸀠 (𝑡)2 + 𝜆864V0 (𝑡)3 𝜓󸀠 (𝑡)
− 𝜆1728V0 (𝑡)5 + 131104V0 (𝑡) 𝜓󸀠 (𝑡)3
− 110368V0 (𝑡)3 𝜓󸀠 (𝑡)2

+ 110368V0 (𝑡)5 𝜓󸀠 (𝑡) − 131104V0 (𝑡)7
− 1216V0 (𝑡) 𝑢4 (𝑡) 𝜓󸀠 (𝑡)
+ 1216𝑢4 (𝑡) V0 (𝑡)3 + 𝜆36𝑢4 (𝑡) V0 (𝑡)
− 𝜆3144V0 (𝑡) − 19𝑢6 (𝑡) V0 (𝑡) ,

(64)

where 𝜓(𝑡) is an arbitrary function. As can be seen from the
above expressions, the resonance conditions at 𝑟 = 3, 4, 6
corresponding to V3(𝑡), 𝑢4(𝑡), and 𝑢6(𝑡) are satisfied.

Nonprincipal branch (ii): the second branch (𝑖𝑖) has
resonances 𝑟 = −1, −3, 4, 6, 8. (65)

The presence of 𝑟 = −3 means that this is a nonprincipal
branch.Then there should be four arbitrary constants appear-
ing in these Laurent series.

We give the truncated expansion forms for (𝑖𝑖) as follows:𝑢 = 3 (ln𝜙)𝑥𝑥 + 𝑢̃, 𝑢̃ ≡ 𝑢2, (66a)

V = −6 (ln 𝜙)𝑥𝑥 + Ṽ, Ṽ ≡ V2, (66b)

where 𝑢, V, 𝜙, 𝑢2, and V2 all are functions of 𝑥, 𝑡.
Referring to the ‘reduced ansatz’ of Kruskal, we get the

coefficients of expansions (60) for (𝑖𝑖) as follows:𝑢0 (𝑡) = −3,
V0 (𝑡) = 6;𝑢1 (𝑡) = 0,
V1 (𝑡) = 0;
𝑢2 (𝑡) = 120𝜓󸀠 (𝑡) + 𝜆5 ,
V2 (𝑡) = −3𝜆5 + 110𝜓󸀠 (𝑡) ;
𝑢3 (𝑡) = 0,
V3 (𝑡) = 0;𝑢4 (𝑡) = 𝑢4 (𝑡) ,
V4 (𝑡) = − 3𝜆100𝜓󸀠 (𝑡) + 1400𝜓󸀠 (𝑡)2 + 9𝜆2100 + 3𝑢4 (𝑡) ;
𝑢5 (𝑡) = 0,
V5 (𝑡) = 1240𝜓󸀠󸀠 (𝑡) ;
𝑢6 (𝑡) = − 124𝑢4 (𝑡) 𝜓󸀠 (𝑡) + 𝜆4 𝑢4 (𝑡) − 12V6 (𝑡)

− 9𝜆24000𝜓󸀠 (𝑡) + 3𝜆8000𝜓󸀠 (𝑡)2
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− 148000𝜓󸀠 (𝑡)3 + 9𝜆32000 ,
V6 (𝑡) = V6 (𝑡) ;
𝑢7 (𝑡) = 𝜆2000𝜓󸀠󸀠 (𝑡) + 7120𝑢󸀠4 (𝑡)

− 112000𝜓󸀠󸀠 (𝑡) 𝜓󸀠 (𝑡) ,
V7 (𝑡) = − 120𝑢󸀠4 (𝑡) − 𝜆4000𝜓󸀠󸀠 (𝑡)

+ 124000𝜓󸀠󸀠 (𝑡) 𝜓󸀠 (𝑡) ;
𝑢8 (𝑡) = −12𝑢4 (𝑡)2 − 2V8 (𝑡) − 𝜆300𝜓󸀠 (𝑡) 𝑢4 (𝑡)

+ 13600𝑢4 (𝑡) 𝜓󸀠 (𝑡)2 + 3𝜆240000𝜓󸀠 (𝑡)2
− 𝜆120000𝜓󸀠 (𝑡)3 − 3𝜆310000𝜓󸀠 (𝑡)
+ 𝜆2100𝑢4 (𝑡) + 12880000𝜓󸀠 (𝑡)4 + 9𝜆420000 ,

V8 (𝑡) = V8 (𝑡) .
(67)

As can be seen from the above expressions, the resonance
conditions at 𝑟 = 4, 6, 8 corresponding to 𝑢4(𝑡), V6(𝑡), and
V8(𝑡) are satisfied.

Nonprincipal branch (iii): the third branch (𝑖𝑖𝑖) has
resonances 𝑟 = −1, −3, 4, 6, 8. (68)

We give the truncated expansion forms for (𝑖𝑖𝑖) as follows:𝑢 = 3 (ln𝜙)𝑥𝑥 + 𝑢̃, 𝑢̃ ≡ 𝑢2, (69a)

V = 6 (ln𝜙)𝑥𝑥 + Ṽ, Ṽ ≡ V2, (69b)

where 𝑢, V, 𝜙, 𝑢2, and V2 all are functions of 𝑥, 𝑡.
Referring to the ‘reduced ansatz’ of Kruskal, we get the

coefficients of expansions (60) for (𝑖𝑖𝑖) as follows:𝑢0 (𝑡) = −3,
V0 (𝑡) = −6;𝑢1 (𝑡) = 0,
V1 (𝑡) = 0;
𝑢2 (𝑡) = 120𝜓󸀠 (𝑡) + 𝜆5 ,
V2 (𝑡) = 3𝜆5 − 110𝜓󸀠 (𝑡) ;
𝑢3 (𝑡) = 0,
V3 (𝑡) = 0;

𝑢4 (𝑡) = 𝑢4 (𝑡) ,
V4 (𝑡) = 3𝜆100𝜓󸀠 (𝑡) − 1400𝜓󸀠 (𝑡)2 − 9𝜆2100 − 3𝑢4 (𝑡) ;
𝑢5 (𝑡) = 0,
V5 (𝑡) = − 1240𝜓󸀠󸀠 (𝑡) ;
𝑢6 (𝑡) = 𝑢6 (𝑡) ,
V6 (𝑡) = 112𝑢4 (𝑡) 𝜓󸀠 (𝑡) − 𝜆2 𝑢4 (𝑡) + 2𝑢6 (𝑡)

+ 9𝜆22000𝜓󸀠 (𝑡) − 3𝜆4000𝜓󸀠 (𝑡)2
+ 124000𝜓󸀠 (𝑡)3 − 9𝜆31000 ;

𝑢7 (𝑡) = 𝜆2000𝜓󸀠󸀠 (𝑡) + 7120𝑢󸀠4 (𝑡)
− 112000𝜓󸀠󸀠 (𝑡) 𝜓󸀠 (𝑡) ,

V7 (𝑡) = 120𝑢󸀠4 (𝑡) + 𝜆4000𝜓󸀠󸀠 (𝑡) − 124000𝜓󸀠󸀠 (𝑡) 𝜓󸀠 (𝑡) ;
𝑢8 (𝑡) = −12𝑢4 (𝑡)2 + 2V8 (𝑡) − 𝜆300𝜓󸀠 (𝑡) 𝑢4 (𝑡)

+ 13600𝑢4 (𝑡) 𝜓󸀠 (𝑡)2 + 3𝜆240000𝜓󸀠 (𝑡)2
− 𝜆120000𝜓󸀠 (𝑡)3 − 3𝜆310000𝜓󸀠 (𝑡)
+ 𝜆2100𝑢4 (𝑡) + 12880000𝜓󸀠 (𝑡)4 + 9𝜆420000 ,

V8 (𝑡) = V8 (𝑡) .
(70)

As seen from the above expression, the resonance conditions
at 𝑟 = 4, 6, 8 corresponding to 𝑢4(𝑡), 𝑢6(𝑡), and V8(𝑡) are
satisfied.

6. Conclusion

As demonstrated above, we get the polynomial solutions of
the KdV equation with a self-consistent source (KdV-SCS)
which are expressed in terms of Jacobi’s elliptic functions.The
extended (𝐺󸀠/𝐺)-expansion method has been successfully
applied in this paper to deal with the new exact traveling wave
solutions of the KdV-SCS. As a result, the hyperbolic function
solutions, the trigonometric function solutions, and the ratio-
nal function solutionswith arbitrary parameters are obtained.
The arbitrary parameters imply that those corresponding
solutions have abundant local structures. Meanwhile, we give
the reduction forms and the group-invariant solution of the
KdV-SCS. By the WTC Painlevé test method, we show that
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the KdV-SCS passes the Painlevé test. And the truncated
expansion form gives the Bäcklund transformations of (1a)-
(1b). In fact, these methods are also readily applicable to a
large variety of nonlinear partial differential equations; we
indeed can obtain some new analytical solutions for many
nonlinear differential equations. And it is very satisfying
to see that more analytical solutions for the physically
interesting equation (1a)-(1b) can be obtained by these most
fundamental but widely applicable approaches. As far as
we know, our solutions have not been reported in previous
literature.
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transformation and bilinear form for the KdV equation with a
self-consistent source,”DiscreteDynamics inNature and Society,
vol. 2012, Article ID 872385, 10 pages, 2012.
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