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The quantification of diversification benefits due to risk aggregation has received more attention in the recent literature. In this
paper, we establish second-order asymptotics of the risk concentration based on several riskmeasures for a portfolio of 𝑛 identically
distributed but dependent deflated risks 𝑋𝑗 = 𝑅𝑗𝑆, 𝑗 = 1, 2, . . . , 𝑛 under the assumptions of second-order regular variation on the
survival functions of the risks 𝑅𝑗 and the deflator 𝑆, where 𝑅1, 𝑅2, . . . , 𝑅𝑛 are 𝑛 independent and identically distributed random
variables with a common survival function and 𝑆 is a random variable being independent of 𝑅1, 𝑅2, . . . , 𝑅𝑛. Examples are also given
to illustrate our main results.

1. Introduction

The quantification of diversification benefits due to risk
aggregation plays a prominent role in the (regulatory) capital
management of large firms within the financial industry.
Measuring a risk and quantifying its diversification benefits
have become an important task. Especially when the under-
lying risk factors show a heavy-tailed pattern, many papers
discussed diversification benefits; see, for instance, Degen et
al. [1] (2010), Ibragimov and Walden [2], Ibragimov et al.
[3], Mao et al. [4], Lv et al. [5, 6], Hashorva et al. [7], and
references therein.

Risk measure is understood as a function that can assign
a nonnegative real number to a risk. Consider a portfolio of 𝑛
loss random variables𝑋1, 𝑋2, . . . , 𝑋𝑛. The risk concentration
based on the risk measure [⋅] is defined as

𝐶 =  [∑𝑛𝑖=1𝑋𝑖]∑𝑛𝑖=1  [𝑋𝑖] . (1)

Here, 1 − 𝐶 refers to the diversification benefit. In recent
years, empirical work has argued that financial variables often
exhibit stronger dependence, while the existing work usually
assumes that the risks 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent and
identically distributed; see Embrechts et al. [8, 9], Degen et
al. [10], Mao and Hu [11], Mao and Hu [12], Lv et al. [6], and

so on. We focus on the asymptotic of risk concentration for
a portfolio of 𝑛 identically distributed but correlated deflated
risks 𝑋𝑗 = 𝑅𝑗𝑆, 𝑗 = 1, . . . , 𝑛 under assumptions of second-
order regular variation on the survival functions of the risk𝑅1, . . . , 𝑅𝑛 and deflator 𝑆.

In the present paper we study mathematical properties
of diversification effects under the different risk measures[⋅]. Several popular risk measures have been introduced
to measure tail risk, such as the Value-at-Risk (VaR), the
conditional tail expectation (CTE), and the Haezendonck-
Goovaerts risk measure. These risk measures have been
used extensively in insurance and finance as a tool of risk
management; seeDenuit et al. [13], Artzner et al. [14], Cheung
and Lo [15], Zhu et al. [16], and references therein.TheValue-
at-Risk (VaR) of𝑋 at the level 𝑝 is defined as

VaR𝑝 [𝑋] = inf {𝑥 ∈ R : 𝐹 (𝑥) ≥ 𝑝} , 𝑝 ∈ (0, 1) , (2)

and the conditional tail expectation (CTE) of𝑋 at the level 𝑝
is defined as

CTE𝑝 [𝑋] = 𝐸 [𝑋 | 𝑋 > VaR𝑝 [𝑋]] , 𝑝 ∈ (0, 1) . (3)

The Haezendonck-Goovaerts risk measure, which was
introduced by Haezendonck and Goovaerts [17], is defined
via an increasing and convex Young function 𝜙 and a
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parameter 𝑝 ∈ (0, 1) representing the confidence level. More
precisely, let 𝜙 be a nonnegative and convex function on[0,∞)with 𝜙(0) = 0, 𝜙(1) = 1, and 𝜙(∞) = ∞.This function
is called a normalizedYoung function.Assumewehave a real-
valued random variable 𝑋 with distribution function 𝐹 such
that

𝐸 [𝜙 (𝑐𝑋)] < ∞ ∀𝑐 > 0, (4)

and let𝐻𝑝[𝑋, 𝑡] be the unique solution ℎ to the equation
𝐸[𝜙((𝑋 − 𝑡)+ℎ )] = 1 − 𝑝, 𝑝 ∈ (0, 1) , (5)

if 𝐹(𝑡) > 0 and 0 if 𝐹(𝑡) = 0, where 𝑥+ = max{𝑥, 0} for
any real number 𝑥. Then the Haezendonck-Goovaerts risk
measure of𝑋 at the confidence level 𝑝 is defined as

HG𝑝 [𝑋] = inf
𝑡∈R

(𝑡 + 𝐻𝑝 [𝑋, 𝑡]) . (6)

Some important properties and connections with other risk
measures are given in Goovaerts et al. [18]. It is well known
that the simplest case of the Haezendonck-Goovaerts risk
measure HG𝑝[𝑋] with 𝜙(𝑥) = 𝑥 reduces to CTE𝑝[𝑋].
Even for a power Young function, the explicit solution to
(5) is generally not available. Now, in this paper, we instead
considered the asymptotic behavior of risk concentration
based on the Haezendonck-Goovaerts risk measure HG𝑝[𝑋]
with 𝜙(𝑡) = 𝑡𝑘 for 𝑘 ≥ 1 as 𝑝 ↑ 1.

Another family of risk measures, introduced by Wang
[19], is defined by using the concept of the distortion function.
A distortion function is an increasing function 𝑔 : [0, 1] →[0, 1] such that 𝑔(0) = 0 and 𝑔(1) = 1. Then for any risk𝑋 with distribution function 𝐹, the corresponding distortion
risk measure𝐷𝑔[⋅] is defined as follows:

𝐷𝑔 [𝑋] = ∫
∞

0
𝑔 (𝐹 (𝑡)) 𝑑𝑡 − ∫0

−∞
[1 − 𝑔 (𝐹 (𝑡))] 𝑑𝑡, (7)

where 𝐹(𝑡) = 1 − 𝐹(𝑡) denotes the survival function of 𝑋.
The distortion riskmeasure has several useful properties such
as positive homogeneity, translation invariance, additivity
for comonotonic risks, and monotonicity. For more details,
see Denuit et al. [13], Dhaene et al. [20], and Balbás et
al. [21]. Several popular risk measures belong to the family
of distortion risk measures. For example, the Value-at-Risk
(VaR) of 𝑋 at the level 𝑝 corresponds to the distortion
function 𝑔(𝑥) = 1(1−𝑝,1](𝑥), 𝑥 ∈ [0, 1], where 1𝐸 is
the indicator function of 𝐸; the conditional tail expectation
(CTE) of 𝑋 at level 𝑝 corresponds to the distortion function𝑔(𝑥) = min{𝑥/(1 − 𝑝), 1}, 𝑥 ∈ (0, 1).

The tail distortion risk measure, first introduced by Zhu
and Li [22], was reformulated by Yang [23] as follows: for a
distortion function 𝑔, the tail distortion risk measure at level𝑝 of a loss variable 𝑋 is defined as 𝑇𝑔𝑝[𝑋] = 𝐷𝑔𝑝

[𝑋], 𝑝 ∈
(0, 1), where

𝑔𝑝 (𝑢) = {{{
𝑔( 𝑢

1 − 𝑝) , 0 ≤ 𝑢 ≤ 1 − 𝑝,
1, 1 − 𝑝 < 𝑢 ≤ 1. (8)

Since the risk is always heavy-tailed and often obeys a law
of regular variation, we choose [⋅] as VaR𝑝[⋅], HG𝑝[⋅], and𝑇𝑔𝑝[⋅] at the level 0 < 𝑝 < 1, respectively, in (1). We denote
risk concentration 𝐶 at the level 𝑝 by 𝐶(𝑝).

Because risk managers become more and more con-
cerned with tail area of risk, we will focus on the second-
order approximations of the risk concentrations based on
the different risk measures as 𝑝 ↑ 1, such as 𝐶VaR(𝑝),𝐶HG(𝑝), 𝐶CTE(𝑝), and 𝐶𝑇𝑔(𝑝) as 𝑝 ↑ 1 for a portfolio of
𝑛 loss random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛. In this paper, we
assume that random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 are identically
distributed but not independent; that is,

(𝑋1, 𝑋2, . . . , 𝑋𝑛) = (𝑅1𝑆, 𝑅2𝑆, . . . , 𝑅𝑛𝑆) , (9)

where 𝑅1, 𝑅2, . . . , 𝑅𝑛 are 𝑛 i.i.d random variables with a com-
mon survival function possessing the property of second-
order regular variation, and the deflator 𝑆 is a randomvariable
which is independent of 𝑅1, 𝑅2, . . . , 𝑅𝑛.

The first-order approximations of 𝐶VaR(𝑝) as 𝑝 ↑ 1
were studied by Embrechts et al. [8, 9] under the model
assumption that the underlying risks 𝑋1, 𝑋2, . . . , 𝑋𝑛 have
identically distributed and regularly varying margins and
have two forms of dependent structure, respectively. Degen
et al. [10] derived second-order approximations of 𝐶VaR(𝑝)
for 𝑛 independent and identically distributed (i.i.d) loss
variables with a common survival function possessing the
property of second-order regular variation (2RV). Second-
order approximations of the risk concentrations𝐶CTE(𝑝) and𝐶𝑇𝑔(𝑝) as 𝑝 ↑ 1 for 𝑛 i.i.d loss random variables were derived
byMao et al. [4], Mao andHu [12], Lv et al. [6], andHashorva
et al. [7]. For a portfolio of 𝑛 i.i.d. risks, the second-order
approximations of the risk concentrations 𝐶VaR(𝑝), 𝐶CTE(𝑝)
as 𝑝 ↑ 1 have been discussed by Hashorva et al. [24], while
Mao and Yang [25] consider the case with a portfolio of𝑛 dependent risks under FGM copula. Ling and Peng [26]
derived higher-order approximations under some conditions.

The paper is organized as follows. In Section 2, we
describe the definition of the second-order regular variation
and some useful propositions of it. In Section 3, we obtain our
main results, that is, the second-order approximations of the
risk concentrations 𝐶VaR(𝑝), 𝐶HG(𝑝), and 𝐶𝑇𝑔(𝑝) as 𝑝 ↑ 1,
and present their proofs. In Section 4, some examples are
provided to illustrate the performance of our approximations.
Throughout, the notation “∼” means asymptotic equivalence,
that is, for functions 𝑓(𝑥) and 𝑔(𝑥),

𝑓 (𝑥) ∼ 𝑔 (𝑥) , 𝑥 → 𝑥0 ⇐⇒
lim
𝑥→𝑥0

𝑓 (𝑥)
𝑔 (𝑥) = 1.

(10)

2. Preliminaries

Regular variation is one of the basic concepts which appears
in different contexts of applied probability. A function ℎ is
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said to be of regular variation with index 𝛼 ∈ R, denoted byℎ ∈ RV−𝛼, if

lim
𝑥→∞

ℎ (𝑥𝑦)
ℎ (𝑥) = 𝑦−𝛼 (11)

holds for any 𝑦 > 0. Next we recall the definition of the
second-order regular variation from de Haan and Ferreira
[27] and de Haan and Stadtmüller [28]. Suppose that ℎ ∈
RV−𝛼 for some 𝛼 ∈ R; then ℎ is said to be of second-order
regular variation with first-order parameter 𝛼 and second-
order parameter 𝜌 ≤ 0, denoted by ℎ ∈ 2RV−𝛼, 𝜌, if there
exists some ultimately positive or negative function𝐴(𝑥)with𝐴(𝑥) → 0 as 𝑥 → ∞ such that

lim
𝑥→∞

ℎ (𝑥𝑦) /ℎ (𝑥) − 𝑦−𝛼
𝐴 (𝑥) = 𝑦−𝛼 ∫𝑦

1
𝑢𝜌−1𝑑𝑢, ∀𝑥 > 0. (12)

Here, 𝐴(𝑥) is referred to as an auxiliary function of ℎ and|𝐴| ∈ RV𝜌. Several classes of parametric survival functions
are shown to possess 2RV properties; see Hashorva et al. [7].
For more details on RV and 2RV, see Hua and Joe [29] and Lv
et al. [5].

The function which possesses the property of second-
order regular variation (2RV) plays an important role in this
article. The following proposition gives a characterization of
any function ℎ ∈ 2RV−𝛼, 𝜌 with auxiliary function 𝐴(𝑥),𝛼 ∈ R and 𝜌 < 0, which is from Hua and Joe [29].

Proposition 1. Let 𝛼 ∈ R, 𝜌 < 0, and 𝐴(𝑥) ∈ 𝑅𝑉𝜌. Thenℎ ∈ 2𝑅𝑉−𝛼, 𝜌 with auxiliary function 𝐴(𝑥) if and only if
ℎ (𝑥) = 𝑐𝑥−𝛼 [1 + 𝐴 (𝑥)

𝜌 + 𝑜 (𝐴 (𝑥))] , 𝑥 → ∞, (13)

where 𝑐 = lim𝑥→∞𝑥𝐹(𝑥) ∈ (0,∞).
The next two propositions give first- and second-order

approximations of Haezendonck-Goovaerts risk measure
HG𝑝[𝑋] of𝑋 at the confidence level 𝑝 and tail distortion risk
measure 𝑇𝑔𝑝[𝑋] of 𝑋 at confidence level 𝑝 for a distortion
function 𝑔, which will be used in the proofs of our main
results.

Proposition 2. Let 𝑋 be a random variable with survival
function𝐹 ∈ 𝑅𝑉−𝛼,𝛼 > 0, and let𝜙(𝑡) = 𝑡𝑘 for some𝛼 > 𝑘 ≥ 1.
Then one has the following:

(i) The first-order asymptotic (see [30]; Mao and Hu,
2012a):

𝐻𝐺𝑝 [𝑋] ∼ 𝐶𝛼𝐹← (𝑝) , 𝑝 ↑ 1. (14)

(ii) The second-order asymptotic (see Mao and Hu, 2012a):
if 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝜌 ≤ 0, with auxiliary function 𝐴(𝑥),
then

𝐻𝐺𝑝 [𝑋]
= 𝐶𝛼𝐹← (𝑝) [1 + 𝐻𝛼,𝜌,𝑘𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1))] ,

𝑝 ↑ 1,
(15)

where

𝐶𝛼 = 𝛼 (𝛼 − 𝑘)𝑘/𝛼−1
𝑘𝑘−1/𝛼 (𝐵 (𝛼 − 𝑘, 𝑘))1/𝛼 ,

𝐻𝛼,𝜌,𝑘 = 1
𝛼𝜌 [(𝛼 − 𝑘)𝜌𝑘/𝛼 𝑘(𝜌/𝛼)(1−𝑘)𝜉𝜌/𝛼−1𝑘,0

𝜉𝑘,𝜌/𝛼 − 1]
(16)

with

𝜉𝑘,𝑡 = 𝐵 (𝛼 (1 − 𝑡) − 𝑘, 𝑘) (17)

and 𝐵(⋅, ⋅) is the Beta function as usual; that is,

𝐵 (𝑎, 𝑏) = ∫1
0
𝑥𝑎−1 (1 − 𝑥)𝑏−1 𝑑𝑥, 𝑎, 𝑏 > 0. (18)

Proposition 3. Let 𝑋 be a random variable with survival
function 𝐹 ∈ 𝑅𝑉−𝛼, 𝛼 > 0, and let g be any distortion function
with

∫1
0
𝑥−1/𝛼−𝛿𝑑𝑔 (𝑥) < ∞ for some 𝛿 > 0. (19)

We have the follwoing:

(i) The first-order asymptotic (see [22, 23]):

𝑇𝑔𝑝 [𝑋] ∼ 𝐽𝛼𝐹← (𝑝) , 𝑝 ↑ 1. (20)

(ii) The second-order asymptotic (see [23]): if 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌,𝜌 ≤ 0, with auxiliary function 𝐴(𝑥), then
𝑇𝑔𝑝 [𝑋] = 𝐽𝛼𝐹← (𝑝)

+ 𝐹← (𝑝)𝐴 (𝐹← (𝑝)) [𝐼𝛼,𝜌 + 𝑜 (1)] ,
𝑝 ↑ 1,

(21)

where

𝐽𝛼 = ∫
1

0
𝑥−1/𝛼𝑑𝑔 (𝑥) ,

𝐼𝛼,𝜌 = ∫
1

0
𝑥−1/𝛼 𝑥−𝜌/𝛼 − 1𝛼𝜌 𝑑𝑔 (𝑥) .

(22)

Propositions 2(ii) and 3(ii) are, respectively, modified
from Theorem 4.5 in Mao and Hu (2012a) and Corollary 4.1
in Yang [23] by using the fact that 𝐹 ∈ 2RV−𝛼,𝜌 with auxiliary
function 𝐴(𝑡) if and only if its tail quantile function 𝑈 ∈2RV1/𝛼,𝜌/𝛼 with auxiliary function 𝛼−2𝐴(𝑈(𝑡)) (see Theorem
2.3.9 in de Haan and Ferreira [27]).

3. Main Results and Their Proofs

3.1. Main Results. In this section, we give some results estab-
lishing the second-order approximations of the risk concen-
tration 𝐶(𝑝) as 𝑝 → 1 for a portfolio of 𝑛 random variables
that satisfy (9). The first one is about the risk concentration𝐶VaR(𝑝).
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Theorem 4. Let (𝑋1, 𝑋2, . . . , 𝑋𝑛) = (𝑅1𝑆, 𝑅2𝑆, . . . , 𝑅𝑛𝑆),
where {𝑅1, 𝑅2, . . . , 𝑅𝑛} are i.i.d nonnegative random variables
with common continuous distribution function 𝐹 and 𝑆 is a
nonnegative random variable independent of {𝑅1, 𝑅2, . . . , 𝑅𝑛}.
If 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝛼 > 0, 𝜌 < 0, with auxiliary function𝐴(𝑥) and𝐸𝑆𝛼−𝜌+𝜖 < ∞ for some 𝜖 > 0, then

(i) for 𝜌 < −𝛼 and 0 < 𝛼 < 1,
𝐶𝑉𝑎𝑅 (𝑝) = 𝑛1/𝛼−1 [1 + (𝑛 − 1) 𝜉𝛼2𝑛𝛼 ⋅ 𝐸𝑆2𝛼

(𝐸𝑆𝛼)2 (1 − 𝑝)]
+ 𝑜 (1 − 𝑝) , 𝑝 ↑ 1;

(23)

(ii) for 𝜌 < −1,
𝐶𝑉𝑎𝑅 (𝑝)

= 𝑛1/𝛼−1 [1 + 𝑛−1/𝛼 (𝑛 − 1) 𝐸𝑆𝛼+1
(𝐸𝑆𝛼)1+1/𝛼 ⋅

𝜇𝐹𝐹← (𝑝)]

+ 𝑜( 1
𝐹← (𝑝)) , 𝑝 ↑ 1

(24)

when 𝛼 > 1,
𝐶𝑉𝑎𝑅 (𝑝) = 1 + 𝑐 (1 − 1

𝑛)
𝐸𝑆𝛼+1

(𝐸𝑆𝛼)1+1/𝛼
⋅ log (𝐹← (𝑝))

𝐹← (𝑝) (1 + 𝑜 (1)) , 𝑝 ↑ 1
(25)

with 𝑐 = lim𝑥→∞𝑥𝐹(𝑥) ∈ (0,∞), when 𝛼 = 1;
(iii) for 𝜌 > −(1 ∧ 𝛼),
𝐶𝑉𝑎𝑅 (𝑝)

= 𝑛1/𝛼−1 [1 + 𝑛𝜌/𝛼 − 1
𝛼𝜌 ⋅ 𝐸𝑆𝛼−𝜌

(𝐸𝑆𝛼)1−𝜌/𝛼𝐴 (𝐹
← (𝑝))]

+ 𝑜 (𝐴 (𝐹← (𝑝))) , 𝑝 ↑ 1.
(26)

In the following theorem, we derive the second-order
asymptotic of risk concentration for Haezendonck-Goov-
aerts risk measure 𝐶HG(𝑝) at level 𝑝.
Theorem 5. Let (𝑋1, 𝑋2, . . . , 𝑋𝑛) = (𝑅1𝑆, 𝑅2𝑆, . . . , 𝑅𝑛𝑆),
where {𝑅1, 𝑅2, . . . , 𝑅𝑛} are i.i.d. nonnegative random variables
with common continuous distribution function 𝐹 and 𝑆 is a
nonnegative random variable independent of {𝑅1, 𝑅2, . . . , 𝑅𝑛}.
If 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝛼 > 0, 𝜌 < 0, with auxiliary function 𝐴(𝑥)
and 𝐸𝑆𝛼−𝜌+𝜖 < ∞ for some 𝜖 > 0 and if 𝜙(𝑡) = 𝑡𝑘 for some𝛼 > 𝑘 ≥ 1, then

(i) for 𝜌 < −𝛼 and 0 < 𝛼 < 1,
𝐶𝐻𝐺 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛 − 1

2𝑛𝛼 ⋅ 𝐸𝑆2𝛼
(𝐸𝑆𝛼)2

⋅ (1 − 𝛼2𝐻𝛼,−𝛼,𝑘) 𝜉𝛼 (1 − 𝑝)] + 𝑜 (1 − 𝑝) , 𝑝 ↑ 1;
(27)

(ii) for 𝜌 < −1,
𝐶𝐻𝐺 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛−1/𝛼 (𝑛 − 1) 𝐸𝑆𝛼+1

(𝐸𝑆𝛼)1+1/𝛼
⋅ (1 − 𝛼𝐻𝛼,−1,𝑘) ⋅ 𝜇𝐹𝐹← (𝑝)] + 𝑜(

1
𝐹← (𝑝)) ,

𝑝 ↑ 1

(28)

when 𝛼 > 1, and
𝐶𝐻𝐺 (𝑝) = 1 + 𝑐 (1 − 1

𝑛)
𝐸𝑆𝛼+1

(𝐸𝑆𝛼)1+1/𝛼 ⋅ (1 − 𝐻1,−1,𝑘)

⋅ log (𝐹← (𝑝))
𝐹← (𝑝) (1 + 𝑜 (1)) , 𝑝 ↑ 1

(29)

with 𝑐 = lim𝑥→∞𝑥𝐹(𝑥) ∈ (0,∞) when 𝛼 = 1;
(iii) for 𝜌 > −(1 ∧ 𝛼),
𝐶𝐻𝐺 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛𝜌/𝛼 − 1

𝛼𝜌 ⋅ 𝐸𝑆𝛼−𝜌
(𝐸𝑆𝛼)1−𝜌/𝛼

⋅ (1 + 𝛼𝜌𝐻𝛼,𝜌,𝑘)𝐴 (𝐹← (𝑝))] + 𝑜 (𝐴 (𝐹← (𝑝))) ,
𝑝 ↑ 1.

(30)

The last theorem gives the second-order asymptotic of
risk concentration for tail distortion risk measure 𝐶𝑇𝑔(𝑝) at
level 𝑝.
Theorem 6. Let (𝑋1, 𝑋2, . . . , 𝑋𝑛) = (𝑅1𝑆, 𝑅2𝑆, . . . , 𝑅𝑛𝑆),
where {𝑅1, 𝑅2, . . . , 𝑅𝑛} are i.i.d. nonnegative random variables
with common continuous distribution function 𝐹, and 𝑆 is a
nonnegative random variable independent of {𝑅1, 𝑅2, . . . , 𝑅𝑛}.
Further assume that 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝛼 > 0, 𝜌 < 0, with auxiliary
function 𝐴(𝑥) and 𝐸𝑆𝛼−𝜌+𝜖 < ∞ for some 𝜖 > 0. Let 𝑔 be a
distortion function with

∫1
0
𝑥−1/𝛼−𝛿𝑑𝑔 (𝑥) < ∞ for some 𝛿 > 0. (31)

Then
(i) for 𝜌 < −𝛼 and 0 < 𝛼 < 1,

𝐶𝑇𝑔 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛 − 1
2𝑛𝛼 ⋅ 𝐸𝑆2𝛼

(𝐸𝑆𝛼)2

⋅ (1 − 𝛼2𝐼𝛼,−𝛼𝐽𝛼 )𝜉𝛼 (1 − 𝑝)] + 𝑜 (1 − 𝑝) , 𝑝 ↑ 1;
(32)

(ii) for 𝜌 < −1,
𝐶𝑇𝑔 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛−1/𝛼 (𝑛 − 1) 𝐸𝑆𝛼+1

(𝐸𝑆𝛼)1+1/𝛼
⋅ (1 − 𝛼𝐼𝛼,−1𝐽𝛼 ) ⋅ 𝜇𝐹𝐹← (𝑝)] + 𝑜(

1
𝐹← (𝑝)) , 𝑝 ↑ 1

(33)
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when 𝛼 > 1, and
𝐶𝑇𝑔 (𝑝) = 1 + 𝑐 (1 − 1

𝑛)
𝐸𝑆𝛼+1

(𝐸𝑆𝛼)1+1/𝛼 ⋅ (1 −
𝐼1,−1𝐽1 )

⋅ log (𝐹← (𝑝))
𝐹← (𝑝) (1 + 𝑜 (1)) , 𝑝 ↑ 1

(34)

with 𝑐 = lim𝑥→∞𝑥𝐹(𝑥) ∈ (0,∞) when 𝛼 = 1;
(iii) for 𝜌 > −(1 ∧ 𝛼),
𝐶𝑇𝑔 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛𝜌/𝛼 − 1

𝛼𝜌 ⋅ 𝐸𝑆𝛼−𝜌
(𝐸𝑆𝛼)1−𝜌/𝛼

⋅ (1 + 𝛼𝜌𝐼𝛼,𝜌
𝐽𝛼 )𝐴 (𝐹← (𝑝))] + 𝑜 (𝐴 (𝐹← (𝑝))) ,

𝑝 ↑ 1.

(35)

Thus, we immediately obtain the following corollary
which establishes the second-order asymptotic of risk con-
centration for conditional tail expectation 𝐶CTE(𝑝). And this
corollary can also be obtained easily by Lemma 8.

Corollary 7. Let (𝑋1, 𝑋2, . . . , 𝑋𝑛) = (𝑅1𝑆, 𝑅2𝑆, . . . , 𝑅𝑛𝑆) be
a continuous random vector, where {𝑅1, 𝑅2, . . . , 𝑅𝑛} are i.i.d.
nonnegative random variables with common continuous distri-
bution function 𝐹 and 𝑆 is a nonnegative random variable
independent of {𝑅1, 𝑅2, . . . , 𝑅𝑛}. If 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝛼 > 1, 𝜌 < 0,
with auxiliary function𝐴(𝑥) and𝐸𝑆𝛼−𝜌+𝜖 < ∞ for some 𝜖 > 0.
Then

(i) for 𝜌 < −1,
𝐶𝐶𝑇𝐸 (𝑝) = 𝑛1/𝛼−1 + 𝑛 − 1

𝑛 (1 − 1
𝛼) ⋅

𝐸𝑆𝛼+1
(𝐸𝑆𝛼)1+1/𝛼

⋅ 𝜇𝐹𝐹← (𝑝) + 𝑜(
1

𝐹← (𝑝)) , 𝑝 ↑ 1;
(36)

(ii) for 𝜌 > −1,
𝐶𝐶𝑇𝐸 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛𝜌/𝛼 − 1

𝜌/𝛼 ⋅ 𝛼 − 1
𝛼2 (𝛼 − 1 − 𝜌)

⋅ 𝐸𝑆𝛼−𝜌
(𝐸𝑆𝛼)1−𝜌/𝛼𝐴 (𝐹

← (𝑝))] + 𝑜 (𝐴 (𝐹← (𝑝))) ,
𝑝 ↑ 1.

(37)

3.2. Proofs. Before proving the above results, we introduce
some lemmas. The first one gives a second-order form
of Breiman’s theorem (see Breiman [31]), which is from
Hashorva et al. [7].

Lemma 8. Let 𝑅 be a random variable with survival function
𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝛼 > 0, 𝜌 < 0, with auxiliary function 𝐴(𝑥), and

let 𝑆 be a nonnegative random variable satisfying𝐸𝑆𝛼−𝜌+𝜖 < ∞
for some 𝜖 > 0, independent of𝑋. Then

𝑃 (𝑅𝑆 > 𝑥)
𝐹 (𝑥) = 𝐸𝑆𝛼 [1 + 𝜀 (𝑥)] , (38)

where 𝜀(𝑥) = (1/𝜌)(𝐸𝑆𝛼−𝜌/𝐸𝑆𝛼 − 1)𝐴(𝑥)(1 + 𝑜(1)) as 𝑥 → ∞,
and thus 𝑅𝑆 ∈ 2𝑅𝑉−𝛼,𝜌 with auxiliary function

𝐴∗ (𝑥) = 𝐸𝑆𝛼−𝜌
𝐸𝑆𝛼 𝐴 (𝑥) . (39)

The second lemma talks about the first- and second-order
asymptotic of Value-at-Risk of the product 𝑅𝑆 at the level 𝑝,
which was proved by Hashorva et al. [7].

Lemma 9. Let 𝑅 be a random variable with survival function
𝐹 ∈ 𝑅𝑉−𝛼, 𝛼 > 0, and let 𝑆 be a nonnegative random variable
satisfying 𝐸𝑆𝛼+𝜖 < ∞ for some 𝜖 > 0, independent of 𝑋. Then
one has the following:

(i) The first-order asymptotic:

𝑉𝑎𝑅𝑝 (𝑅𝑆) ∼ (𝐸𝑆𝛼)1/𝛼 𝐹← (𝑝) , 𝑝 ↑ 1. (40)

(ii) The second-order asymptotic: if 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝜌 < 0,
with auxiliary function 𝐴(𝑥) and 𝐸𝑆𝛼−𝜌+𝜖 < ∞, then

𝑉𝑎𝑅𝑝 (𝑅𝑆)
= (𝐸𝑆𝛼)1/𝛼 𝐹← (𝑝) [1 + 𝜁𝛼,𝜌𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1))] ,

𝑝 ↑ 1,
(41)

where 𝜁𝛼,𝜌 = (1/𝛼𝜌)(𝐸𝑆𝛼−𝜌/(𝐸𝑆𝛼)1−𝜌/𝛼 − 1).
First, we introduce two definitions. Let𝐹 be a distribution

function of a nonnegative random variable. We introduce the
truncated mean of 𝐹:

𝜇𝐹 (𝑡) = ∫
𝑡

0
𝑥 𝑑𝐹 (𝑥) , 𝑡 > 0. (42)

Obviously, if the mean of 𝐹, 𝜇𝐹, exists, then 𝜇𝐹(𝑡) → 𝜇𝐹 as𝑡 → ∞. For 0 < 𝛼 < 1, define
𝜉𝛼 = 22𝛼 − 2𝛼+1 + 2𝛼∫

1

0
((1 − 𝑥)−𝛼 − 1) 𝑥−𝛼−1𝑑𝑥. (43)

The following lemma from Mao and Hu [12] states that
the 2RV property is preserved by the formation of sum of 𝑛
i.i.d random variables.

Lemma 10. Let 𝐹 be the distribution function of a nonnegative
random variable satisfying 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝜌 ≤ 0, with auxiliary
function 𝐴(𝑥). We denoted by 𝐹∗𝑛 the 𝑛-fold convolution of 𝐹.
Then 𝐹∗𝑛 ∈ 2𝑅𝑉−𝛼,𝛾 with auxiliary function 𝐵(𝑥), where

𝛾 = −min {1, 𝛼, −𝜌} , (44)
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and 𝐵(𝑥) is given by

𝐵 (𝑥)

=
{{{{{{{{{

−𝑛 − 12 𝛼𝜉𝛼𝐹 (𝑥) , 𝜌 < −𝛼, 0 < 𝛼 < 1,
− (𝑛 − 1) 𝛼𝑥−1𝜇𝐹 (𝑥) , 𝜌 < −1, 𝛼 ≥ 1,
𝐴 (𝑥) , 𝜌 > − (1 ∧ 𝛼) .

(45)

The last lemma fromMao et al. [4] establishes the second-
order asymptotic of the risk concentration 𝐶VaR(𝑝) for 𝑛 i.i.d
randomvariables with the underlying distribution possessing
the 2RV property.

Lemma 11. Let 𝑅1, 𝑅2, . . . , 𝑅𝑛 be i.i.d. nonnegative random
variables with common continuous distribution function 𝐹,
and assume that 𝐹 ∈ 2𝑅𝑉−𝛼,𝜌, 𝜌 ≤ 0, with auxiliary function𝐴(𝑥). Then

(i) for 𝜌 < −𝛼 and 0 < 𝛼 < 1,
𝑉𝑎𝑅𝑝 (∑𝑛𝑖=1 𝑅𝑖)
𝑛𝑉𝑎𝑅𝑝 (𝑅𝑖) = 𝑛1/𝛼−1 [1 + 𝑛 − 1

2𝑛𝛼 𝜉𝛼 (1 − 𝑝)]
+ 𝑜 (1 − 𝑝) , 𝑝 ↑ 1;

(46)

(ii) for 𝜌 < −1 and 𝛼 ≥ 1,
𝑉𝑎𝑅𝑝 (∑𝑛𝑖=1 𝑅𝑖)
𝑛𝑉𝑎𝑅𝑝 (𝑅𝑖)
= 𝑛1/𝛼−1 [1 + 𝑛−1/𝛼 (𝑛 − 1) 𝜇𝐹 (𝐹← (𝑝))

𝐹← (𝑝) ]

+ 𝑜(𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) ) , 𝑝 ↑ 1;

(47)

(iii) for 𝜌 > −(1 ∧ 𝛼),
𝑉𝑎𝑅𝑝 (∑𝑛𝑖=1 𝑅𝑖)
𝑛𝑉𝑎𝑅𝑝 (𝑅𝑖) = 𝑛1/𝛼−1 [1 + 𝑛𝜌/𝛼 − 1

𝛼𝜌 𝐴 (𝐹← (𝑝))]
+ 𝑜 (𝐴 (𝐹← (𝑝))) , 𝑝 ↑ 1.

(48)

Now we turn to prove our theorems.

Proof of Theorem 4. Define 𝑌 = ∑𝑛𝑖=1 𝑅𝑖, and denote by 𝐹𝑌
the distribution function of 𝑌. By Lemma 10, 𝐹𝑌 ∈ 2RV−𝛼,𝛾
with auxiliary function 𝐵(𝑥) with 𝛾 and 𝐵(𝑥) given by (44)
and (45); we have

VaR𝑝 (𝑌𝑆)
= (𝐸𝑆𝛼)1/𝛼 𝐹←𝑌 (𝑝) [1 + 𝜁𝛼,𝛾𝐵 (𝐹←𝑌 (𝑝)) (1 + 𝑜 (1))]
= (𝐸𝑆𝛼)1/𝛼 𝐹←𝑌 (𝑝) [1 + 𝜂1 (𝐹←𝑌 (𝑝)) (1 + 𝑜 (1))] ,

𝑝 ↑ 1,

(49)

where 𝜂1(𝑡) = 𝜁𝛼,𝛾𝐵(𝑡) and |𝜂1| ∈ RV𝛾.

Similarly,

VaR𝑝 (𝑅𝑖𝑆)
= (𝐸𝑆𝛼)1/𝛼 𝐹← (𝑝) [1 + 𝜁𝛼,𝜌𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1))]
= (𝐸𝑆𝛼)1/𝛼 𝐹← (𝑝) [1 + 𝜂2 (𝐹← (𝑝)) (1 + 𝑜 (1))] ,

𝑝 ↑ 1,

(50)

for 𝑖 = 1, 2, . . . , 𝑛, where 𝜂2(𝑡) = 𝜁𝛼,𝜌𝐴(𝑡) and |𝜂2| ∈ RV𝜌.
From Lemma 11, it follows that

𝐹←𝑌 (𝑝)
𝐹← (𝑝) → 𝑛1/𝛼, 𝑝 ↑ 1. (51)

In view of |𝜂1| ∈ RV𝛾 and Theorem B.1.4 of de Haan and
Ferreira [27], we have

𝜂1 (𝐹←𝑌 (𝑝)) = 𝑛𝛾/𝛼𝜂1 (𝐹← (𝑝)) ⋅ (1 + 𝑜 (1)) , 𝑝 ↑ 1, (52)

where we use the fact that 𝐵(𝑥) is ultimately positive or
negative. Thus,

𝐶VaR (𝑝) = 𝐹←𝑌 (𝑝)
𝑛𝐹← (𝑝) ⋅

1 + 𝜂1 (𝐹←𝑌 (𝑝)) (1 + 𝑜 (1))
1 + 𝜂2 (𝐹← (𝑝)) (1 + 𝑜 (1))

= VaR𝑝 (𝑌)
𝑛VaR𝑝 (𝑅𝑖)
⋅ 1 + 𝑛𝛾/𝛼𝜂1 (𝐹← (𝑝)) (1 + 𝑜 (1))

1 + 𝜂2 (𝐹← (𝑝)) (1 + 𝑜 (1)) ,
𝑝 ↑ 1.

(53)

Next, we consider three cases.

Case 1 (𝜌 < −𝛼 and 0 < 𝛼 < 1). In this case, from (44) and
(45), it follows that 𝛾 = −𝛼 and

𝜂1 (𝐹← (𝑝)) = −(𝑛 − 1) 𝛼𝜁𝛼,−𝛼2 𝜉𝛼 (1 − 𝑝)
= 𝑛 − 1

2𝛼 ( 𝐸𝑆2𝛼
(𝐸𝑆𝛼)2 − 1) 𝜉𝛼 (1 − 𝑝) .

(54)

Note that𝐴(𝐹←(𝑝)) = 𝑜(1 − 𝑝) as 𝑝 ↑ 1. So, by Lemma 11, we
have

𝐶VaR (𝑝) = (𝑛1/𝛼−1 (1 + 𝑛 − 1
2𝑛𝛼 ) 𝜉𝛼 (1 − 𝑝)

+ 𝑜 (1 − 𝑝))(1 + 𝑛 − 1
2𝑛𝛼 ( 𝐸𝑆2𝛼

(𝐸𝑆𝛼)2 − 1) 𝜉𝛼 (1 − 𝑝)

+ 𝑜 (1 − 𝑝)) (1 + 𝑜 (1)) = 𝑛1/𝛼−1 [1 + (𝑛 − 1) 𝜉𝛼2𝑛𝛼
⋅ 𝐸𝑆2𝛼
(𝐸𝑆𝛼)2 (1 − 𝑝)] + 𝑜 (1 − 𝑝) , 𝑝 ↑ 1.

(55)



Mathematical Problems in Engineering 7

Case 2 (𝜌 < −1 and 𝛼 ≥ 1). In this case, 𝛾 = −1. By Karamata’s
theorem, it can be proved that 𝜇𝐹(𝑡) ∈ RV0; see (2.7) and (2.8)
in Mao and Hu (2012a). Hence, 𝐴(𝑡) = 𝑜(𝜇𝐹(𝑡)/𝑡) as 𝑡 → ∞.
We have

𝜂1 (𝐹← (𝑝)) = 𝜁𝛼,−1𝐵 (𝐹← (𝑝))

= (𝑛 − 1) ( 𝐸𝑆𝛼+1
(𝐸𝑆𝛼)1+1/𝛼 − 1)

𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) ,

𝜂2 (𝐹← (𝑝)) = 𝜁𝛼,−1𝐴 (𝐹← (𝑝)) = 𝑜(𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) ) .

(56)

Thus,

𝐶VaR (𝑝) = 𝑛1/𝛼−1 (1

+ 𝑛−1/𝛼 (𝑛 − 1) 𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) (1 + 𝑜 (1)))(1

+ 𝑛−1/𝛼 (𝑛 − 1) ( 𝐸𝑌𝛼+1
(𝐸𝑌𝛼)1+1/𝛼 − 1)

⋅ 𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) (1 + 𝑜 (1))) = 𝑛1/𝛼−1 [1

+ 𝑛−1/𝛼 (𝑛 − 1) 𝐸𝑆𝛼+1
(𝐸𝑆𝛼)1+1/𝛼

⋅ 𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) (1 + 𝑜 (1))] , 𝑝 ↑ 1.

(57)

For 𝛼 > 1, 𝜇𝐹(𝑡) → 𝜇𝐹 as 𝑡 → ∞. For 𝛼 = 1, by Proposition 1,

𝜇𝐹 (𝑡) ∼ ∫
𝑡

0
𝐹 (𝑥) 𝑑𝑥 ∼ ∫𝑡

1
𝑐𝑥−1 (1 + 𝐴 (𝑥)

𝜌 ) 𝑑𝑥

∼ 𝑐 log 𝑡 + 𝑐𝜌−1 ∫𝑡
1
𝑥−1𝐴 (𝑥) 𝑑𝑥 ∼ 𝑐 log 𝑡,

𝑡 → ∞,

(58)

where the first equation follows from (28) inMao andHu [12],
and the last equation follows since ∫∞

1
𝑥−1|𝐴(𝑥)|𝑑𝑥 < ∞.

Thus, we prove the case.

Case 3 (𝜌 > −(1 ∧ 𝛼)). In this case, 𝛾 = 𝜌, we have
𝜂1 (𝐹← (𝑝)) = 𝜁𝛼,𝜌𝐴 (𝐹← (𝑝)) ,
𝜂2 (𝐹← (𝑝)) = 𝜁𝛼,𝜌𝐴 (𝐹← (𝑝)) .

(59)

Thus,

𝐶VaR (𝑝) = 𝑛1/𝛼−1 (1 + 𝑛𝜌/𝛼 − 1
𝛼𝜌 𝐴 (𝐹← (𝑝))

⋅ (1 + 𝑜 (1))) 1 + 𝑛𝜌/𝛼𝜁𝛼,𝜌𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1))
1 + 𝜁𝛼,𝜌𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1))

= 𝑛1/𝛼−1 (1 + 𝑛𝜌/𝛼 − 1
𝛼𝜌 𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1)))

⋅ (1 + 𝑛𝜌/𝛼 − 1
𝛼𝜌 ( 𝐸𝑆𝛼−𝜌

(𝐸𝑆𝛼)1−𝜌/𝛼 − 1)𝐴 (𝐹
← (𝑝))

⋅ (1 + 𝑜 (1))) = 𝑛1/𝛼−1 [1 + 𝑛𝜌/𝛼 − 1
𝛼𝜌 ⋅ 𝐸𝑆𝛼−𝜌

(𝐸𝑆𝛼)1−𝜌/𝛼
⋅ 𝐴 (𝐹← (𝑝))] + 𝑜 (𝐴 (𝐹← (𝑝))) , 𝑝 ↑ 1.

(60)

Proof of Theorem 5. From Proposition 2 and Lemmas 8 and
9, we can get

HG𝑝 [𝑅𝑖𝑆] = 𝐶𝛼VaR𝑝 (𝑅𝑖𝑆)
⋅ [1 + 𝐻𝛼,𝜌,𝑘 ⋅ 𝐸𝑆

𝛼−𝜌

(𝐸𝑆𝛼) 𝐴 (VaR𝑝 (𝑅𝑖𝑆)) (1 + 𝑜 (1))]
= 𝐶𝛼VaR𝑝 (𝑅𝑖𝑆)
⋅ [1 + 𝐻𝛼,𝜌,𝑘 ⋅ 𝐸𝑆𝛼−𝜌

(𝐸𝑆𝛼)1−𝜌/𝛼𝐴 (𝐹
← (𝑝)) (1 + 𝑜 (1))] ,

𝑝 ↑ 1,

(61)

for 𝑖 = 1, 2, . . . , 𝑛, where we use the fact that |𝐴(𝑥)| ∈ RV𝜌
and 𝐴(𝑥) is ultimately positive or negative.

Define 𝑌 = ∑𝑛𝑖=1 𝑅𝑖, and denote by 𝐹𝑌 the distribution
function of 𝑌. By Lemma 10, 𝐹𝑌 ∈ 2RV−𝛼,𝛾 with auxiliary
function 𝐵(𝑥) with 𝛾 and 𝐵(𝑥) given by (44) and (45). So,
similarly, from Lemma 10, we can get

HG𝑝 [𝑌𝑆] = 𝐶𝛼VaR𝑝 (𝑌𝑆) [1 + 𝐻𝛼,𝛾,𝑘

⋅ 𝐸𝑆𝛼−𝛾(𝐸𝑆𝛼) 𝐵 (VaR𝑝 (𝑌𝑆)) (1 + 𝑜 (1))]

= 𝐶𝛼VaR𝑝 (𝑌𝑆) [1 + 𝐻𝛼,𝛾,𝑘

⋅ 𝐸𝑆𝛼−𝛾(𝐸𝑆𝛼) 𝐵 ((𝐸𝑆𝛼)
1/𝛼 𝐹←𝑌 (𝑝)) (1 + 𝑜 (1))]

= 𝐶𝛼VaR𝑝 (𝑌𝑆) [1 + 𝑛𝛾/𝛼𝐻𝛼,𝛾,𝑘

⋅ 𝐸𝑆𝛼−𝛾
(𝐸𝑆𝛼)1−𝛾/𝛼𝐵 (𝐹

← (𝑝)) (1 + 𝑜 (1))] , 𝑝 ↑ 1,

(62)
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where we use the fact that 𝐹←𝑌 (𝑝)/𝐹←(𝑝) → 𝑛1/𝛼, as 𝑝 ↑ 1,|𝐵(𝑥)| ∈ RV𝛾 and 𝐵(𝑥) is ultimately positive or negative.
Thus,

𝐶HG (𝑝) = HG𝑝 [𝑌𝑆]
∑𝑛𝑖=1HG𝑝 [𝑅𝑖𝑆] =

VaR𝑝 (𝑌𝑆)
𝑛VaR𝑝 (𝑅𝑖𝑆) ⋅

(1 + 𝑛𝛾/𝛼𝐻𝛼,𝛾,𝑘 ⋅ (𝐸𝑆𝛼−𝛾/ (𝐸𝑆𝛼)1−𝛾/𝛼) 𝐵 (𝐹← (𝑝)) (1 + 𝑜 (1)))
(1 + 𝐻𝛼,𝜌,𝑘 ⋅ (𝐸𝑆𝛼−𝜌/ (𝐸𝑆𝛼)1−𝜌/𝛼)𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1)))

= 𝐶VaR (𝑝) ⋅ 1 + 𝑛
𝛾/𝛼𝜂1 (𝐹← (𝑝)) (1 + 𝑜 (1))

1 + 𝜂2 (𝐹← (𝑝)) (1 + 𝑜 (1)) ,
(63)

where

𝜂1 (𝑥) = 𝐸𝑆𝛼−𝛾
(𝐸𝑆𝛼)1−𝛾/𝛼𝐻𝛼,𝛾,𝑘𝐵 (𝑥) ,

𝜂2 (𝑥) = 𝐸𝑆𝛼−𝜌
(𝐸𝑆𝛼)1−𝜌/𝛼𝐻𝛼,𝜌,𝑘𝐴 (𝑥) .

(64)

Next, we consider three cases.

(i) For 𝜌 < −𝛼 and 0 < 𝛼 < 1. In this case, 𝛾 = −𝛼. From
(45), it follows that

𝜂1 (𝐹← (𝑝)) = −(𝑛 − 1) 𝛼𝜉𝛼2 ⋅ 𝐸𝑆2𝛼
(𝐸𝑆𝛼)2𝐻𝛼,−𝛼,𝑘 (1 − 𝑝) . (65)

Note that 𝐴(𝐹←(𝑝)) = 𝑜(1 − 𝑝) as 𝑝 ↑ 1. So, by
Lemma 10, we have

𝐶HG (𝑝) = 𝑛1/𝛼−1 (1 + (𝑛 − 1) 𝜉𝛼2𝑛𝛼 ⋅ 𝐸𝑆2𝛼
(𝐸𝑆𝛼)2 (1 − 𝑝)

+ 𝑜 (1 − 𝑝))(1 − (𝑛 − 1) 𝛼𝜉𝛼2𝑛 ⋅ 𝐸𝑆2𝛼
(𝐸𝑆𝛼)2 (1 − 𝑝)

+ 𝑜 (1 − 𝑝)) (1 + 𝑜 (1)) = 𝑛1/𝛼−1 [1 + 𝑛 − 1
2𝑛𝛼

⋅ 𝐸𝑆2𝛼
(𝐸𝑆𝛼)2 ⋅ (1 − 𝛼

2𝐻𝛼,−𝛼,𝑘) 𝜉𝛼 (1 − 𝑝)] + 𝑜 (1 − 𝑝) ,
𝑝 ↑ 1.

(66)

(ii) 𝜌 < −1 and 𝛼 ≥ 1. In this case, 𝛾 = −1. By Karamata’s
theorem, it can be proved that 𝜇𝐹(𝑡) ∈ RV0; see (2.7)
and (2.8) in Mao and Hu (2012a). Hence, 𝐴(𝑡) =𝑜(𝜇𝐹(𝑡)/𝑡) as 𝑡 → ∞. Thus,

𝐶HG (𝑝) = 𝑛1/𝛼−1 (1 + 𝑛−1/𝛼 (𝑛 − 1) 𝐸𝑆𝛼+1
(𝐸𝑆𝛼)1+1/𝛼

⋅ 𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) (1 + 𝑜 (1))) ⋅ (1

− 𝑛−1/𝛼 (𝑛 − 1) 𝛼𝐻𝛼,−1,𝑘

𝐸𝑆𝛼+1
(𝐸𝑆𝛼)1+1/𝛼

⋅ 𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) (1 + 𝑜 (1))) = 𝑛1/𝛼−1 [1

+ 𝑛−1/𝛼 (𝑛 − 1) 𝐸𝑆𝛼+1
(𝐸𝑆𝛼)1+1/𝛼 ⋅ (1 − 𝛼𝐻𝛼,−1,𝑘)

⋅ 𝜇𝐹 (𝐹← (𝑝))
𝐹← (𝑝) ] + 𝑜(𝜇𝐹 (𝐹← (𝑝))

𝐹← (𝑝) ) , 𝑝 ↑ 1.
(67)

Considering 𝜇𝐹(𝑡) as 𝑡 → ∞ for 𝛼 > 1 and 𝛼 = 1 as
Theorem 4, we can get the result easily.

(iii) 𝜌 > −(1 ∧ 𝛼). In this case, 𝛾 = 𝜌. Thus,

𝐶HG (𝑝) = 𝑛1/𝛼−1 (1 + 𝑛𝜌/𝛼 − 1
𝛼𝜌 ⋅ 𝐸𝑆𝛼−𝜌

(𝐸𝑆𝛼)1−𝜌/𝛼
⋅ 𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1))) ⋅ (1 + (𝑛𝜌/𝛼 − 1)𝐻𝛼,𝜌,𝑘

⋅ 𝐸𝑆𝛼−𝜌
(𝐸𝑆𝛼)1−𝜌/𝛼𝐴 (𝐹

← (𝑝)) (1 + 𝑜 (1))) = 𝑛1/𝛼−1 [1

+ 𝑛𝜌/𝛼 − 1
𝛼𝜌 ⋅ 𝐸𝑆𝛼−𝜌

(𝐸𝑆𝛼)1−𝜌/𝛼 ⋅ (1 + 𝛼𝜌𝐻𝛼,𝜌,𝑘)

⋅ 𝐴 (𝐹← (𝑝))] + 𝑜 (𝐴 (𝐹← (𝑝))) , 𝑝 ↑ 1.

(68)

Proof of Theorem 6. From Proposition 3 and Lemmas 8 and
9, we can get

𝑇𝑔𝑝 [𝑅𝑖𝑆] = 𝐽𝛼VaR𝑝 (𝑅𝑖𝑆) + VaR𝑝 (𝑅𝑖𝑆)
⋅ 𝐴∗ (VaR𝑝 (𝑅𝑖𝑆)) [𝐼𝛼,𝜌 + 𝑜 (1)] = 𝐽𝛼VaR𝑝 (𝑅𝑖𝑆)
⋅ [1 + 𝐼𝛼,𝜌

𝐽𝛼 ⋅ 𝐸𝑆𝛼−𝜌
(𝐸𝑆𝛼)1−𝜌/𝛼𝐴 (𝐹

← (𝑝)) (1 + 𝑜 (1))] ,
𝑝 ↑ 1,

(69)

for 𝑖 = 1, 2, . . . , 𝑛, where we use the fact that |𝐴(𝑥)| ∈ RV𝜌
and 𝐴(𝑥) is ultimately positive or negative.
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Define 𝑌 = ∑𝑛𝑖=1 𝑅𝑖, and denote by 𝐹𝑌 the distribution
function of 𝑌. By Lemma 10, 𝐹𝑌 ∈ 2RV−𝛼,𝛾 with auxiliary
function 𝐵(𝑥) with 𝛾 and 𝐵(𝑥) given by (44) and (45). So,
similarly, from Lemma 10, we can get

𝑇𝑔𝑝 [𝑌𝑆] = 𝐽𝛼VaR𝑝 (𝑌𝑆) + VaR𝑝 (𝑌𝑆) ⋅ 𝐸𝑆
𝛼−𝜌

𝐸𝑆𝛼
⋅ 𝐵 (VaR𝑝 (𝑌𝑆)) [𝐼𝛼,𝛾 + 𝑜 (1)] = 𝐽𝛼VaR𝑝 (𝑌𝑆) [1

+ 𝑛𝛾/𝛼 𝐼𝛼,𝛾𝐽𝛼 ⋅ 𝐸S𝛼−𝛾
(𝐸𝑆𝛼)1−𝛾/𝛼𝐵 (𝐹

← (𝑝)) (1 + 𝑜 (1))] ,
𝑝 ↑ 1,

(70)

where we use the fact that 𝐹←𝑌 (𝑝)/𝐹←(𝑝) → 𝑛1/𝛼, as 𝑝 ↑ 1,|𝐵(𝑥)| ∈ RV𝛾 and 𝐵(𝑥) is ultimately positive or negative.
Thus,

𝐶𝑇𝑔 (𝑝) =
𝑇𝑔𝑝 [𝑌𝑆]

∑𝑛𝑖=1 𝑇𝑔𝑝 [𝑅𝑖𝑆] =
VaR𝑝 (𝑌𝑆)
𝑛VaR𝑝 (𝑅𝑖𝑆) ⋅

1 + 𝑛𝛾/𝛼 (𝐼𝛼,𝛾/𝐽𝛼) ⋅ (𝐸𝑆𝛼−𝛾/ (𝐸𝑆𝛼)1−𝛾/𝛼) 𝐵 (𝐹← (𝑝)) (1 + 𝑜 (1))
1 + 𝐼𝛼,𝜌/𝐽𝛼 ⋅ (𝐸𝑆𝛼−𝜌/ (𝐸𝑆𝛼)1−𝜌/𝛼)𝐴 (𝐹← (𝑝)) (1 + 𝑜 (1))

= 𝐶VaR (𝑝) ⋅ 1 + 𝑛
𝛾/𝛼𝜂1 ((𝐹← (𝑝)) (1 + 𝑜 (1)))

1 + 𝜂2 ((𝐹← (𝑝)) (1 + 𝑜 (1))) ,
(71)

where

𝜂1 (𝑥) = 𝐼𝛼,𝛾
𝐽𝛼 ⋅ 𝐸𝑆𝛼−𝛾

(𝐸𝑆𝛼)1−𝛾/𝛼𝐵 (𝑥) ,
𝜂2 (𝑥) = 𝐼𝛼,𝜌

𝐽𝛼 ⋅ 𝐸𝑆𝛼−𝜌
(𝐸𝑆𝛼)1−𝜌/𝛼𝐴 (𝑥) .

(72)

Next, similar to Theorems 4 and 5, we consider three cases:
(i) for 𝜌 < −𝛼 and 0 < 𝛼 < 1; (ii) for 𝜌 < −1 and 𝛼 ≥ 1; (iii)
for 𝜌 > −(1 ∧ 𝛼) to obtain the result. Thus, we complete the
proof.

Proof of Corollary 7. Note that if the distortion function𝑔(𝑥) = 𝑥, then 𝑇𝑔,𝑝[𝑋] reduces to CTE𝑝[𝑋] for continuous
risk variables 𝑋, and 𝐶𝑇𝑔(𝑝) reduces to 𝐶CTE(𝑝). It is easy to
see that, for 𝛼 > 1 and 𝜌 < 0,

𝐽𝛼 = 𝛼
𝛼 − 1 ,

𝐼𝛼,𝜌 = 1
(𝛼 − 𝜌 − 1) (𝛼 − 1) ,

(73)

and, hence,

𝛼𝐼𝛼,−1𝐽𝛼 = 1
𝛼 ,

𝛼𝜌𝐼𝛼,𝜌
𝐽𝛼 = 𝛼 − 1

𝛼 − 1 − 𝜌 .
(74)

Therefore, the result is an immediate consequence of Theo-
rem 6.

4. Examples

In this section, two examples are given to illustrate applica-
tions of our main results.

Example 1 (Burr distribution and Beta distribution). Let𝑅 be
a random variable with Burr distribution function 𝐹 given by

𝐹 (𝑥) = (1 + 𝑥−𝜌)𝛼/𝜌 , 𝑥 > 0, 𝛼 > 0, 𝜌 < 0 (75)

denoted by 𝐹 ∼ Burr(𝛼, 𝜌). It is known from Example 1
in Mao et al. [4] and Example 2 in Degen et al. [10] that
𝐹 ∈ 2RV−𝛼,𝜌 with auxiliary function 𝐴(𝑥) = 𝛼𝑥𝜌. Suppose
that 𝑆 ∼ Beta(𝑎, 𝑏), where Beta(𝑎, 𝑏) stands for the Beta
distribution with positive parameters 𝑎 and 𝑏 and density
function

𝑔 (𝑥) = 1
𝐵 (𝑎, 𝑏)𝑥𝑎−1 (1 − 𝑥)𝑏−1 ,

0 < 𝑥 < 1, 𝑎, 𝑏 > 0.
(76)

It is obvious that 𝐸𝑆𝜅 = 𝐵(𝑎 + 𝜅, 𝑏)/𝐵(𝑎, 𝑏) for all 𝜅 > 0.
By Theorem 4, we have

𝐶VaR (𝑝) =

{{{{{{{{{{{{{{{{{{{{{{{

𝑛1/𝛼−1 [1 + (𝑛 − 1) 𝜉𝛼2𝑛𝛼 ⋅ 𝐵 (𝑎, 𝑏) ⋅ 𝐵 (𝑎 + 2𝛼, 𝑏)𝐵2 (𝑎 + 𝛼, 𝑏) (1 − 𝑝)] + 𝑜 (1 − 𝑝) 𝜌 < −𝛼, 0 < 𝛼 < 1
𝑛1/𝛼−1 + 𝑛 − 1

𝑛
𝐸𝑆𝛼+1

(𝐸𝑆𝛼)1+1/𝛼 ⋅ 𝜇𝐹 (1 − 𝑝)
1/𝛼 + 𝑜 ((1 − 𝑝)1/𝛼) 𝜌 < −1, 𝛼 > 1

1 − 𝑛 − 1
𝑛 (1 − 𝛼) log (1 − 𝛼) (1 + 𝑜 (1)) 𝜌 < −1, 𝛼 = 1

𝑛1/𝛼−1 [1 + 𝑛𝜌/𝛼 − 1
𝜌 ⋅ 𝐸𝑆𝛼−𝜌

(𝐸𝑆𝛼)1−𝜌/𝛼 (1 − 𝑝)
−𝜌/𝛼] + 𝑜 ((1 − 𝑝)−𝜌/𝛼) 𝜌 > − (1 ∧ 𝛼) .

(77)
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Similarly, we can get risk concentration based on other
risk measures. We set 𝑛 = 2 and compare the second-order
approximations with the actual true value of 𝐶VaR(𝑝) for
Burr distribution with different parameters 𝛼 and 𝜌 and Beta
distribution with 𝑎 = 𝑏 = 1 in Figure 1.

Example 2 (absolute student 𝑡𝛼 distribution and Beta dis-
tribution). Let 𝑅 be a random variable having the standard
Student 𝑡𝛼 distribution with density function

𝑓𝑅 (𝑟) = Γ ((𝛼 + 1) /2)
√𝛼𝜋Γ (𝛼/2) (1 +

𝑟2
𝛼 )

−(𝛼+1)/2

, 𝑟 > 0. (78)

Denote by 𝐹 the distribution function of 𝑅. Suppose that 𝑆 ∼
Beta(𝑎, 𝑏), where Beta(𝑎, 𝑏) stands for the Beta distribution
with positive parameters 𝑎 and 𝑏 and density function

𝑔 (𝑥) = 1
𝐵 (𝑎, 𝑏)𝑥𝑎−1 (1 − 𝑥)𝑏−1 ,

0 < 𝑥 < 1, 𝑎, 𝑏 > 0.
(79)

From Example 3 in Hua and Joe [29], we know that 𝐹 ∈2RV−𝛼,−2 and the mean of 𝐹, 𝜇𝐹 = 𝛼/(𝛼 − 1) for 𝛼 > 1 and𝐸𝑆𝜅 = 𝐵(𝑎 + 𝜅, 𝑏)/𝐵(𝑎, 𝑏) for all 𝜅 > 0.
For 0 < 𝛼 < 1, by Theorems 4(i) and 3.2(i), we have

𝐶VaR (𝑝) = 𝑛1/𝛼−1 [1 + (𝑛 − 1) 𝜉𝛼2𝑛𝛼
⋅ 𝐵 (𝑎, 𝑏) ⋅ 𝐵 (𝑎 + 2𝛼, 𝑏)𝐵2 (𝑎 + 𝛼, 𝑏) (1 − 𝑝)] + 𝑜 (1 − 𝑝) ,

𝑝 ↑ 1,
𝐶HG (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛 − 1

2𝑛𝛼 ⋅ 𝐵 (𝑎, 𝑏) ⋅ 𝐵 (𝑎 + 2𝛼, 𝑏)𝐵2 (𝑎 + 𝛼, 𝑏)
⋅ (1 − 𝛼2𝐻𝛼,−𝛼,𝑘) 𝜉𝛼 (1 − 𝑝)] + 𝑜 (1 − 𝑝) , 𝑝 ↑ 1.

(80)

Choose distortion function 𝑔(𝑥) = 𝑥1/𝛽 with 0 < 𝛽 < 𝛼. It is
easy to see that

𝐽𝛼 = 𝛼
𝛼 − 𝛽,

𝐼𝛼,−1 = 𝛽
𝛼 (𝛼 − 𝛽) ,

𝐼𝛼,−𝛼 = 𝛽
(𝛼 − 𝛽) (𝛼 − 𝛽 + 𝛼𝛽) .

(81)

ByTheorem 6(i), we have

𝐶𝑇𝑔 (𝑝) = 𝑛1/𝛼−1 [1 + 𝑛 − 1
2𝑛𝛼 ⋅ 𝐵 (𝑎, 𝑏) ⋅ 𝐵 (𝑎 + 2𝛼, 𝑏)𝐵2 (𝑎 + 𝛼, 𝑏)

⋅ 𝛼 − 𝛽
𝛼 − 𝛽 + 𝛼𝛽𝜉𝛼 (1 − 𝑝)] + 𝑜 (1 − 𝑝) , 𝑝 ↑ 1.

(82)

For 𝛼 > 1, since 𝐹←(𝑝) = 𝑡←𝛼 ((1 + 𝑝)/2), the quantile
function of 𝑡𝛼 distribution is at the level (𝑝 + 1)/2. By
Theorems 4(i) and 3.2(i), we have that, as 𝑝 ↑ 1,
𝐶VaR (𝑝) = 𝑛1/𝛼−1 [1

+ 𝑛−1/𝛼 (𝑛 − 1) (𝐵 (𝑎, 𝑏))1/𝛼 ⋅ 𝐵 (𝑎 + 𝛼 + 1, 𝑏)(𝐵 (𝑎 + 𝛼, 𝑏))1+1/𝛼
⋅ 𝛼
𝛼 − 1 ⋅

1
𝑡←𝛼 ((1 + 𝑝) /2)] + 𝑜(

1
𝑡←𝛼 ((1 + 𝑝) /2)) ,

𝐶HG (𝑝) = 𝑛1/𝛼−1 [1

+ 𝑛−1/𝛼 (𝑛 − 1) (𝐵 (𝑎, 𝑏))1/𝛼 ⋅ 𝐵 (𝑎 + 𝛼 + 1, 𝑏)(𝐵 (𝑎 + 𝛼, 𝑏))1+1/𝛼
⋅ 𝛼 (1 − 𝛼𝐻𝛼,−1,𝑘)𝛼 − 1 ⋅ 1

𝑡←𝛼 ((1 + 𝑝) /2)]

+ 𝑜( 1
𝑡←𝛼 ((1 + 𝑝) /2)) .

(83)

Considering the distortion function𝑔(𝑥) = 𝑥1/𝛽 with 0 < 𝛽 <𝛼, by Theorem 6(ii), we have that, as 𝑝 ↑ 1,
𝐶𝑇𝑔 (𝑝) = 𝑛1/𝛼−1 [1

+ 𝑛−1/𝛼 (𝑛 − 1) (𝐵 (𝑎, 𝑏))1/𝛼 ⋅ 𝐵 (𝑎 + 𝛼 + 1, 𝑏)(𝐵 (𝑎 + 𝛼, 𝑏))1+1/𝛼
⋅ 𝛼 − 𝛽𝛼 − 1 ⋅

1
𝑡←𝛼 ((1 + 𝑝) /2)] + 𝑜(

1
𝑡←𝛼 ((1 + 𝑝) /2)) .

(84)

Choosing 𝛽 = 1, 𝐶𝑇𝑔(𝑝) reduces to
𝐶CTE (𝑝) = 𝑛1/𝛼−1 [1

+ 𝑛−1/𝛼 (𝑛 − 1) (𝐵 (𝑎, 𝑏))1/𝛼 ⋅ 𝐵 (𝑎 + 𝛼 + 1, 𝑏)(𝐵 (𝑎 + 𝛼, 𝑏))1+1/𝛼
⋅ 1
𝑡←𝛼 ((1 + 𝑝) /2)] + 𝑜(

1
𝑡←𝛼 ((1 + 𝑝) /2)) ,

𝑝 ↑ 1.

(85)

We set 𝑛 = 2 and compare the second-order approxima-
tions with the actual true value of 𝐶VaR(𝑝) for 𝑡𝛼 distribution
with different parameters 𝛼 and Beta distribution with 𝑎 =𝑏 = 1 in Figure 2.
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Figure 1: Empirical risk concentration (full, based on 107 simulations) together with second-order approximation (dotted) for two i.i.d.
Burr(𝛼, 𝜌) and Beta(1, 1) random variables based on 𝐶VaR(𝑝).
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Figure 2: Empirical risk concentration (full, based on 107 simulations) together with second-order approximation (dotted) for two i.i.d. 𝑡𝛼
and Beta(1, 1) random variables based on 𝐶VaR(𝑝) with 𝛼 = 0.5 for (a) and 𝛼 = 1.4 for (b).
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