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We study a value common experimentationwithmultiarmed bandits and give an application about the experimentation.The second
derivative of value functions at cutoffs is investigated when an agent switches action with multiarmed bandits. If consumers have
identical preference which is unknown and purchase products from only two sellers amongmultiple sellers, we obtain the necessary
and sufficient conditions about the common experimentation.TheMarkov perfect equilibrium and the socially effective allocation
in 𝐾-armed markets are discussed.

1. Introduction

A financial debate has arisen when we need to choose the
best goods among multiple products. In Robbins [1], this
problem is described as a decision maker facing 𝑁 slot
machines (called arms) and the maker has to choose one of
them at each instantaneous time. Gittins and Jones [2] and
Michael et al. [3] calculate the value of pulling an arm, i.e.,
Gittins index, in discrete time. Comparing the value to the
Gittins index of all other arms, Michael et al. [3] present
that the optimal strategy for an 𝑁-armed problem is an 𝑁-
dimensional discountedMarkov decision chain and the value
pulling each arm itself is independent of the cutoff. Karatzas
[4], Kaspi, and Mandelbaum [5] transform the problem into
a standard optimal stopping problem. Bolton and Harris [6]
and Bergemann and Välimäki [7] show that when there are𝐾 ≥ 2 sellers who sell different products and 𝑁 consumers
whose preferences are identical (but unknown) in themarket,
the optimal strategies of consumers are to buy the products
from the same seller; i.e., it is symmetric equilibria. Cohen
and Solan [8] study two-armed bandit problems in the
continuous time with the property of Lévy processes and
obtain the Hamilton-Jacobi-Bellman (HJB) equation for the
problem. They conclude that the optimal strategy is a cutoff
strategy when the arms have two types. For other optimal
strategies and control approaches, the reader is referred to [9–
11] and the references therein.

Jan and Xi [12] investigate that second derivatives of value
functions are equal at the cutoff with value matching and

smooth pasting (assume that the value function is 𝑉(𝑥) ∈𝐶2(𝑅+) and the cutoff is 𝑥∗ ∈ 𝑅+. Value matching: 𝑉(𝑥∗−) =𝑉(𝑥∗+) and smooth pasting: 𝑉�耠(𝑥∗−) = 𝑉�耠(𝑥∗+) which is
discussed in [13, 14], where 𝑉(𝑥−) fl lim�푥�㨀→�푥−𝑉(𝑥) and𝑉(𝑥+) fl lim�푥�㨀→�푥+𝑉(𝑥)), when there are two arms with
different types, and conclude that the optimal strategy is
an interval strategy in the market. In [12], an application is
given about strategic pricing of two vendors in a competitive
market. There are𝑁 ≥ 2 consumers who have the same type
either 𝐻 or 𝐿. Two vendors produce two different kinds of
goods for the two types, respectively. Jan and Xi [12] describe
the socially efficient allocation and pricing strategies of two
vendors in the market. Moreover, they use value matching,
smooth pasting, and second derivatives of value functions
to discuss the Markov perfect equilibrium and the socially
efficient allocation.

In this article, we investigate multiarmed bandits, while
two-armed bandits are studied in [12]. We consider multiple
sellers instead of two sellers. In general, there are multiple
sellers to sell the same type of goods in the market, but the
quality, utilities, and the prices of goods sold by each seller
are different. Therefore, changing the number of arms from
two to 𝐾 ≥ 2 is reasonable in the market. People believe that
purchasing two products has the best effects to type𝐻 or 𝐿 in
themarket. For example, the first seller is the highest utility to
type𝐻 but is the lowest utility to type 𝐿. On the contrary, the
second seller is the highest utility to type 𝐿 but is the lowest
utility to type𝐻 and other utilities are between about the two
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sellers to types𝐻 and 𝐿. Instinctively, we think that a rational
consumer chooses goods only from the first two sellers but
this is not perfect or this strategy needs some conditions.
We discuss the necessary and sufficient conditions for this
strategy.

In order to obtain our conclusions under certain assump-
tions of themodel formultiarmed bandits, using themethods
used in [12], we calculate the optimal cutoff points by solving
the corresponding ordinary differential equations. Then, we
obtain the necessary and sufficient conditions for the strategy
of which consumers purchase products from only two sellers
among multiple sellers.

The rest of the paper is as follows. In Section 2, we
introduce a multiarmed model under certain assumptions
and show a conclusion about the model. In Section 3, we
give an application for the model. In Section 3.1, we discuss
optimal choice of consumers in the case of market equilib-
rium. Based on the optimal choice of consumers, we derive
HJB equations for their utilities functions. Using solutions
of the HJB equations, value matching, and smooth pasting,
we get the cutoff point at Markov perfect equilibrium and
the necessary and sufficient conditions about the common
experimentation. In Section 3.2, we get the cutoff point at
socially efficient allocation with the same way in Section 3.1.
The relationship between the Markov perfect equilibrium
and the socially efficient allocation in 𝐾-armed markets is
discussed.

2. The Model

Jin and Xi [12] consider one agent and a bandit with 2 arms.
We study multiarmed bandits and consider the case where
there is only one real-valued state 𝑥(𝑡) ∈ Υ and Υ ∈ 𝑅 is
a connect set. The instantaneous flow payoff of each arm is𝑓�푗(𝑥) at state 𝑥, 𝑗 = 1, 2, . . . , 𝐾. Let 𝑟 > 0 be the discount
rate. For each arm 𝑗, there is a probability space {Ω�푗,F�푗, 𝑃�푗}
endowed with filtration {F�푗�푡 , 𝑡 ≥ 0} and 𝑇�푗(𝑡) is the total
measure of time to time 𝑡when arm 𝑗 has been chosen. From
[12], we know that the updating of 𝑥 in arm 𝑗, when there are𝐾 arms in the market, satisfies

𝑑𝑥�푗 (𝑡) = 𝜇�푗 (𝑥 (𝑡−)) 𝑑𝑇�푗 (𝑡) + 𝜎�푗 (𝑥 (𝑡−)) 𝑑𝑊�푗 (𝑇�푗 (𝑡))
+∑
�푖 ̸=�푗

∫
R−{0}

𝐽�푗 (𝑥 (𝑡−) , 𝑥�푖)N�푗 (𝑑𝑇�푗 (𝑡) , 𝑑𝑥�푖) , (1)

where 𝑊�푗(𝑡) is a standard Brownian motion, 𝑊�푗(𝑡) is inde-
pendent of𝑊�푖(𝑡) (𝑖 ̸= 𝑗), andN�푗 is a Poisson randommeasure
that is independent of 𝑊�푗. The state 𝑥 is updated from arm
𝑖, 𝑖 = 1, 2, . . . , 𝐾 and 𝑑𝑥(𝑡) = ∑�퐾�푖=1 𝑑𝑥�푖(𝑡). Let 𝐽�푗(𝑥(𝑡−), 𝑥�푖) be
the change of the state when there is a Poisson jump. Equation
(1) shows that the state changes from 𝑥�푗 to 𝑥�푖 (𝑖 ̸= 𝑗).Thus, (1)
does not contain the case that state 𝑥�푗 jump from other states.
Because state 𝑥�푗 can jump to any other states and any other
states can jump back to𝑥�푗, (1) contains all jump processes that
describe the changes of state.

Inmultiarmed bandit problem, the stochastic process {𝑥�푡}
is constructed on the product space {Ω,F} fl {Ω1,F1} ×

{Ω2,F2} × ⋅ ⋅ ⋅ × {Ω�퐾,F�퐾} with filtrationF�푡 = ⋁�퐾�푖=1F�푖�푇𝑖(�푡). If𝑥 = 𝑥0, the agent chooses an allocation rule𝑚�푡 = {1, 2, . . . , 𝐾}
adapted to filtration {F�푡}�푡≥0 to solve the following optimal
control problem:

V (𝑥) = sup
�푚𝑡

{E∫∞
�푡=0

𝑒−�푟�푡𝑓�푚𝑡 (𝑥�푡) 𝑑𝑡} , (2)

s.t 𝑑𝑥�푡
= 𝜇�푚𝑡 (𝑥�푡) 𝑑𝑡 + 𝜎�푚𝑡 (𝑥�푡) 𝑑𝑊�푡

+ ∑
�푖 ̸=�푚𝑡

∫
R−{0}

𝐽�푚𝑡 (𝑥 (𝑡−) , 𝑥�푖)N�푚𝑡 (𝑑𝑡, 𝑑𝑥�푖) .
(3)

Assumption 1 (see [12]). LetΥ be a connected set. Assume that𝑓�푗(𝑥), 𝜇�푗(𝑥), 𝜎�푗(𝑥), and 𝐽�푗(𝑥, 𝑥�푖) for 𝑖 ̸= 𝑗 are 𝐶2 functions of𝑥 ∈ Υ.
Assumption 2 (see [12]). Assume that the first derivatives of𝑓�푗(𝑥), 𝜇�푗(𝑥), 𝜎�푗(𝑥), and 𝐽�푗(𝑥, ⋅)with respect to 𝑥 are bounded.
Namely, there exists𝑀 > 0 such that for any 𝑥 ∈ Υ, |𝑓�耠�푗 (𝑥)| ≤𝑀, |𝜇�耠�푗(𝑥)| ≤ 𝑀, |𝜎�耠�푗(𝑥)| ≤ 𝑀, and |𝜕𝐽�푗(𝑥, 𝑥�푖)/𝜕𝑥| ≤ 𝑀 for
each 𝑖 ̸= 𝑗. Using (2) and the dynamic programming principle
(the detailed process is in [15]), for any ℎ > 0, we obtain

V (𝑥) = sup
�푚𝑡

{E∫ℎ
�푡=0

𝑒−�푟�푡𝑓�푚𝑡 (𝑥�푡) 𝑑𝑡 + 𝑒−�푟ℎV (𝑥ℎ)} . (4)

Using Ito’s lemma for 𝑒−�푟�푡V(𝑥�푡) and property of Poisson
random measure (the property of Poisson random measure
is in [13]), we get

𝑑𝑒−�푟�푡V (𝑥�푡) = −𝑟𝑒−�푟�푡V (𝑥�푡) 𝑑𝑡 + 𝑒−�푟�푡V�耠 (𝑥�푡) 𝑑𝑥�푐�푡 + 12
⋅ 𝑒−�푟�푡V�耠�耠 (𝑥�푡) 𝑑 [𝑥, 𝑥]�푡 = −𝑟𝑒−�푟�푡V (𝑥�푡) 𝑑𝑡
+ 𝑒−�푟�푡V�耠 (𝑥�푡) 𝑑𝑥�푐�푡 + 12𝑒−�푟�푡𝜎2�푚𝑡 (𝑥�푡) V�耠�耠 (𝑥�푡) 𝑑𝑡
+ �퐾−1∑
�푖=1,�푖 ̸=�푚𝑡

[∫
R−{0}

𝐽�푚𝑡 (𝑥 (𝑡−) , 𝑥�푖)N�푚𝑡 (𝑑𝑡, 𝑑𝑥�푖)]
2

+ 2 ∑
1≤�푝<�푞≤�퐾−1

∫
R−{0}

𝐽�푚𝑡 (𝑥 (𝑡−) , 𝑥�푝)N�푚𝑡 (𝑑𝑡, 𝑑𝑥�푝)
× ∫

R−{0}
𝐽�푚𝑡 (𝑥 (𝑡−) , 𝑥�푞)N�푚𝑡 (𝑑𝑡, 𝑑𝑥�푞)

= −𝑟𝑒−�푟�푡V (𝑥�푡) 𝑑𝑡 + 𝑒−�푟�푡V�耠 (𝑥�푡) 𝑑𝑥�푐�푡 + 12
⋅ 𝑒−�푟�푡𝜎2�푚𝑡 (𝑥�푡) V�耠�耠 (𝑥�푡) 𝑑𝑡
+ �퐾−1∑
�푖=1,�푖 ̸=�푚𝑡

∫
R−{0}

[V (𝑥 + 𝐽�푚𝑡 (𝑥 (𝑡−) , 𝑥�푚𝑡)) − V (𝑥)]
⋅ N�푚𝑡 (𝑑𝑡, 𝑑𝑥�푖) ,

(5)

where 𝑑𝑥�푐�푡 = 𝜇�푚𝑡(𝑥�푡)𝑑𝑡 + 𝜎�푚𝑡(𝑥�푡)𝑑𝑊�푡.
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Then, we have

𝑒−�푟ℎV (𝑥ℎ) = V (𝑥) + ∫ℎ
�푡=0

−𝑟𝑒−�푟�푡V (𝑥�푡) 𝑑𝑡
+ 𝑒−�푟�푡V�耠 (𝑥�푡) 𝑑𝑥�푐�푡 + ∫ℎ

�푡=0

12𝑒−�푟�푡𝜎2�푚𝑡 (𝑥�푡) V�耠�耠 (𝑥�푡) 𝑑𝑡
+ �퐾−1∑
�푖=1,�푖 ̸=�푚𝑡

∫ℎ
�푡=0

[V (𝑥 + 𝐽�푚𝑡 (𝑥 (𝑡−) , 𝑥�푚𝑡)) − V (𝑥)]
⋅ N�푚𝑡 (𝑑𝑡, 𝑑𝑥�푖) .

(6)

Substituting (6) into (4), using the mean value theorem of
integrals and sending ℎ 󳨀→ 0, we get the HJB equation

𝑟V (𝑥) = sup
�푚𝑡

{𝑓�푚𝑡 (𝑥) + 𝜇�푚𝑡 (𝑥) V�耠 (𝑥) + 12𝜎2�푚𝑡 (𝑥) V�耠�耠 (𝑥)

+ �퐾−1∑
�푖=1,�푖 ̸=�푚𝑡

∫
R−{0}

[V (𝑥 + 𝐽�푚𝑡 (𝑥 (𝑡−) , 𝑥�푖)) − V (𝑥)] ]�푚𝑡 (𝑑𝑥�푖)} ,
(7)

where ]�푚𝑡 is the finite intensity measure ofN�푚𝑡 . From [13], we
know that there exists a unique solution to (1).

We assume that optimal strategy of consumers is an
interval strategy (see [14]). Namely, there exists 𝐾 − 1 points
(cutoffs) 𝑥1, 𝑥2, . . . , 𝑥�푘−1 to partition the space Υ into 𝐾 − 1
intervals, where 𝑥1 ≤ 𝑥2 ≤ ⋅ ⋅ ⋅ ≤ 𝑥�푘−1. When 𝑖, 𝑗 =1, 2, . . . , 𝐾 − 2 and 𝑖 ̸= 𝑗, (𝑥�푖, 𝑥�푖+1) ∩ (𝑥�푗, 𝑥�푗+1) = 𝜙, we
assume that if 𝑥 ∈ (𝑥�푗−1, 𝑥�푗), the agent chooses arm 𝑗, where𝑗 = 1, 2, . . . , 𝐾 and 𝑥0 fl inf{𝑥}, 𝑥�퐾 fl sup{𝑥}. Thus, we have

𝑟V (𝑥) = 𝑓�푗 (𝑥) + 𝜇�푗 (𝑥) V�耠 (𝑥) + 12𝜎2�푗 (𝑥) V�耠�耠 (𝑥)
+ �퐾−1∑
�푖=1,�푖 ̸=�푗

∫
R−{0}

[V (𝑥 + 𝐽�푗 (𝑥 (𝑡−) , 𝑥�푖)) − V (𝑥)]
⋅ ]�푗 (𝑑𝑥�푖) .

(8)

Using the conclusions in [12, 14], we have the value
matching

V (𝑥�푗−) = V (𝑥�푗+) (9)

and the smooth pasting

V�耠 (𝑥�푗−) = V�耠 (𝑥�푗+) . (10)

Now, in the light of the value matching and smooth
pasting, we have the following conclusion.

Theorem 3. If 𝜎�푗(𝑥) > 0 for all 𝑥 ∈ Υ, 𝑗 = 1, 2, . . . , 𝐾,
a necessary condition for optimal solution 𝑥�푗 is that V�耠�耠(𝑥)
satisfies V�耠�耠(𝑥�푗−) = V�耠�耠(𝑥�푗+) for any possible cutoffs 𝑥�푗.

Proof. On the basis of assumption 𝑥 ∈ (𝑥�푗−1, 𝑥�푗), an agent
chooses arm 𝑗, 𝑗 = 1, 2, . . . , 𝐾. It derives that

𝑓�푗 (𝑥) + 𝜇�푗 (𝑥) V�耠 (𝑥) + 12𝜎2�푗 (𝑥) V�耠�耠 (𝑥)
+ �퐾−1∑
�푖=1,�푖 ̸=�푗

∫
R−{0}

[V (𝑥 + 𝐽�푗 (𝑥 (𝑡−) , 𝑥�푖)) − V (𝑥)] ]�푗 (𝑑𝑥�푖)
≤ 𝑟V (𝑥) .

(11)

For 𝑥 󳨀→ 𝑥�푗 and 𝑥 > 𝑥�푗, inequality (11) becomes

𝑓�푗 (𝑥�푗) + 𝜇�푗 (𝑥�푗) V�耠 (𝑥�푗+) + 12𝜎2�푗 (𝑥�푗) V�耠�耠 (𝑥�푗+)
+ �퐾−1∑
�푖=1,�푖 ̸=�푗

∫
R−{0}

[V (𝑥�푗 + 𝐽�푗 (𝑥�푗, 𝑥�푖)) − V (𝑥�푗+)]
⋅ ]�푗 (𝑑𝑥�푖) ≤ 𝑟V (𝑥�푗+) .

(12)

Due to the value matching, we have

𝑓�푗 (𝑥�푗) + 𝜇�푗 (𝑥�푗) V�耠 (𝑥�푗+) + 12𝜎2�푗 (𝑥�푗) V�耠�耠 (𝑥�푗+)
+ �퐾−1∑
�푖=1,�푖 ̸=�푗

∫
R−{0}

[V (𝑥�푗 + 𝐽�푗 (𝑥�푗, 𝑥�푖)) − V (𝑥�푗+)]
⋅ ]�푗 (𝑑𝑥�푖) ≤ 𝑟V (𝑥�푗−)

(13)

and

𝑟V (𝑥�푗−) = 𝑓�푗 (𝑥�푗) + 𝜇�푗 (𝑥�푗) V�耠 (𝑥�푗−) + 12𝜎2�푗 (𝑥�푗)
⋅ V�耠�耠 (𝑥�푗−)
+ �퐾−1∑
�푖=1,�푖 ̸=�푗

∫
R−{0}

[V (𝑥�푗 + 𝐽�푗 (𝑥�푗, 𝑥�푖)) − V (𝑥�푗−)]
⋅ ]�푗 (𝑑𝑥�푖) .

(14)

From the smooth pasting, we obtain V�耠�耠(𝑥�푗+) ≤ V�耠�耠(𝑥�푗−).
In the same way, we get V�耠�耠(𝑥�푗−) ≤ V�耠�耠(𝑥�푗+). Thus, we have
V�耠�耠(𝑥�푗−) = V�耠�耠(𝑥�푗+) for any 𝑗 = 1, 2, . . . , 𝐾.

Theorem 3 gives a necessary condition under which
second derivatives of value functions are equal at every cutoff
when there are 𝐾 arms in the market.

When 𝐾 = 2, i.e., there are two arms in the market; the
agent has two states 𝑥1 and 𝑥2 in the model. In this case, we
only need to consider that an agent jumps between the two
states, i.e., 𝑚�푡 = {1, 2}. Thus, there is one cutoff, which is
discussed in [12].

3. Application

The application of Theorem 3 is similar to that in [12]. The
difference is that there are 𝐾 ≥ 2 sellers offering different
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products in the market. We index these sellers with 𝑗 =1, 2, . . . , 𝐾. We assume that all consumers have the same type𝑖, either𝐻 or 𝐿. Let 𝛽�푗�퐻 and 𝛽�푗�퐿 be the utilities of consumers
who buy good 𝑗 with type 𝐻 or 𝐿, respectively. We assume𝛽1�퐻 > 𝛽2�퐻 > ⋅ ⋅ ⋅ > 𝛽�퐾�퐻 and 𝛽1�퐿 < 𝛽2�퐿 < ⋅ ⋅ ⋅ < 𝛽�퐾�퐿,
i.e., the more likely the consumers are to buy type 𝐻, the
more tendency they choose the previous sellers. Therefore,
we denote that 𝑥 ∈ [0, 1] is the common belief that the type
is high and then the expected utility of controlling the seller𝑗 is 𝑓�푗(𝑥) fl 𝑥𝛽�푗�퐻 + (1 − 𝑥)𝛽�푗�퐿. If we denote 𝑎�푗 fl 𝛽�푗�퐻 − 𝛽�푗�퐿
and 𝑏�푗 fl 𝛽�푗�퐿, the utility is represented by

𝑓�푗 (𝑥) = 𝑎�푗𝑥 + 𝑏�푗, (15)

where 𝑎�푗 + 𝑏�푗 < 𝑎�푗+1 + 𝑏�푗+1 and 𝑏�푗 > 𝑏�푗+1.
At any time, all market participants observe all previous

outcomes. Because of the influence caused by uncertain
external factors, the flow utility 𝑢�푗�푖(𝑡) has a noisy signal of the
true value (the detailed introduction can be found in [12]).

𝑑𝑢�푗�푖 (𝑡) = 𝜉�푗�푖𝑑𝑡 + 𝜎�푗𝑑𝑊̃�푗 (𝑡) , (16)

where 𝑊̃�푗(𝑡) is independent of 𝑊̃�푖(𝑡) (𝑖 ̸= 𝑗).𝑥 is related to time and it is described as a learning process
in [16], denoted by 𝑥�푡. Without loss of generality, we assume

that there are 𝑛�푗 consumers choosing seller 𝑗 and ∑�퐾�푗=1 𝑛�푗 =𝑁 ≥ 2. From the statements in [6, 7], we have that 𝑥�푡 satisfies
𝑑𝑥�푡 = �퐾∑

�푗=1

𝑛�푗Ξ�푗 (𝑥) 𝑑𝑊�푗 (𝑡) , (17)

where 𝑊�푗(𝑡) is independent of 𝑊�푖(𝑡) (𝑖 ̸= 𝑗) and Ξ�푗(𝑥) fl
𝑥2(1 − 𝑥)2(𝑎�푗/𝜎�푗). We denote 𝑠�푗 fl 𝑎�푗/𝜎�푗.

In the next subsection, the Markov perfect equilibrium
and the socially efficient allocation in 𝐾-armed market are
discussed.

3.1. Markov Perfect Equilibrium. Let 𝑝�푗 denote the price of
goods of seller 𝑗.Theprice is related to𝑥 at instantaneous time𝑡. So 𝑝�푗 is a mapping [0, 1] 󳨀→ R, 𝑗 = 1, 2, . . . , 𝐾. We denote𝛼�푖 as the choice of 𝑖th consumer which is related not only
to his common belief 𝑥, but also to the prices of the sellers’
goods, i.e., 𝛼�푖 : [0, 1] × R ×R × ⋅ ⋅ ⋅ ×R⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

The number of R is�퐾
󳨀→ {1, 2, . . . , 𝐾}. A

symmetric Markov perfect equilibrium is {𝛼, 𝑝1, 𝑝2, . . . , 𝑝�퐾}.
When the choice of the previous 𝑁 − 1 consumers is

observed, the utility of the 𝑁th consumer is maximized.
Let 𝑈(𝑥) denote the maximum utility of this consumer and𝑛�耠�푗 denote the number of choosing the 𝑗th seller. We have
∑�퐾�푗=1 𝑛�耠�푗 = 𝑁 − 1. There exists 𝑑 ∈ {1, 2, . . . , 𝐾} subject to
𝑛�耠�푑 = 𝑛�푑 − 1 and 𝑛�耠�푖 = 𝑛�푖, 𝑖 ̸= 𝑑. Then, we have

𝑟𝑈 (𝑥) = max

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑓1 (𝑥) − 𝑝1 (𝑥) + 12 [ �퐾∑
�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ1 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥)
...

𝑓�푑−1 (𝑥) − 𝑝�푑−1 (𝑥) + 12 [ �퐾∑
�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ�푑−1 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥)
𝑓�푑 (𝑥) − 𝑝�푑 (𝑥) + 12 [ �퐾∑

�푖=1

𝑛�푖Ξ�푖 (𝑥)]𝑈�耠�耠 (𝑥)
𝑓�푑+1 (𝑥) − 𝑝�푑+1 (𝑥) + 12 [ �퐾∑

�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ�푑+1 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥)
...

𝑓�퐾 (𝑥) − 𝑝�퐾 (𝑥) + 12 [ �퐾∑
�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ�퐾 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥)

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

. (18)

Due to the price competition, the consumer chooses equal
utility for other sellers. Thus, we get

𝑓1 (𝑥) − 𝑝1 (𝑥)
+ 12 [ �퐾∑

�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ1 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥) = ⋅ ⋅ ⋅
= 𝑓�푑−1 (𝑥) − 𝑝�푑−1 (𝑥)

+ 12 [ �퐾∑
�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ�푑−1 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥)
= 𝑓�푑 (𝑥) − 𝑝�푑 (𝑥) + 12 [ �퐾∑

�푖=1

𝑛�푖Ξ�푖 (𝑥)]𝑈�耠�耠 (𝑥)
= 𝑓�푑+1 (𝑥) − 𝑝�푑+1 (𝑥)
+ 12 [ �퐾∑

�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ�푑+1 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥) = ⋅ ⋅ ⋅
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= 𝑓�퐾 (𝑥) − 𝑝�퐾 (𝑥)
+ 12 [ �퐾∑

�푖=1

𝑛�푖Ξ�푖 (𝑥) + Ξ�퐾 (𝑥) − Ξ�푑 (𝑥)]𝑈�耠�耠 (𝑥) .
(19)

Therefore, we obtain

𝑓�푖 (𝑥) − 𝑝�푖 (𝑥) + 12Ξ�푖 (𝑥)𝑈�耠�耠 (𝑥)
= 𝑓�푗 (𝑥) − 𝑝�푗 (𝑥) + 12Ξ�푗 (𝑥)𝑈�耠�耠 (𝑥) ,

(20)

where 𝑖, 𝑗 = 1, 2, . . . , 𝐾 and 𝑖 ̸= 𝑗.
Now, we discuss the pricing of goods of sellers. Denote𝑉�푗(𝑥) as the 𝑗th seller’s utility. If there are 𝑛�푗 consumers

buying goods 𝑗 when the price is 𝑝�푗, we have
𝑉�푗 (𝑥) = E [∫∞

0
𝑒−�푟�푡𝑛�푗𝑝�푗 (𝑥�푡) 𝑑𝑡] , (21)

where 𝑑𝑥�푡 = ∑�퐾�푗=1√𝑛�푗𝑥�푡(1 − 𝑥�푡)𝑠�푗𝑑𝑊�푗(𝑡).
From (21), we derive that

𝑟𝑉�푗 (𝑥) = 𝑛�푗𝑝�푗 (𝑥) + 12 ( �퐾∑
�푖=1

𝑛�푖Ξ�푖 (𝑥))𝑉�耠�耠�푗 (𝑥) . (22)

We get 𝑛�푗 = 0 or 𝑁 because all consumers choose only
one seller (see [6, 7]). When 𝑛�푗 = 0, the utility of seller 𝑗 is
presented in the form

𝑟𝑉�푗 (𝑥) = 𝑁2 Ξ�푑 (𝑥) 𝑉�耠�耠�푗 (𝑥) , (23)

where we assume that all consumers choose seller 𝑑, i.e., 𝑗 ∈{1, 2, . . . , 𝐾} − {𝑑} and 𝑛�푑 = 𝑁.
When only one consumer chooses seller 𝑗, i.e., 𝑛�푗 = 1, the

utility of seller 𝑗 is
𝑟𝑉�푗 (𝑥) = 𝑝�푗 (𝑥)

+ 12 [(𝑁 − 1) Ξ�푑 (𝑥) + Ξ�푗 (𝑥)] 𝑉�耠�耠�푗 (𝑥) . (24)

As a rational market participant, when no consumer buys
goods, the seller adjusts the price so that the payoff in this case
is equal to the payoff when only one consumer chooses this
seller. We obtain the price of goods of seller 𝑗 in the form

𝑝�푗 (𝑥) = 12 (Ξ�푑 (𝑥) − Ξ�푗 (𝑥))𝑉�耠�耠�푗 (𝑥) . (25)

From (20), we get the price of seller 𝑑 in the form

𝑝�푑 (𝑥) = 𝑓�푑 (𝑥) − 𝑓�푗 (𝑥)
+ 12 (Ξ�푑 (𝑥) − Ξ�푗 (𝑥)) (𝑈�耠�耠 (𝑥) + 𝑉�耠�耠�푗 (𝑥)) . (26)

We have 𝑁 − 1 cutoffs 𝑥�푗, 𝑗 = 1, 2, . . . , 𝑁 − 1, where 0 <𝑥1 ≤ 𝑥2 ≤ ⋅ ⋅ ⋅ ≤ 𝑥�푗−1 < 1.When commonbelief𝑥 ∈ (𝑥�푖−1, 𝑥�푖),
consumer chooses seller 𝑖, 𝑖 = 1, 2, . . . , 𝐾 ( 𝑥0 fl 0, 𝑥�퐾 fl 1).
If 𝑥 = 𝑥�푖, the utilities of consumers are indifferent when they
choose seller 𝑖 or 𝑖 + 1 due to value matching. When 𝑥 ̸= 𝑥�푖,
we have the conclusion

Theorem4. All consumers only choose the first seller or the last
seller in the market if and only if cutoffs 𝑥�푗, 𝑗 = 1, 2, . . . , 𝑁− 1,
are the same and equal to (𝑟𝐷0 − (𝑏1 − 𝑏�푘))/((𝑎1 − 𝑎�퐾) − 𝑟𝐷1),
where

𝐷0 fl (𝛾1 + 12 𝑠21 + 𝛾�퐾 − 12 𝑠2�퐾) 𝑏1 − 𝑏�퐾𝑟 𝐶1 + 𝐶�퐾𝐶1 ⋅ 𝐶�퐾 ,
𝐷1

fl (𝑠2�퐾 − 𝑠21) 𝑏1 − 𝑏�퐾𝑟
+ (𝑠21 𝛾1 − 12 + 𝑠2�퐾 𝛾�퐾 + 12 ) 𝑎1 − 𝑎�퐾𝑟 𝐶1 + 𝐶�퐾𝐶1 ⋅ 𝐶�퐾 ,

𝐶1 fl 12 (𝑁 − 1) 𝑠21 (𝜆1 − 𝛾1) + 12𝑠2�퐾 (𝜆1 + 𝛾�퐾) ,
𝐶�퐾 fl 12 (𝑁 − 1) 𝑠2�퐾 (𝜆�퐾 − 𝛾�퐾) + 12𝑠21 (𝜆�퐾 + 𝛾1) ,
𝛾�푗 fl √1 + 8𝑟𝑁𝑠2�푗 ,

𝜆1 fl √1 + 8𝑟(𝑁 − 1) 𝑠21 + 𝑠2�퐾
and 𝜆�퐾 fl √1 + 8𝑟(𝑁 − 1) 𝑠2�퐾 + 𝑠21 .

(27)

Proof. Firstly, we prove the sufficiency. When all cutoffs are
equivalent and equal to (𝑟𝐷0 − (𝑏1 −𝑏�푘))/((𝑎1 −𝑎�퐾) − 𝑟𝐷0), all
consumers only choose the first seller or the last seller in the
market.

Letting 𝑥∗ fl 𝑥1 = ⋅ ⋅ ⋅ = 𝑥�퐾−1, we have 𝑥∗ = 𝑥1 = 𝑥�퐾−1.
When 𝑥 ∈ (0, 𝑥1), all consumers choose the first seller. From
(25) and (26), we have

𝑝�퐾 (𝑥) = 12 (Ξ1 (𝑥) − Ξ�퐾 (𝑥)) 𝑉�耠�耠�퐾 (𝑥) (28)

and

𝑝1 (𝑥) = 𝑓1 (𝑥) − 𝑓�퐾 (𝑥)
+ 12 (Ξ1 (𝑥) − Ξ�퐾 (𝑥)) (𝑈�耠�耠 (𝑥) + 𝑉�耠�耠�퐾 (𝑥)) . (29)

Substituting (29) into (22) yields

𝑟𝑉1 (𝑥) = 𝑁[𝑓1 (𝑥) − 𝑓�퐾 (𝑥)
+ 12 (Ξ1 (𝑥) − Ξ�퐾 (𝑥)) (𝑉�耠�耠�퐾 (𝑥) − 𝑈�耠�耠 (𝑥))] + 𝑁2
⋅ Ξ1𝑉�耠�耠1 (𝑥)

(30)
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Substituting (28) and (29) into (22) gives rise to

𝑟𝑈 (𝑥) = 𝑓�퐾 (𝑥)
− 12 (Ξ1 (𝑥) − Ξ�퐾 (𝑥)) (𝑉�耠�耠�퐾 (𝑥) + 𝑈�耠�耠 (𝑥))
+ 𝑁2 Ξ1𝑈�耠�耠 (𝑥) .

(31)

From (23), (30), and (31), for 𝑥 ∈ (0, 𝑥1), we have

𝑉1 (𝑥) = 𝑁𝑓1 (𝑥) − 𝑓�퐾 (𝑥)𝑟
+ 𝑃3𝑥(�훾1+1)/2 (1 − 𝑥)−(�훾1−1)/2
− 𝑁𝑃2𝑥(�휆1+1)/2 (1 − 𝑥)−(�휆1−1)/2

𝑉�퐾 (𝑥) = 𝑃1𝑥(�훾1+1)/2 (1 − 𝑥)−(�훾1−1)/2
𝑈 (𝑥) = 𝑓�퐾 (𝑥)𝑟 + 𝑃2𝑥((�휆1+1)/2)(1−�푥)−(𝜆1−1)/2

− 𝑃1𝑥(�훾1+1)/2 (1 − 𝑥)−(�훾1−1)/2 .

(32)

Similarly, for 𝑥 ∈ (𝑥�퐾−1, 1), it has

𝑉1 (𝑥) = 𝑄1𝑥−(�훾𝐾−1)/2 (1 − 𝑥)(�훾𝐾+1)/2
𝑉�퐾 (𝑥) = 𝑁𝑓�퐾 (𝑥) − 𝑓1 (𝑥)𝑟

+ 𝑄3𝑥−(�훾𝐾−1)/2 (1 − 𝑥)(�훾𝐾+1)/2
− 𝑁𝑄2𝑥−(�휆𝐾−1)/2 (1 − 𝑥)(�휆𝐾+1)/2

𝑈 (𝑥) = 𝑓1 (𝑥)𝑟 + 𝑄2𝑥((�휆+1)/2)(1−�푥)−(𝜆−1)/2
− 𝑄1𝑥(�훾𝐾+1)/2 (1 − 𝑥)−(�훾𝐾−1)/2 ,

(33)

where 𝛾�푗 fl √1 + 8𝑟/𝑁𝑠2�푗 , 𝜆1 fl √1 + 8𝑟/((𝑁 − 1)𝑠21 + 𝑠2�퐾),
𝜆�퐾 fl √1 + 8𝑟/((𝑁 − 1)𝑠2�퐾 + 𝑠21), and𝑃�휉 and𝑄�휉 are constants,𝜉 = 1, 2, 3.

Using value matching, smooth pasting, the second
derivative condition, and 𝑥∗ = 𝑥1 = 𝑥�퐾−1, we have𝑉1(𝑥∗−) =𝑉�퐾(𝑥∗+), 𝑉�耠1 (𝑥∗−) = 𝑉�耠�퐾(𝑥∗+), 𝑉�耠�耠1 (𝑥∗−) = 𝑉�耠�耠�퐾 (𝑥∗+), and𝑈(𝑥∗−) = 𝑈(𝑥∗+). Therefore, we obtain

𝑓1 (𝑥∗) − 𝑓�퐾 (𝑥∗)𝑟 = 𝜑 (𝑥∗)
𝐶1 + 𝜑 (𝑥∗)

𝐶�퐾 , (34)

where

𝜑 (𝑥) fl (𝛾1 + 12 𝑠21 + 𝛾�퐾 − 12 𝑠2�퐾) 𝑏1 − 𝑏�퐾𝑟
+ [(𝑠2�퐾 − 𝑠21) 𝑏1 − 𝑏�퐾𝑟
+ (𝑠21 𝛾1 − 12 + 𝑠2�퐾 𝛾�퐾 + 12 ) 𝑎1 − 𝑎�퐾𝑟 ] 𝑥,

𝐶1 fl 12 (𝑁 − 1) 𝑠21 (𝜆1 − 𝛾1) + 12𝑠2�퐾 (𝜆1 + 𝛾�퐾)

(35)

and

𝐶�퐾 fl 12 (𝑁 − 1) 𝑠2�퐾 (𝜆�퐾 − 𝛾�퐾) + 12𝑠21 (𝜆�퐾 + 𝛾1) . (36)

Define

𝐷0 fl (𝛾1 + 12 𝑠21 + 𝛾�퐾 − 12 𝑠2�퐾) 𝑏1 − 𝑏�퐾𝑟 𝐶1 + 𝐶�퐾𝐶1 ⋅ 𝐶�퐾 (37)

and

𝐷1 fl (𝑠2�퐾 − 𝑠21) 𝑏1 − 𝑏�퐾𝑟
+ (𝑠21 𝛾1 − 12 + 𝑠2�퐾 𝛾�퐾 + 12 ) 𝑎1 − 𝑎�퐾𝑟 𝐶1 + 𝐶�퐾𝐶1 ⋅ 𝐶�퐾 .

(38)

Thus, we get

𝑓1 (𝑥∗) − 𝑓�퐾 (𝑥∗)𝑟 = 𝐷�표 + 𝐷1𝑥∗ (39)

and

𝑥∗ = 𝑟𝐷0 − (𝑏1 − 𝑏�푘)(𝑎1 − 𝑎�퐾) − 𝑟𝐷0 . (40)

When 𝑥∗ fl 𝑥1 = ⋅ ⋅ ⋅ = 𝑥�퐾−1, (𝑥�푖, 𝑥�푖+1) = 𝜙, 𝑖 =1, 2, . . . , 𝐾 − 2, all consumers only choose the first seller or
the last seller in the market.

The sufficiency of Theorem 4 is proved.
Now, we prove the necessity. That all consumers choose

only the first seller or the last seller in the market means that
these cutoffs are the same and equal to (𝑟𝐷0−(𝑏1−𝑏�푘))/((𝑎1−𝑎�퐾) − 𝑟𝐷0), 𝑥 ̸= 𝑥∗. We prove it by contradiction.

Assuming 𝑥�푖 ̸= 𝑥�푖+1, we get 𝑥�푖 < 𝑥�푖+1, 𝑖 = 1, 2, . . . , 𝐾 − 2.
So (𝑥�푖, 𝑥�푖+1) ∩ {[0, 𝑥∗) ∪ (𝑥∗, 1]} ̸= 𝜙, i.e., ∃𝑥0 ̸= 𝑥∗, 𝑥0 ∈(𝑥�푖, 𝑥�푖+1). When the common belief is 𝑥0, the optimal choice
is the (𝑖+1)th and 𝑖+1 ̸= 1 and 𝑖+1 ̸= 𝐾.This is contradiction
to the proposition of which all consumers choose only the
first seller or the last seller. So 𝑥�푖 = 𝑥�푖+1, 𝑖 = 1, 2, . . . , 𝐾 − 2.
According to the proof of the sufficiency, we have 𝑥∗ = 𝑥1 =𝑥�퐾−1 = (𝑟𝐷0 − (𝑏1 − 𝑏�푘))/((𝑎1 − 𝑎�퐾) − 𝑟𝐷0). The necessity of
Theorem 4 is proved.

Theorem 4 shows the necessary and sufficient conditions
for the consumers’ choice. We find that when the consumers
only choose the first seller and the last seller, the multiarmed
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bandits problem would be attributed to the two-armed
bandits. In other words, other sellers gradually disappear in
themarket because they have no sales.Themultiarmedbandit
problem is transformed into the two-armed bandits in the
situation discussed in [12].

3.2. Socially Efficient Allocation. We consider the optimal
choice of planners when they face multiarmed bandit prob-
lem. Let the total social surplus function be 𝑤(𝑥). We have

𝑤 (𝑥) = sup
�푛1 ,�푛2,...,�푛𝐾

{{{
E∫∞
0

𝑒−�푟�푡 �퐾∑
�푗=1

𝑛�푗�푡𝑓�푗 (𝑥�푡) 𝑑𝑡}}}
(41)

s.t. 𝑑𝑥�푡 = �퐾∑
�푗=1

√𝑛�푗�푡𝑥�푡 (1 − 𝑥�푡) 𝑠�푗𝑑𝑊�푗 (𝑡) . (42)

Assume that Π�푗(𝑥) is the total social surplus in a neigh-
borhood of 𝑥 if a planner choose seller 𝑗. From (41), we have

𝑟Π�푗 (𝑥) = 𝑁[𝑓�푗 (𝑥) + 12Ξ�푗 (𝑥)Π�耠�耠�푗 (𝑥)] , (43)

where 𝑗 = 1, 2, . . . , 𝐾.
Solving the ordinary differential equation (43), we get

Π1 (𝑥) = 𝑁𝑓1 (𝑥)𝑟 + 𝐶11𝑥(�훾1+1)/2 (1 − 𝑥)−(�훾1−1)/2 ,
Π�푗 (𝑥) = 𝑁𝑓�푗 (𝑥)𝑟 + 𝐶1�푗𝑥(�훾𝑗+1)/2 (1 − 𝑥)−(�훾𝑗−1)/2

+ 𝐶2�푗𝑥−(�훾𝑗−1)/2 (1 − 𝑥)(�훾𝑗+1)/2
𝑗 = 2, . . . , 𝐾 − 1,

Π�퐾 (𝑥) = 𝑁𝑓�퐾 (𝑥)𝑟 + 𝐶2�퐾𝑥−(�훾𝐾−1)/2 (1 − 𝑥)(�훾𝐾+1)/2 ,
(44)

where 𝐶1�푖 and 𝐶2�푖 , 𝑖 = 1, 2, . . . , 𝐾, are constants.
We denote 𝑥1, 𝑥2, . . . , 𝑥�퐾−1 subjecting to 0 < 𝑥1 ≤ 𝑥2 ≤⋅ ⋅ ⋅ ≤ 𝑥�퐾−1 < 1 as the cutoffs of the choice for the planner.

When 𝑥 ∈ (𝑥�푖−1, 𝑥�푖), the optimal choice is the 𝑖th seller,𝑖 = 1, 2, . . . , 𝐾 and 𝑥0 = 0, 𝑥�퐾 = 1. Due to value matching,
smooth pasting, and the second derivative conditions, one
has

Π�푗 (𝑥�푗−) = Π�푗+1 (𝑥�푗+) ,
Π�耠�푗 (𝑥�푗−) = Π�耠�푗+1 (𝑥�푗+) ,
Π�耠�耠�푗 (𝑥�푗−) = Π�耠�耠�푗+1 (𝑥�푗+) ,

(45)

where 𝑗 = 1, 2, . . . , 𝐾 − 1.
There are (3𝐾 − 3) unknown parameters and (3𝐾 − 3)

equations in system (45) with [𝑥�훽(1 − 𝑥)1−�훽]�耠 ̸= 𝑥�훽(1 − 𝑥)1−�훽,
for all 𝛽 > 1, i.e., the coefficient matrix of system (45) is
nonsingular. Thus, system (45) has a unique solution.

The planner chooses from the first seller or the 𝐾 − 𝑡ℎ
seller when 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ = 𝑥�퐾−1. Let 𝑥† fl 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ =𝑥�퐾−1. System (45) becomes

Π1 (𝑥†) = Π�퐾 (𝑥†) ,
Π�耠1 (𝑥†) = Π�耠�퐾 (𝑥†) ,
Π�耠�耠1 (𝑥†) = Π�耠�耠�퐾 (𝑥†) .

(46)

We obtain

𝑥† = (𝑏1 − 𝑏�푘) (((𝛾1 + 1) /2) 𝑠21 + ((𝛾�퐾 − 1) /2) 𝑠2�퐾)(𝑎�퐾 − 𝑎1) (𝑠21 ((𝛾1 − 1) /2) + 𝑠2�퐾 ((𝛾�퐾 + 1) /2)) + (𝑏1 − 𝑏�퐾) (𝑠21 − 𝑠2�퐾) . (47)

The results in [12] introduce the necessary and sufficient
condition under which the Markov perfect equilibrium with
cautious strategies is socially efficient with two-armed ban-
dits.

Corollary 5. When 𝐾 ≥ 2, 𝑁 ≥ 2, the consumers’ cutoffs
are 𝑥∗, and the planner’s cutoffs are 𝑥†, the Markov perfect
equilibrium with cautious strategies is socially efficient if and
only if 𝑠1 = 𝑠�퐾. Moreover, 𝑥∗ > 𝑥† (𝑥∗ < 𝑥†) when 𝑠1 >𝑠�퐾 (𝑠1 < 𝑠�퐾).

The proof of Corollary 5 is similar to that ofTheorem 2 in
[12]. We omit its proof.

Corollary 5 shows that the necessary and sufficient
conditions under which theMarkov perfect equilibriumwith
cautious strategies is socially efficient when the cutoffs are
multiarmed bandits. Jin and Xi [12] present the conditions in

the case of two-armedmarket.Thus,Theorem 4 extends parts
of results in [12].

According to the condition in Corollary 5, when (𝛽1�퐻 −𝛽1�퐿)/𝜎1 = (𝛽�퐾�퐻−𝛽�퐾�퐿)/𝜎�퐾, we obtain that theMarkov perfect
equilibrium with cautious strategies is socially efficient. If𝜎1 = 𝜎�푘, we obtain 𝛽1�퐻 − 𝛽�퐾�퐻 = 𝛽1�퐿 − 𝛽�퐾�퐿. In the light of
our initial hypothesis, we have 𝛽1�퐻 = 𝛽�퐾�퐻 and 𝛽1�퐿 = 𝛽�퐾�퐿;
i.e., all sellers are identical in the market.

4. Conclusion

We study a common value experimentation with multiarmed
bandits and present its application. This extends two-armed
bandits in [12] to multiarmed bandits. We derive the HJB
equation with multiarmed bandits. In the application, we
get the necessary and sufficient conditions for the choices
of consumers from two sellers. The necessary and sufficient
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conditions guarantee that the Markov perfect equilibrium
with cautious strategies is socially efficient. In future, we need
to solve all the cutoffs in system (45) when these cutoffs are
different and give general solutions about these cutoffs.
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