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05508-010 São Paulo, SP, Brazil

Correspondence should be addressed to Leonardo de Paula Carvalho; carvalho.lp@usp.br

Received 28 February 2018; Accepted 13 June 2018; Published 16 July 2018

Academic Editor: Driss Mehdi

Copyright © 2018 Leonardo de Paula Carvalho et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We tackle the mixed 𝐻2/𝐻∞ fault detection filter problem for a Markov jump linear system (MJLS) in the discrete-time domain.
We present three distinct formulations: the first one is to minimize an upper bound on the𝐻2 subject to a given upper value on the𝐻∞ norm; the second one is the opposite situation; that is, we minimize an upper bound on𝐻∞, subject to a given restriction on
the𝐻2 norm; and the third one is the minimization of a weighted combination of the upper bound of both the𝐻2 and𝐻∞ norms.
We present new conditions in the form of linear matrices inequalities (LMI) that provide the design of the fault detection filter.
We also present results for the so-called mode-independent case and the design of robust 𝐻∞ filters in the sense that the system
matrices are uncertain. In order to illustrate the feasibility of the proposed approaches, a numerical example is presented.

1. Introduction

Dynamic systems that are subject to sudden changes in their
dynamics are present in a multitude of situations, ranging
from highly complex industrial processes to day by day
routine work, and for that reason this class of systems has
been extensively studied in the literature. A particular type
of system subject to sudden dynamic behavior is the one in
which the changes are caused by the occurrence of faults,
so that it is highly desirable to provide solutions able to
keep the system operational even in the presence of such
issues. A possible approach for this problem is the Fault
Detection and Isolation (FDI) algorithms, which have the
purpose of detecting unusual behaviors in a wide range of
fields in engineering including chemical, nuclear, aerospace,
and automotive applications; for instance, see the works in
[1–4], respectively. Therefore, whenever a fault happens, the
main task is to detect the failure and reorganize the control
systemwith the intent of minimizing the operational loss and
the possibility of the occurrence of accidents [5].

One possible way to implement an FDI is to generate
a residual signal using a filter device and predetermine a

threshold, and whenever the residue surpasses this estab-
lished limit, consider that a fault occurred [6, 7]. Bearing
in mind this general work scheme of an FDI, it is possible
to point out three desirable aspects in the residue generator
filter. The first one is the sensibility to abrupt changes; that is,
the higher the filter sensibility is, the faster the fault detection
will take place. The second one is high robustness against
noise in order to prevent the occurrence of false alarms. The
last aspect is the consideration of communication failure
between components that compose the FDI solution, since
the occurrence of packet loss may degrade the performance
of the fault detection.

The motivation behind the Markov jump linear systems
(MJLS) framework usage is the communication between the
sensor and the FDI device made via imperfect channels.
The communication made through a nonideal network is
susceptible to the packet loss, which may be caused, for
instance, by collision [8] and channel fading [9]. In the design
of a fault detection (FD) filter, it is essential to consider
the problems inherent to a communication made through
nonideal network. A viable way to model this network char-
acteristic is to useMJLS due to the possibility of modeling the
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dynamical behavior of systems whose signals are degraded by
the possible packet losses in a networked control system; see,
for instance, the work in [10].

In relation to the MJLS framework applied to FDI theory,
we can mention the work in [11] which tackled the problem
of designing 𝐻∞ residual filters for discrete-time MJLS
considering that the Markov chain can be measured. More
recently, the works in [12, 13] considered also the synthesis
of 𝐻∞ residual filters for continuous-time MJLS but with
the assumption that the modes of operation of the filter are
unmatched in relation to the system being observed. Regard-
ing the aforementioned works, we consider that the fault
detection problem is still not completely investigated, since
both the works in [11, 12] study a suboptimized 𝐻∞ residual
filters, and for that reason some alternative design conditions
to the ones given in [11] for 𝐻∞ residual filters would be
desirable in order to cope with potential conservative results.

Considering the previous discussions, the main novelty
of this paper is the design of mixed 𝐻2/𝐻∞ filters for FDI
devices within theMJLS framework.This is highlymotivated,
since the filter structure would combine the desirable aspects
of signal robustness that is linked to the 𝐻∞ framework, as
well as the optimal aspects of the 𝐻2 filtering. We provide
design conditions based on the linearmatrix inequality (LMI)
formulation in order to obtain residual filters that impose
bounds on both the𝐻2 and𝐻∞ norms of the residual signal.
Furthermore, we also investigate the mode-independent
residual filter formulation in which the filter matrices do not
switch according to the Markov chain and also the design
of robust filters with respect to uncertainty on the plant
modeling. A numerical example is presented at the end of
this paper in order to illustrate our results and compare the
proposed approaches.

This work is organized as follows. Section 2 presents
the notation used during the entire work, Section 3 shows
the basic theoretical concepts in order to understand the
following sections, Section 4 presents the fault detection
problem, and Section 5 introduces the main results of this
work. Section 6 introduces some secondary results and in
Section 7 we present the numerical example that portrays the
feasibility of the presented results. Section 8 concludes the
paper with some final comments.

2. Notation

The notation is standard. The operator () denotes the matrix
or vector transpose; (∙) indicates each symmetric block of a
symmetric matrix. We consider the convex set

Υ = {𝑄; 𝑄 = 𝑉∑
𝑙=1

𝜇𝑙𝑄𝑙, 𝜇𝑙 ≥ 0, 𝑉∑
𝑙=1

𝜇𝑙 = 1} (1)

where 𝑉 is the number of vertices in the polytope. The set of
Markov chain states is represented by K = {1, 2, . . . , 𝑁}. The
convex combinations of the matrix 𝑋𝑗 and the weight 𝜌𝑖𝑗 are
given by 𝜀𝑖(𝑋) = ∑𝑁

𝑗=1 𝜌𝑖𝑗𝑋𝑗 for 𝑖 ∈ K. The symbol 𝜀(⋅) repre-
sents mathematical expectations. Considering the stochastic
signal 𝑧(𝑘), its norm is defined by ‖𝑧‖22 = ∑∞

𝑘=0 𝜀{𝑧(𝑘)𝑧(𝑘)}.

On a probabilistic space (Ω,F,F𝑘, 𝑃), the set of signals𝑧(𝑘) ∈ R𝑝, such that 𝑧(𝑘) is F𝑘 measurable, for all 𝑘 ∈ N

and ‖𝑧‖2 < ∞, is indicated byL2.

3. Theoretical Background

We define in this section the concepts of mean square stabil-
ity,𝐻∞ norm and𝐻2 norm.

3.1. Markovian Jump Linear System. We initially consider the
following general discrete-time Markovian jump linear sys-
tem (MJLS):

G : {{{
𝑥 (𝑘 + 1) = 𝐴𝜃𝑘

𝑥 (𝑘) + 𝐽𝜃𝑘𝑤 (𝑘)
𝑧 (𝑘) = 𝐶𝜃𝑘

𝑥 (𝑘) + 𝐷𝜃𝑘
𝑤 (𝑘) (2)

where 𝑥(𝑘) ∈ R𝑛 is the state vector,𝑦(𝑘) ∈ R𝑞 is themeasured
output vector, 𝑧(𝑘) ∈ R𝑝 is the estimated output, 𝑤(𝑘) ∈ R𝑚

is the exogenous input, and {𝜃𝑘} is a Markov chain taking
values inK.Wedefine the transition probabilitymatrix of {𝜃𝑘}
by P = [𝜌𝑖𝑗], where 𝜌𝑖𝑗 ≥ 0 is such that 𝜌𝑖𝑗 = 𝑃(𝜃𝑘+1 = 𝑗 | 𝜃𝑘 =𝑖) and ∑𝑁

𝑗=1 𝜌𝑖𝑗 = 1.
3.2. Mean Square Stability. We recall the definition of mean
square stability presented in [14].

Definition. System (2) is mean square stable (MSS) if, for any
initial condition 𝑥(0) = 𝑥0 ∈ R𝑛 and initial distribution𝜃(0) = 𝜃0 ∈ K,

lim
𝑘→∞

𝜀 {𝑥 (𝑘) 𝑥 (𝑘) | 𝑥0, 𝜃0} = 0; (3)

see, for instance, [15].

3.3. 𝐻∞ Norm. Assuming that (2) is MSS with 𝑥0 = 0, the𝐻∞ norm ofG is given by (see [16])

‖G‖∞ = sup
0 ̸=𝑤∈L2 ,𝜃0∈K

‖𝑧‖2‖𝑤‖2 . (4)

Notice that the caseK = {1} corresponds to the deterministic
case, that is, the case without jumps.

It is possible to calculate the𝐻∞ norm using the so-called
Bounded Real Lemma for Markovian jump linear systems,
first presented in [17] and stated below.

Lemma. System (2) is MSS and satisfies the norm constraint‖G‖2∞ < 𝛿 if and only if there exist matrices 𝑃𝑖 = 𝑃𝑖 > 0 such
that

[𝐴 𝑖 𝐽𝑖𝐶𝑖 𝐷𝑖

] [𝜀𝑖 (𝑃) 00 𝐼] [
𝐴 𝑖 𝐽𝑖𝐶𝑖 𝐷𝑖

] − [𝑃𝑖 0
0 𝛿𝐼] < 0,

∀𝑖 ∈ K.
(5)
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Applying the Schur complement to (5), we get that

[[[[[
[

𝑃𝑖 ∙ ∙ ∙
0 𝛿𝐼 ∙ ∙

𝜀𝑖 (𝑃)𝐴 𝑖 𝜀𝑖 (𝑃) 𝐽𝑖 𝜀𝑖 (𝑃) ∙𝐶𝑖 𝐷𝑖 0 𝐼

]]]]]
]
> 0 (6)

and the LMI constraint (6) can also be described by the
following inequality:

[[[[[
[

𝑃𝑖 ∙ ∙ ∙
0 𝛿𝐼 ∙ ∙
𝐴 𝑖 𝐽𝑖 𝜀𝜃𝑘 (𝑃)−1 ∙
𝐶𝑖 𝐷𝑖 0 𝐼

]]]]]
]
> 0. (7)

See, for instance, [18].

3.4. 𝐻2 Norm. Assuming that (2) is MSS with 𝑥0 = 0, the𝐻2

norm is given by

‖G‖22 = 𝑚∑
𝑠=1

𝑁∑
𝑖=1

𝜇𝑖 𝑧𝑠,𝑖22 (8)

where 𝑧𝑠,𝑖 represents the output 𝑧(0), 𝑧(1), . . . obtained when
(i) the input is given by 𝑤(𝑘) = 𝑒𝑠𝛿(𝑘), where 𝑒𝑠 ∈ R𝑚 is

the sth column of the𝑚×𝑚 identity matrix and 𝛿(𝑘)
is the unitary impulse; see [19];

(ii) 𝜃0 = 𝑖 ∈ K with probability 𝜇𝑖 = 𝑃(𝜃0 = 𝑖).
In [20], it is shown that if the Markov chain is ergodic

and taking 𝜇𝑖 = 𝜌𝑖, where 𝜌𝑖 = lim𝑘→∞𝑃(𝜃(𝑘) = 𝑖), the norm
defined in (8) can also be written as

‖𝐺‖22 = lim
𝑘→∞

𝜀 [𝑧 (𝑘) 𝑧 (𝑘)] , (9)

where 𝑧(𝑘) is the controlled output and 𝑤(𝑘) represents a
wide-sense white-noise with covariance given by the identity
matrix that is independent of the initial condition 𝑥0 and the
Markov chain {𝜃𝑘}.

In [15] or [19], we have that if there is a solution 𝑆 =(𝑆1, . . . , 𝑆𝑁) > 0, 𝑃 = (𝑃1, . . . , 𝑃𝑁) > 0 of the following LMI:

𝑁∑
𝑖=1

𝜇𝑖𝑡𝑟 (𝑆𝑖) < 𝛾, (10)

[[
[

𝑆𝑖 ∙ ∙
𝜀𝑖 (𝑃) 𝐽𝑖 𝜀𝑖 (𝑃) ∙𝐷𝑖 0 𝐼

]]
]
> 0, (11)

[[
[

𝑃𝑖 ∙ ∙
𝜀𝑖 (𝑃)𝐴 𝑖 𝜀𝑖 (𝑃) ∙𝐶𝑖 0 𝐼

]]
]
> 0, ∀𝑖 ∈ K, (12)

which can be equivalently written as

[[[
[

𝑆𝑖 ∙ ∙
𝐽𝑖 𝜀𝑖 (𝑃)−1 ∙
𝐷𝑖 0 𝐼

]]]
]
> 0, (13)

[[[
[

𝑃𝑖 ∙ ∙
𝐴 𝑖 𝜀𝑖 (𝑃)−1 ∙
𝐶𝑖 0 𝐼

]]]
]
> 0, (14)

and then ‖G‖22 < 𝛾.
4. The Fault Detection Problem Formulation

The MJLS subject to faults we consider in this work is
represented by

G𝑎 :
{{{{{{{{{

𝑥 (𝑘 + 1) = 𝐴𝜃𝑘
𝑥 (𝑘) + 𝐵𝜃𝑘𝑢 (𝑘) + 𝐵𝑑𝜃𝑘𝑑 (𝑘) + 𝐵𝑓𝜃𝑘𝑓 (𝑘)

𝑦 (𝑘) = 𝐶𝜃𝑘
𝑥 (𝑘) + 𝐷𝑑𝜃𝑘

𝑑 (𝑘) + 𝐷𝑓𝜃𝑘
𝑓 (𝑘)

𝑥 (0) = 𝑥0,
(15)

where 𝑥(𝑘) ∈ R𝑛 is the state variable, 𝑦(𝑘) ∈ R𝑞 is the
measured output, 𝑢(𝑘) ∈ R𝑚 is the known input, 𝑑(𝑘) ∈ R𝑝 is
the exogenous input, and 𝑓(𝑘) ∈ R𝑡 is the fault vector which
is considered as an unknown time function.We also consider
that 𝑓(𝑘), 𝑑(𝑘) ∈L2.

Usually the fault detection system is divided into two
distinct stages, a residual generator and a residual evaluation.

4.1. Residual Generator. For the purpose of generating the
residual signal 𝑟(𝑘), a Markovian filter is considered with the
following definition:

F :
{{{{{{{{{

𝜂 (𝑘 + 1) = 𝐴𝜂𝜃𝑘
𝜂 (𝑘) + 𝑀𝜂𝜃𝑘

𝑢 (𝑘) + 𝐵𝜂𝜃𝑘𝑦 (𝑘)
𝑟 (𝑘) = 𝐶𝜂𝜃𝑘

𝜂 (𝑘) + 𝐷𝜂𝜃𝑘
𝑦 (𝑘)

𝜂 (0) = 𝜂0
(16)

where 𝜂(𝑘) ∈ R𝑛 represents the filter states and 𝑟(𝑘) ∈ R𝑜 is
the filter residue. We point out that this filter structure also
depends on the Markov mode 𝜃𝑘.

Similar to the continuous-time case presented in [7] and
the discrete-time case in [11], a weighting matrix 𝑊𝑓(𝑧)
is used with the intention to increase the fault detection
performance (see, e.g., [21]), where 𝑓(𝑧) = 𝑊𝑓(𝑧)𝑓(𝑧). A
minimal realization of 𝑓(𝑧) = 𝑊𝑓(𝑧)𝑓(𝑧) is

W𝑓 :
{{{{{{{{{

𝑥𝑓 (𝑘 + 1) = 𝐴𝑤𝑓𝑥𝑓 (𝑘) + 𝐵𝑤𝑓𝑓 (𝑘)
𝑓 (𝑘) = 𝐶𝑤𝑓𝑥𝑓 (𝑘) + 𝐷𝑤𝑓𝑓 (𝑘)
𝑥𝑓 (0) = 0

(17)

where 𝑥𝑓(𝑘) ∈ R𝑡 is the weighting matrix state vector, 𝑓(𝑘) ∈
R𝑜 is the weighted fault signal, and 𝑓(𝑘) is the same fault as
in (15).
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Figure 1: Block diagram.

Remark. Thematrices that compose system (17) are supposed
to be known. The block diagram presented in Figure 1
represents the equivalent system.

Considering 𝑟𝑒(𝑘) = 𝑟(𝑘) − 𝑓(𝑘), the equivalent system
can be written in the augmented form as

G𝑎𝑢𝑔 : {{{
𝑥 (𝑘 + 1) = 𝐴𝜃𝑘

𝑥 (𝑘) + 𝐵𝜃𝑘𝑤 (𝑘)
𝑟𝑒 (𝑘) = 𝐶𝜃𝑘

𝑥 (𝑘) + 𝐷𝜃𝑘
𝑤 (𝑘) (18)

where the augmented state and the input signal are 𝑥(𝑘) =
[𝑥(𝑘) 𝜂(𝑘) 𝑥𝑓(𝑘)] and 𝑤 = [𝑢(𝑘) 𝑑(𝑘) 𝑓(𝑘)] with
[ 𝐴𝜃𝑘

𝐵𝜃𝑘𝐶𝜃𝑘
𝐷𝜃𝑘

]

= [[[[[
[

𝐴𝜃𝑘
0 0 𝐵𝜃𝑘 𝐵𝑑𝜃𝑘 𝐵𝑓𝜃𝑘𝐵𝜂𝜃𝑘𝐶𝜃𝑘
𝐴𝜂𝜃𝑘

0 𝑀𝜂𝜃𝑘
𝐵𝜂𝜃𝑘𝐷𝑑𝜃𝑘

𝐵𝜂𝜃𝑘𝐷𝑓𝜃𝑘0 0 𝐴𝑤𝑓 0 0 𝐵𝑤𝑓𝐷𝜂𝜃𝑘
𝐶𝜃𝑘

𝐶𝜂𝜃𝑘
−𝐶𝑤𝑓 0 𝐷𝜂𝜃𝑘

𝐷𝑑𝜃𝑘
𝐷𝜂𝜃𝑘

𝐷𝑓𝜃𝑘
− 𝐷𝑤𝑓

]]]]]
]
.
(19)

In this paper, we tackle three distinct problems: the𝐻∞ case,
the𝐻2 case, and themixed𝐻2/𝐻∞ case. For the𝐻∞ case, the
fault detection (FD) filter problem corresponds to obtaining
matrices that compose observer (16) in such away that system
(18) is MSS when 𝑢 = 0, 𝑑 = 0 𝑓 = 0, and 𝛿 is as small as
possible in the feasibility of (20), meaning that

G𝑎𝑢𝑔

∞ = sup
‖𝑤‖2 ̸=0,𝑤∈L2

𝑟𝑒2‖𝑤‖2 < 𝛿1/2. (20)

For the 𝐻2 case, the FD filter problem has the goal of
obtaining matrices that compose the filter as in (16) in such a
way that system (18) is MSS, minimizing 𝛾 in the equation.

G𝑎𝑢𝑔

22 =
𝑚∑
𝑠=1

𝑁∑
𝑖=1

𝜇𝑖 𝑟𝑠,𝑖𝑒 22 < 𝛾. (21)

For the mixed 𝐻2/𝐻∞ case, a way to describe the mixed
problem is by setting the objective function as

inf {𝑔 (𝛾, 𝛿) , such that 𝐺𝑎𝑢𝑔

22 < 𝛾 and 𝐺𝑎𝑢𝑔

2∞
< 𝛿} , (22)

which considers the restrictions as defined in (20) and (21). By
inspection, it is possible to note that there are three possible

ways to define the objective function in (22), as described
below.

First Case. Find a minimum guaranteed cost 𝛾 for the 𝐻2

norm of system (18), subject to a given upper bound 𝛿 > 0
on the𝐻∞ norm. In this case, we have

𝑔 (𝛾, 𝛿) = 𝛾. (23)

Second Case. Find a minimum guaranteed cost 𝛿 for the𝐻∞

norm of system (18), subject to a given upper bound 𝛾 > 0 on𝐻2. In this case, we have

𝑔 (𝛾, 𝛿) = 𝛿. (24)

Third Case. Find a minimum for a weighted combination of
the guaranteed cost for both𝐻2 and𝐻∞ norms of system (18).
Thus, for given scalars 𝛽(∞) ≥ 0 and 𝛽(2) ≥ 0, we set

𝑔 (𝛾, 𝛿) = 𝛿𝛽(∞) + 𝛾𝛽(2) (25)

where 𝛽(⋅) represents the weight for each upper bound. A
similar approach is presented in [22].

4.2. Residual Evaluation. In the evaluation stage, it is neces-
sary to set an evaluation function 𝐽(𝑟(𝑘)) and also a threshold𝐽𝑡ℎ(𝑘), both as defined in [11].We consider 𝐿 as the evaluation
time, and with that we are able to separate the evaluation
process into two distinct cases: the first one is defined by𝑘 − 𝐿 ≥ 0 and the second one by 𝑘 − 𝐿 < 0. Thus, we define
the auxiliary vectors for each case as

for 𝑘 − 𝐿 ≥ 0,
𝑟 (𝑘) = [𝑟 (𝑘) 𝑟 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑟 (𝑘 − 𝐿)]

for 𝑘 − 𝐿 < 0, 𝑟 (𝑘) = [𝑟 (𝑘) 𝑟 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑟 (0)]
(26)

and, given the discrepancy between the intervals, the evalua-
tion functions for each case are set as

for 𝑘 − 𝐿 ≥ 0, 𝐽 (𝑟 (𝑘)) = {𝜎=𝑘−𝐿∑
𝜎=𝑘

𝑟 (𝜎) 𝑟 (𝜎)}
1/2

,

for 𝑘 − 𝐿 < 0, 𝐽 (𝑟 (𝑘)) = {𝜎=0∑
𝜎=𝑘

𝑟 (𝜎) 𝑟 (𝜎)}
1/2

.
(27)

The threshold is defined as
𝐽𝑡ℎ (𝑘) = sup

𝑑∈L2,𝑓=0

𝜀 (𝐽 (𝑟 (𝑘))) (28)

and the decision rule for the fault detection is taken by
analyzing the value of 𝐽(𝑟(𝑘)) as follows:
𝐽 (𝑟 (𝑘)) < 𝐽𝑡ℎ (𝑘) ,

means that the system is in the nominal mode,
𝐽 (𝑟 (𝑘)) ≥ 𝐽𝑡ℎ (𝑘) ,

means that a fault occurred at the instant 𝑘.
(29)
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5. Main Results

In this section, we introduce the three main results of this
paper: the 𝐻∞ FD filter, the 𝐻2 FD filter, and the mixed𝐻2/𝐻∞ FD filter. A theorem is presented for each case.

5.1. FD Filter for the𝐻∞ Case

Theorem 1. There exists a mode-dependent FD filter as in (16)
satisfying ‖G𝑎𝑢𝑔‖2∞ < 𝛿 if there exist symmetric matrices 𝑍𝑖,𝑋𝑖, and𝑊𝑖 and matrices𝐻𝑖, Δ 𝑖,𝑂𝑖, 𝐹𝑖, and𝐺𝑖 with compatible
dimensions that satisfy the following LMI constraint:

[[[[[[[[[[[[[[[[[[[[[
[

𝑍𝑖 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
𝑍𝑖 𝑋𝑖 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
0 0 𝑊𝑖 ∙ ∙ ∙ ∙ ∙ ∙ ∙
0 0 0 𝛿𝐼 ∙ ∙ ∙ ∙ ∙ ∙
0 0 0 0 𝛿𝐼 ∙ ∙ ∙ ∙ ∙
0 0 0 0 0 𝛿𝐼 ∙ ∙ ∙ ∙

𝜀𝑖 (𝑍)𝐴 𝑖 𝜀𝑖 (𝑍)𝐴 𝑖 0 𝜀𝑖 (𝑍) 𝐵𝑖 𝜀𝑖 (𝑍) 𝐵𝑑𝑖 𝜀𝑖 (𝑍) 𝐵𝑓𝑖 𝜀𝑖 (𝑍) ∙ ∙ ∙
𝜀𝑖 (𝑋)𝐴 𝑖 + Δ 𝑖𝐶𝑖 + 𝑂𝑖 𝜀𝑖 (𝑋)𝐴 𝑖 + Δ 𝑖𝐶𝑖 0 𝜀𝑖 (𝑋) 𝐵𝑖 + 𝐻𝑖 𝜀𝑖 (𝑋) 𝐵𝑑𝑖 + Δ 𝑖𝐷𝑑𝑖 𝜀𝑖 (𝑋) 𝐵𝑓𝑖 + Δ 𝑖𝐷𝑓𝑖 𝜀𝑖 (𝑍) 𝜀𝑖 (𝑋) ∙ ∙

0 0 𝜀𝑖 (𝑊)𝐴𝑤𝑓 0 0 𝜀𝑖 (𝑊) 𝐵𝑤𝑓 0 0 𝜀𝑖 (𝑊) ∙𝐺𝑖𝐶𝑖 + 𝐹𝑖 𝐺𝑖𝐶𝑖 −𝐶𝑤𝑓 0 𝐺𝑖𝐷𝑑𝑖 𝐺𝑖𝐷𝑓𝑖 − 𝐷𝑤𝑓 0 0 0 𝐼

]]]]]]]]]]]]]]]]]]]]]
]

> 0

(30)

for all 𝑖 ∈ K. If a feasible solution for (30) is obtained, then a
suitable FD filter is given by 𝐴𝜂𝑖 = (𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1𝑂𝑖, 𝐵𝜂𝑖 =(𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1Δ 𝑖, 𝐶𝜂𝑖 = 𝐹𝑖, 𝐷𝜂𝑖 = 𝐺𝑖, and𝑀𝜂𝑖 = (𝜀𝑖(𝑍) −𝜀𝑖(𝑋))−1𝐻𝑖, for all 𝑖 ∈ K.

Proof. The first step to derive the result is to impose the
following structure, similar to the structure in [23], for the
matrices 𝑃𝑖 and 𝑃−1𝑖 :

𝑃𝑖 = [[
[
𝑋𝑖 𝑈𝑖 0
𝑈
𝑖 𝑋𝑖 0
0 0 𝑊𝑖

]]
]
,

𝑃−1𝑖 = [[
[
𝑌𝑖 𝑉𝑖 0
𝑉
𝑖 �̂�𝑖 0
0 0 𝐻𝑖

]]
]
,

(31)

and also consider the following structure for the matrices𝜀𝑖(𝑃) and 𝜀𝑖(𝑃)−1:
𝜀𝑖 (𝑃) = [[

𝜀𝑖 (𝑋) 𝜀𝑖 (𝑈) 0
𝜀𝑖 (𝑈) 𝜀𝑖 (𝑋) 035𝑝𝑡]0 0 𝜀𝑖 (𝑊)

]
]
,

𝜀𝑖 (𝑃)−1 = [[[
[

𝑅1𝑖 𝑅2𝑖 0
𝑅2𝑖 𝑅3𝑖 0
0 0 𝜀𝑖 (𝑊)−1

]]]
]
.

(32)

We define the matrices 𝜋 and 𝜁 as follows:

𝜋 = [[[
[

𝐼 𝐼 0
𝑉
𝑖 𝑌−1

𝑖 0 0
0 0 𝐼

]]]
]
,

𝜁 = [[[
[

𝑅−11𝑖 𝜀𝑖 (𝑋) 0
0 𝜀𝑖 (𝑈) 0
0 0 𝜀𝑖 (𝐺)

]]]
]
.

(33)

Considering𝑈𝑖 = 𝑍𝑖−𝑋𝑖 in (31), we get from (31) and (33)
that 𝑌𝑖 = 𝑉

𝑖 and 𝑌𝑖 = 𝑍−1
𝑖 . Also considering𝑈𝑖 = −𝑋𝑖, we get𝑅−11𝑖 = 𝜀𝑖(𝑋 + 𝑈) = 𝜀(𝑍). Moreover, we have that 𝑅−11𝑖 = 𝜀𝑖(𝑍),

and so we have that

𝜋𝑃𝑖𝜋 = [[[
[

𝑌−1
𝑖 𝑌−1

𝑖 0
𝑌−1
𝑖 𝑋𝑖 0
0 0 𝑊𝑖

]]]
]
,

𝜁𝐴 𝑖𝜋 = [[[
[

𝑅−11𝑖 𝐴 𝑖 𝑅−11𝑖 𝐴 𝑖 0
𝜀𝑖 (𝑋)𝐴 𝑖 + 𝜀𝑖 (𝑈) 𝐵𝜂𝑖𝐶𝑖 + 𝜀𝑖 (𝑈)𝐴𝜂𝑖𝑉

𝑖 𝑌−1
𝑖 𝜀𝑖 (𝑋)𝐴 𝑖 + 𝜀𝑖 (𝑈) 𝐵𝜂𝑖𝐶𝑖 0

0 0 𝜀𝑖 (𝑊)𝐴𝑤𝑓

]]]
]
,
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𝜁𝐵𝑖 = [[[
[

𝑅−11𝑖 𝐵𝑖 𝑅−11𝑖 𝐵𝑑𝑖 𝑅−11𝑖 𝐵𝑓𝑖𝜀𝑖 (𝑋) 𝐵𝑖 + 𝜀𝑖 (𝑈)𝑀𝜂𝑖 𝜀𝑖 (𝑋) 𝐵𝑑𝑖 + 𝜀𝑖 (𝑈) 𝐵𝜂𝑖𝐷𝑑𝑖 𝜀𝑖 (𝑋) 𝐵𝑓𝑖 + 𝜀𝑖 (𝑈) 𝐵𝜂𝑖𝐷𝑓𝑖0 0 𝜀𝑖 (𝑊) 𝐵𝑤𝑓
]]]
]
,

𝜁𝜀𝑖 (𝑃)−1 𝜁 = [[
[
𝑅−11𝑖 𝜀𝑖 (𝑍) 0
𝜀𝑖 (𝑍) 𝜀𝑖 (𝑋) 0
0 0 𝜀𝑖 (𝑊)

]]
]
,

𝐶𝑖𝜋 = [𝐷𝜂𝑖𝐶𝑖 + 𝐶𝜂𝑖𝑉
𝑖 𝑍𝑖 𝐷𝜂𝑖𝐶𝑖 −𝐶𝑤𝑓] ,

𝐷𝑖 = [0 𝐷𝜂𝑖𝐷𝑑𝑖 𝐷𝜂𝑖𝐷𝑖 − 𝐷𝑤𝑓] .
(34)

Applying the change of variables 𝜀𝑖(𝑈)𝐵𝜂𝑖 = Δ 𝑖,𝜀𝑖(𝑈)𝐴𝜂𝑖𝑉
𝑖 𝑍𝑖 = 𝑂𝑖, 𝜀𝑖(𝑈)𝑀𝜂𝑖 = 𝐻𝑖, 𝐶𝜂𝑖𝑉

𝑖 𝑍𝑖 = 𝐹𝑖, and𝐷𝜂𝑖 = 𝐺𝑖 and also substituting 𝜀𝑖(𝑍) = 𝑅−11𝑖 in (30), we get the
following inequality:

[[[[[[
[

𝜋�̃�𝑖𝜋 ∙ ∙ ∙
0 𝛿𝐼 ∙ ∙

𝜁𝐴 𝑖𝜋 𝜁𝐵𝑖 𝜁𝜀𝑖 (𝑃)−1 𝜁 ∙
𝐶𝑖𝜋 𝐷𝑖 0 𝐼

]]]]]]
]
> 0, (35)

and it is easy to see that inequality (35) is equivalent to
inequality (30). Multiplying to the right by diag[𝜋−1, 𝐼, 𝜁−1, 𝐼]
and to the left by its transpose, we get inequality (7) and with
that we can guarantee that ‖G‖2∞ < 𝛿.
5.2. FD Filter for the𝐻2 Case
Theorem 2. There exists a mode-dependent FD filter in the
form of (16) satisfying ‖G𝑎𝑢𝑔‖22 < 𝛾 if there exist symmetric
matrices 𝑍𝑖, 𝑋𝑖, 𝑆𝑖, and 𝑇𝑖 and matrices 𝐻𝑖, Δ 𝑖, 𝑂𝑖, 𝐹𝑖, and𝐺𝑖 with compatible dimensions that satisfy the LMI constraints
(36), (37), and (38):

𝑁∑
𝑖=1

𝜇𝑖𝑡𝑟 (𝑆𝑖) < 𝛾 (36)

[[[[[[[[[[[[
[

∙ ∙ ∙ ∙
[𝑆𝑖] ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙
𝜀𝑖 (𝑍) 𝐵𝑖 𝜀𝑖 (𝑍) 𝐵𝑑𝑖 𝜀𝑖 (𝑍) 𝐵𝑓𝑖 𝜀𝑖 (𝑍) ∙ ∙ ∙

𝜀𝑖 (𝑋) 𝐵𝑖 + 𝐻𝑖 𝜀𝑖 (𝑋) 𝐵𝑑𝑖 + Δ 𝑖𝐷𝑑𝑖 𝜀𝑖 (𝑋) 𝐵𝑓𝑖 + Δ 𝑖𝐷𝑓𝑖 𝜀𝑖 (𝑍) 𝜀𝑖 (𝑋) ∙ ∙
0 0 𝜀𝑖 (𝑇) 𝐵𝑤𝑓 0 0 𝜀𝑖 (𝑇) ∙0 𝐺𝑖𝐷𝑑𝑖 𝐺𝑖𝐷𝑓𝑖 − 𝐷𝑤𝑓 0 0 0 𝐼

]]]]]]]]]]]]
]

> 0 (37)

[[[[[[[[[[[[
[

𝑍𝑖 ∙ ∙ ∙ ∙ ∙ ∙
𝑍𝑖 𝑋𝑖 ∙ ∙ ∙ ∙ ∙
0 0 𝑇𝑖 ∙ ∙ ∙ ∙

𝜀𝑖 (𝑍)𝐴 𝑖 𝜀𝑖 (𝑍)𝐴 𝑖 0 𝜀𝑖 (𝑍) ∙ ∙ ∙
𝜀𝑖 (𝑋)𝐴 𝑖 + Δ 𝑖𝐶𝑖 + 𝑂𝑖 𝜀𝑖 (𝑋)𝐴 𝑖 + Δ 𝑖𝐶𝑖 0 𝜀𝑖 (𝑍) 𝜀𝑖 (𝑋) ∙ ∙

0 0 𝜀𝑖 (𝑇)𝐴𝑤𝑓 0 0 𝜀𝑖 (𝑇) ∙𝐺𝑖𝐶𝑖 + 𝐹𝑖 𝐺𝑖𝐶𝑖 −𝐶𝑤𝑓 0 0 0 𝐼

]]]]]]]]]]]]
]

> 0 (38)

for all 𝑖 ∈ K. If a feasible solution for (36), (37), and (38) is
obtained, then a suitable FD filter is given by 𝐴𝜂𝑖 = (𝜀𝑖(𝑍) −𝜀𝑖(𝑋))−1𝑂𝑖, 𝐵𝜂𝑖 = (𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1Δ 𝑖, 𝐶𝜂𝑖 = 𝐹𝑖,𝐷𝜂𝑖 = 𝐺𝑖, and𝑀𝜂𝑖 = (𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1𝐻𝑖, for all 𝑖 ∈ K.

Proof. In the same way as presented for the 𝐻∞ case, the
structures for the matrices𝑇𝑖 and𝑇−1𝑖 are as shown in (31) for,
respectively, 𝑃𝑖 and 𝑃−1𝑖 . For the matrices 𝜀𝑖(𝑇) and 𝜀𝑖(𝑇)−1,
the structures are equal to the one in (32) for, respectively,
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𝜀𝑖(𝑃) and 𝜀𝑖(𝑃)−1. Furthermore, the matrices 𝜋 and 𝜁 are as
shown in (33). Applying the change of variables 𝜀𝑖(𝑈)𝐵𝜂𝑖 =Δ 𝑖, 𝜀𝑖(𝑈)𝐴𝜂𝑖𝑉

𝑖 𝑍𝑖 = 𝑂𝑖, 𝜀𝑖(𝑈)𝑀𝜂𝑖 = 𝐻𝑖, 𝐶𝜂𝑖𝑉
𝑖 𝑍𝑖 = 𝐹𝑖, and𝐷𝜂𝑖 = 𝐺𝑖 and also substituting 𝜀𝑖(𝑍) = 𝑅−11𝑙 in (37) and (38),

we get the following inequalities:

𝑁∑
𝑖=1

𝜇𝑖𝑡𝑟 (𝑆𝑖) < 𝛾, (39)

[[[
[

𝑆𝑖 ∙ ∙
𝜁𝐵𝑖 𝜁𝜀𝑖 (𝑃)−1 𝜁 ∙
𝐷𝑖 0 𝐼

]]]
]
> 0, (40)

[[[
[

𝜋𝑃𝑖𝜋 ∙ ∙
𝜁𝐴 𝑖𝜋 𝜁𝜀𝑖 (𝑃)−1 𝜁 ∙
𝐶𝑖𝜋 0 𝐼

]]]
]
> 0. (41)

Multiplying (40) to the right by diag[𝐼, 𝜁−1, 𝐼] (resp. (41)
by diag[𝜋−1, 𝜁−1, 𝐼]) and to the left by its transpose, we get
inequalities (13) and (14) that, combined with (39), yield that‖G𝑎𝑢𝑔‖22 < 𝛾.
5.3. FD Filter for the Mixed𝐻2/𝐻∞ Case. In this subsection,
we consider the mixed 𝐻2/𝐻∞ case. The set of variables is
defined as

𝜓 = {𝑍𝑖 > 0, 𝑋𝑖 > 0, 𝑊𝑖 > 0, 𝑇𝑖
> 0, 𝑆𝑖, 𝐻𝑖, Δ 𝑖, 𝑂𝑖, 𝐹𝑖, 𝐺𝑖} ∪ 𝜁 (42)

where 𝜁 represents a set that contains 𝛾, 𝛿, or both, depending
on whether these parameters 𝛾 and 𝛿 are assumed to be given
or a variable of the problem. See Section 4.1 and (23), (24),
and (25) for the possible cases to design the FD filter. We also
define

Ψ = {𝜓 as in (42) such that the LMIs (30) , (36) , (37) , (38) are simultaneously feasible} . (43)

The next theorem provides a sufficient condition for the FD
filter design for the mixed𝐻2/𝐻∞ case.

Theorem 3. There exists a mode-dependent FD filter as in (16)
such that ‖𝐺𝑎𝑢𝑔‖22 < 𝛾 and ‖𝐺𝑎𝑢𝑔‖2∞ < 𝛿 if there exists 𝜓 ∈ Ψ,
where 𝜓 is defined as in (43). If a feasible solution is obtained,
then a suitable FD filter is given by 𝐴𝜂𝑖 = (𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1𝑂𝑖,𝐵𝜂𝑖 = (𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1Δ 𝑖, 𝐶𝜂𝑖 = 𝐹𝑖, 𝐷𝜂𝑖 = 𝐺𝑖, and 𝑀𝜂𝑖 =(𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1𝐻𝑖, for all 𝑖 ∈ K.

Proof. The proof follows directly from the proofs for Theo-
rems 1 and 2.

6. Secondary Results

In this section, we derive the mode-independent case and the
case with parametric uncertainties.

6.1. Mode-Independent Case. We tackle in this subsection
the mode-independent case, in which the FD filter does
not depend on the Markov chain parameter 𝜃(𝑘). In this
particular case, we design a single FD filter suitable for all
system modes.

For the sake of obtaining a single FD filter for the 𝑁
modes, it is necessary to fix the variables,Δ 𝑖 = Δ,𝑂𝑖 = 𝑂,𝐹𝑖 =𝐹, 𝐺𝑖 = 𝐺, and 𝐻𝑖 = 𝐻, in the LMI constraints (30) or (36),
(37), and (38) or all the set of LMI constraints, depending on
whether the constraints are related to the problems analyzed
in Theorem 1, Theorem 2, or Theorem 3. Furthermore, it is
also necessary to assume that

𝜌𝑖𝑗 = 𝜌𝑗, ∀ (𝑖, 𝑗) ∈ K (44)

which corresponds to the Bernoulli case. Notice that the
addition of this assumption is necessary due to the terms in
Theorems 1 and 2 (𝜀𝑖(𝑍) − 𝜀𝑖(𝑋)), which in the Bernoulli case
become (𝜀(𝑍) − 𝜀(𝑋)), where 𝜀(𝑋) = ∑𝑁

𝑗=1 𝜌𝑗𝑋𝑗, similarly for𝜀(𝑍). Theorem 4 presents this result.

Theorem 4. There exists a mode-independent FD filter as
in (16) satisfying the constraint presented in Theorem 1 or
Theorem 2 orTheorem 3, if there are𝑍𝑖,𝑋𝑖, and𝑊𝑖 (and 𝑆𝑖 and𝑇𝑖 for the𝐻2 and mixed cases) and matrices𝐻, Δ,𝑂, 𝐹, and 𝐺
(independent of 𝑖) satisfying (30) for the𝐻∞ case, (36)-(38) for
the 𝐻2 case, and simultaneously (30), (36), (37), and (38) for
the mixed case. If a feasible solution is obtained, a suitable FD
filter is given by𝐴𝜂 = (𝜀(𝑍)−𝜀(𝑋))−1𝑂,𝐵𝜂 = (𝜀(𝑍)−𝜀(𝑋))−1Δ,𝐶𝜂 = 𝐹,𝐷𝜂 = 𝐺, and𝑀 = (𝜀(𝑍) − 𝜀(𝑋))−1𝐻.

Proof. The proof can be derived directly from the proofs for
Theorems 1 and 2.

6.2. Parametric Uncertain Case. The last special case we
work on is the procedure to add parametric uncertainties in
Theorems 1, 2, and 3. In order to describe system (15) with
polytopic uncertainties, we consider that for vertex matrices

[ 𝐴𝑙
𝑖 𝐵𝑙𝑖𝐶𝑙
𝑖 0 ] , 𝑖 ∈ K (45)

we have that

[ 𝐴𝜃𝑘
𝐵𝜃𝑘𝐶𝜃𝑘
0 ] ∈ Υ (46)

where Υ is the polytope as described in (1) and 𝑙 ∈ {1, . . . , 𝑉}
represents the uncertain polytopic vertex. We replace in (30)
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and (37) and (38) the matrices 𝐴 𝑖, 𝐵𝑖, and 𝐶𝑖 by, respectively,𝐴𝑙
𝑖, 𝐵𝑙𝑖, and 𝐶𝑙

𝑖, so that adding this new index implies adding𝑉 new constraints in (30) for Theorem 1 or (37) and (38) for
Theorem 2 or (30), (37), and (38) forTheorem 3. We have the
following result.

Theorem 5. There exists a mode-dependent FD filter as in
(16) satisfying the constraints in Theorem 1 or Theorem 2 or
Theorem 3 if there exist symmetric matrices 𝑍𝑖,𝑋𝑖, and𝑊𝑖, (𝑆𝑖
and 𝑇𝑖 for the 𝐻2 and mixed cases) and matrices 𝐻𝑖, Δ 𝑖, 𝑂𝑖,𝐹𝑖, and 𝐷𝜂𝑖 satisfying (30) for the 𝐻∞ case, (36)-(38) for the𝐻2 case, and simultaneously (30), (36), (37), and (38) for the
mixed case. If a feasible solution is obtained, a suitable FD filter
is given by𝐴𝜂𝑖 = (𝜀𝑖(𝑍)−𝜀𝑖(𝑋))−1𝑂𝑖,𝐵𝜂𝑖 = (𝜀𝑖(𝑍)−𝜀𝑖(𝑋))−1Δ 𝑖,𝐶𝜂𝑖 = 𝐹𝑖, 𝐷𝜂𝑖 = 𝐺𝑖 =, and𝑀𝜂𝑖 = (𝜀𝑖(𝑍) − 𝜀𝑖(𝑋))−1𝐻𝑖, for all𝑖 ∈ K.

Proof. The proof derives directly from the proofs for Theo-
rems 1 and 2.

7. Numerical Example

In this section, some numerical examples are presented. The
first analysis is on the 𝐻∞ and 𝐻2 norm behavior when we
consider variation on some of the parameters in the transition
matrix P.

The second analysis is related to the mixed 𝐻2/𝐻∞ case,
and we consider the three cases presented in Section 4.1. For
the first case, defined by (23), the upper bound for the 𝐻∞

norm 𝛿 is fixed and the upper bound for the 𝐻2 norm 𝛾 is
minimized. For the second case, defined by (24), the opposite
situation is considered; that is, the upper bound 𝛾 is fixed and
the upper bound 𝛿 is minimized. For the third case, defined
by (25), we vary the scalars 𝛽∞ and 𝛽2 and consider the
behavior of both upper bounds 𝛾 and 𝛿.

The third analysis is a temporal simulation comparing the𝐻∞,𝐻2, and all three mixed𝐻2/𝐻∞ cases when two kinds of
failures occur: an abrupt failure and a smooth failure. This
analysis is divided into two stages: the first one with a single
sample and the second one with a Monte Carlo simulation
with 2000 random samples.The system used for this example
was extracted from [11] and its matrices are given by

𝐴1 = [[[[
[

0.1 0 1 0
0 0.1 0 0.5
0 0 0.2 0
0 0 0 0.2

]]]]
]
,

𝐴2 = [[[[
[

0.3 0 −1 0
−0.1 0.2 0 −0.5
0 0 −0.2 0
0 0 0 −0.5

]]]]
]
,

𝐵𝑑 =
[[[[[
[

0.8
−2.4
1.6
0.8

]]]]]
]
,

𝐵𝑓 =
[[[[[
[

1
1
2
−2

]]]]]
]
,

𝐶 = [0 1 0 1
1 0 1 0] ,

𝐷𝑑 = [0.20.4]

𝐷𝑓 = [ 2−1] ,
𝐴𝑤𝑓 = 0.5,
𝐵𝑤𝑓 = 0.25,
𝐶𝑤𝑓 = 1,
𝐷𝑤𝑓 = 0.5.

(47)

The matrix P is given by

P = [ 𝜌1 1 − 𝜌11 − 𝜌2 𝜌2 ] (48)

where 0 ≤ 𝜌𝑖 ≤ 1, 𝑖 ∈ K.

7.1. Norm Behavior. The norm behavior is important to be
analyzed in order to identify the worst case scenario and the
system sensibility to the parameters variation in the transition
matrix P.

7.1.1. FD Filter for the𝐻∞ Case and the𝐻2 Case. Considering
that 𝜌1 = 𝜌2 ∈ [0.1, 0.9] and P as in (48), the obtained
curves are presented in Figure 2. It is possible to observe that
in both cases the variation range is small, showing that the
system sensibility is small in terms of the variation of the
probability of jumps. Another important information that
could be extracted from the graphics is that the system has
a good level of robustness, given that, from Figure 2(a), the𝐻∞ norm’s maximum value is less than 0.6. The variation of
the values for the𝐻2 norm, which represents the total energy
dissipated by the impulsive inputs, is shown in Figure 2(b),
which indicates that the system is sensible to this class of
signals.

7.2. FD Filter for the Mixed𝐻2/𝐻∞ Case. In this subsection,
we present the norm behavior for each case below:

(i) First case: the behavior of 𝛾 when 𝛿 varies between(3.6, 10)
(ii) Second case: the behavior of 𝛿 when 𝛾 varies between(3.6, 10)
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Figure 2: Norm behavior for𝐻∞ and𝐻2 cases.
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Figure 3: Norm behavior for the mixed cases.

(iii) Third case: the behavior of 𝛾 and 𝛿 when 𝛽2 varies
between (0.2, 0.8), considering that 𝛽∞ = 1 − 𝛽2

It is possible to observe that, in the first case, shown in
Figure 3(a), as the value of 𝛿 increases, the upper bound 𝛾

decreases, which is expected, since the conservatism in the
optimization problem is reduced. A similar situation occurs
in Figure 3(b), since that, as the value of 𝛾 increases, the value
of 𝛿 decreases. For the third case (Figure 3(c)), it is important
to observe that when 𝛽2 = 0 the optimization problem falls in
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Figure 5: Temporal simulation.

the first case, and for𝛽∞ = 0 the optimization problem falls in
the second case. Bearing this information in mind, the third
graphic (Figure 3(c)) represents exactly what it was expected;
that is, when 𝛽 is closer to zero the 𝛿 value is closer to the
value obtained in the second case; otherwise, the value of 𝛾
gets closer to the value obtained in the first case.

7.3. Temporal Simulation. Hereafter, the matrix P is given by

P = [0.8 0.2
0.4 0.6] . (49)

Two distinct faults were selected: the first one an abrupt fault
and the second one a smooth signal, and both are presented
in Figure 4.

Table 1: Amount of time until detection in a single simulation.

Abrupt failure Smooth failure𝐻∞ case 104 125𝐻2 case 105 122
Mixed first case 107 123
Mixed second case 110 132
Mixed third case 112 123

In order to analyze the applicability of our approaches, we
present in Figure 5 the simulation results considering a single
sample for the cases𝐻2,𝐻∞, and mixed𝐻∞/𝐻2. Observing
the values in Table 1, we notice that the 𝐻∞ approach has
a small advantage when compared to the other approaches.
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Figure 6: Monte Carlo simulation.

Table 2: Average amount of time until detection and the standard
deviation.

Abrupt failure Smooth failure𝐻∞ case 105.2750 ± 2.1336 127.4950 ± 7.0018𝐻2 case 104.7400 ± 2.2489 127.0150 ± 7.2773
Mixed first case 104.6000 ± 2.0100 127.9650 ± 6.5688
Mixed second case 106.4350 ± 3.0795 128.0850 ± 7.2893
Mixed third case 105.1900 ± 3.0922 127.9400 ± 9.3075

Other information obtained is that the smooth failure, as
expected, demands more time to be detected.

Using the same parameter as in the previous simulation
and performing aMonteCarlo simulationwith 2000 samples,
we obtain the curves as in Figure 6.

Observing the graphics presented in Figure 6, it is pos-
sible to see that the 𝐻2 and second mixed 𝐻2/𝐻∞ cases,
explained in Section 4.1 and represented by (24), are the most
sensible approaches, as can also be observed from Table 2.

As explained in [7], the main goal is to provide a FD filter
with a maximum ratio between fault sensitivity (𝑟/𝑓) and
disturbance sensitivity (𝑟/𝑑), and, as observed, the solution
that fits better in this condition is the first mixed𝐻2/𝐻∞ case,
explained in the Section 4.1 and represented by (23), where
the robustness is provided by the 𝐻∞ norm and the fault
sensibility is provided by the𝐻2 norm.

According to the graphic presented in Figure 6, the
approach with higher level of fault sensibility is the 𝐻2

case, but this approach has the lowest level of exogenous
input resilience. Thus, the 𝐻2 approach does not provide
the best option when considering the desirable aspect of a
FD filter of high sensibility to the fault and low sensibility
to the disturbance. For this reason, analyzing Table 3, the
best performance is provided by the first mixed𝐻2/𝐻∞ case,
explained in Section 4.1 and represented by (23), due to the
high level of sensibility against the fault and low sensibility to
the disturbance. The𝐻∞ case provides the lowest sensibility

Table 3: The sensibility against the failure and resilience against
exogenous input.

𝑟/𝑓 𝑟/𝑑𝐻∞ case 0.1979 0.0145𝐻2 case 0.7130 0.2163
Mixed first case 0.5357 0.1648
Mixed second case 0.0450 0.0567
Mixed third case 0.1288 0.0389

to disturbance, but the level of sensibility against the fault
does not get close to the levels presented by the𝐻2 norm and
the first mixed𝐻2/𝐻∞ case.

8. Conclusion

In this paper, the fault detection problem under the discrete-
time Markovian jump linear systems framework is studied.
We propose a convex formulation in terms of LMI for the
design of mixed𝐻2/𝐻∞ FD filters such that the𝐻2 and𝐻∞

norms with respect to the residual signal are bounded. Three
possible design formulations are presented: (1) an upper
bound of the 𝐻2 norm is minimized while guaranteeing
that the 𝐻∞ norm is bounded; (2) the inverse scheme
(minimizing an upper bound of the𝐻∞ norm by restricting
its 𝐻2 norm); (3) a weighed combination of both bounds
on 𝐻2 and 𝐻∞ norms is minimized. Design conditions for
mode-independent filters in the scope of the Bernoulli case,
as well as robust filters (in the sense of uncertain system
matrices), are also given. Regarding the simulation results,
it is important to point out that all approaches provided a
plausible solution to the fault detection problem. However,
following the comparison criterion presented in [7], the
approach with the best ratio between fault sensitivity and
disturbance sensitivity was the first mixed𝐻2/𝐻∞ case as in
(23), since this solution presented the best results as can be
seen in Table 3.
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Along the lines of the present paper, a possible next step
would be to consider that the Markov chain mode is not
accessible, as considered in [22], which is an assumption that
brings new challenges to the fault detection problem.
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