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This study proposes an improved model and algorithm for the large-scale multi-depot vehicle scheduling problem (MDVSP) with
departure-duration restrictions. In this study, the time-space network is applied to model the large-scale MDVSP. Considering
that crews usually change shifts in the depot, departure-duration restrictions are added to the classic set-partitioning model to
ensure that buses return to the depot when crews reach their working time limits. By embedding a preliminary exploring tactic
to the shortest path faster algorithm (SPFA), researchers developed an improved large neighborhood search (LNS) algorithm to
solve large-scale instances of MDVSPwith departure-duration restrictions.The proposedmethodology is applied to a real-life case
in China and several test instances. The results show that the improved LNS algorithm can achieve very good performance in
computational efficiency without deteriorating solution quality, which is important for large-scale systems. More specifically, the
total cost of the improved LNS algorithm is approximately equal to branch-and-price, but the computational time is much shorter
in the case study. For test instances with different number of timetabled trips (500, 1000, 1500, and 2000), the Quality Gap (QG) is
very small, approximately 0.35%, 0.38%, 0.63%, and 0.93%, while the Efficiency Ratio (ER) reaches up to 2.89, 2.98, 3.65, and 3.79,
respectively.

1. Introduction

Bus operation planning commonly includes four compo-
nents: (1) bus network design; (2) timetable design; (3)
bus scheduling; and (4) crew scheduling [1]. Among them,
bus scheduling is extremely complex. An efficient schedul-
ing plan is of great benefit to both bus companies and
passengers. Compared to the single-line scheduling mode
universally used in China, themulti-depot vehicle scheduling
mode which belongs to the regional scheduling mode is
more efficient. In the multi-depot vehicle scheduling prob-
lem (MDVSP), buses are allocated globally, helping bus
companies reduce operating costs and promote operational
efficiency. Although several models and algorithms have
been developed for the vehicle routing problem (VRP) or
vehicle scheduling problem (VSP), the extremely large-scale
MDVSP involving thousands of timetabled trips and several

depots remains relatively unexplored. Most algorithms are
not efficient enough to provide a relatively optimal solution
within an acceptable computational time. Moreover, bus
scheduling systems in China are particularly large and busy
due to the large population base and city size. In 2013,
there were 21,293 vehicles running on 754 bus lines in
Beijing every day, and, by 2014, the number of bus lines
had increased to 652 in a third-tier city like Ningbo. For
these large-scale systems, it is considerably difficult to apply
the multi-depot vehicle scheduling mode into practice. The
key issue of application lies in the availability of methods to
downsize the scheduling system and improve the algorithm.
As background, previous studies are analyzed from three
aspects (i.e., network description, model formulation, and
solution algorithm) as follows.

According to previous studies, both connection-based
networks and time-space networks could be applied tomodel
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the VSP. In early studies, vehicle scheduling problems were
modeled as connection-based networks [2]. The time-space
network was first proposed for air scheduling due to its
simplicity in modeling possible connections between flights
[3]. Kliewer et al. were the first to apply the time-space
network to VSP; they then proposed a commodity network
flow model on the basis of the time-space network structure
[4, 5]. For a small-scale VSP, the connection-based network
was superior, whereas, for a middle or large-scale VSP, the
time-space network could achieve better performance in
downsizing the system by reducing the number of deadhead
arcs [6]. Gintner et al. and Naumann et al. efficiently solved
a practical large-scale and middle-scale MDVSP, respectively,
using the commodity network flowmodel based on the time-
space network [7, 8]. However, the reduction of deadhead
arcs in the time-space network has not been sufficiently
considered in previous studies. Instead of checking and
reducing deadhead arcs after the network takes its shape, we
avoid generating unnecessary deadhead arcs in the network
building process to achieve the goal of reducing the number
of deadhead arcs. In this way, we can reduce not only the
number of deadhead arcs but also the time used in construct-
ing the time-space network so as to improve efficiency.

For the VRP, there are three basic models from previous
studies (i.e., vehicle flow model, commodity network flow
model, and set-partitioning model) and several variations
involving different constraints (e.g., VRP with time windows
[9], VRP with backhauls [10], and VRP with pickup and
delivery [11]). The goals of these models normally fall into
two categories, minimizing fleet size orminimizing operating
costs. The set-partitioning model was originally proposed
by Balinski and Quandt [12]. As the route feasibility is
implicitly considered in the definition of the circuit set, the
set-partitioning model can easily take extra constraints into
account [13]. In recent years, there have been too many safety
incidents related to bus drivers working overtime in China.
Drivers working overtime not only jeopardize their own
health but also threaten the safety of passengers. Therefore,
compared to other constraints, crews’ working time limits are
the primary consideration taken into account in this study.
Drivers should strictly adhere to the change-of-shift time in
order to get sufficient rest, which will ensure the safety of
passengers on board. As drivers usually change shifts in the
depot, buses should return to the depot when the crews reach
their working time limits to ensure safe driving. Based on
these conditions, the MDVSP in this study is formulated as a
set-partitioning model with departure-duration restrictions.

As VRP is an extension of the Traveling Salesman Prob-
lem (TSP) and the VSP explored in this study is a VRP that
arises in the public transport area, the algorithms for VSP
can build on the extensive and successful work done for TSP
and VRP. The algorithms in previous studies for VRP are
categorized into two groups: exact algorithms and heuris-
tic algorithms. Exact algorithms can achieve high quality
solutions when dealing with small-scale systems; however,
they suffer great limitations in practice. In contrast, the
heuristic algorithms that usually perform a relatively limited
exploration of the search space are capable of solving larger
VRP problems within modest computational time. However,

for extremely large-scale real-life scheduling instances involv-
ing several thousand trips, most of the available algorithms
are computationally intensive, requiring thousands of CPU
seconds. The branch-and-bound algorithm belongs to the
exact algorithms category and has been extensively applied
to solve the VRP and its variants in recent decades [14–
16]. As noted by Toth and Michalewicz, branch-and-bound
could find a significantly high quality solution but was not
capable of solving large instances encountered in practice
[13, 17]. The column generation was an important technique
that could solve larger Linear Programing (LP) problems
[18]. Many scholars have applied column generation to solve
VRP [19, 20]. By integrating column generation techniques
with the branch-and-bound scheme (which is also known
as branch-and-price), many systems can be solved with
significantly good quality solutions, as demonstrated by
many successful studies in recent years [21–25]. However,
the computational efficiency of the branch-and-price is not
so satisfying, in particular for large-scale systems. As the
MDVSP explored in this study is extremely large, a heuristic
algorithm is established on the large neighborhood search
(LNS) framework. By integrating branch-and-price into LNS,
an algorithm characterized by both high quality solutions and
computational efficiency is established. As theMDVSP in this
study has departure-duration restrictions, the shortest path
faster algorithm [26] ismodified by embedding a preliminary
exploring tactic to solve the subproblem.

In contrast to previous studies on MDVSP, the con-
tributions of this study are as follows: (1) presenting a
novel way to deal with deadhead arcs so as to improve
the efficiency of downsizing the time-space network based
MDVSP, (2) modeling the MDVSP by adding departure-
duration restrictions to ensure safe driving which is imper-
ative in China, (3) proposing an improved LNS algorithm
to ensure good performance both in solution quality and
computational efficiency, and (4) modifying the shortest
path faster algorithm (SPFA) by embedding a preliminary
exploring tactic to address departure-duration restrictions.

The remaining sections are organized as follows. Section 2
introduces basic descriptions of the MDVSP and network
modeling. Sections 3 and 4 present the model formulation
and solution algorithm to solve a large-scale MDVSP with
departure-duration restrictions. Sections 5 and 6 evaluate the
performance of the proposed methodology using a real-life
case in China and several test instances. The conclusions and
perspectives are summarized in the last section.

2. Problem Statement and Network Modeling

Before constructing the mathematical formulation, the time-
space network is first introduced. In this section, basic
descriptions and assumptions are presented. The methods of
network modeling are explored at length. Some necessary
definitions and terms are defined in this section.

2.1. Basic Descriptions and Assumptions. The VSP is a VRP
encountered by bus companies when addressing the task of
assigning buses to cover a given set of timetabled trips with
the goal of minimizing fleet size or operating costs. Each
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Figure 1: Time-space network of depot k in MDVSP.

timetabled trip is accomplished exactly once by a bus, and
each bus performs a feasible sequence of trips.TheMDVSP in
this study involves several depots, and a timetabled trip can be
run by any bus from any depot. The large-scale MDVSP with
departure-duration restrictions as addressed in this study is
built upon the following hypotheses:

(1) The scheduling scheme is organized in terms of
individual days, and minutes are the smallest unit of time.

(2) All buses are homogeneous and the number of buses
is limited.

(3) Every bus belongs to a home depot. At the end of the
day, a bus has to return to the same home depot where it
started in the morning.

(4) The cost for buses waiting outside the depot is very
high. It is more favorable to wait at a depot than at other
stations. If there is enough time, the bus should return to the
depot and wait.

2.2. Network Description. TheVSP can be modeled by either
a connection-based network or a time-space network. Using
the connection-based network, the problem can only be
slightly downsized as the reducible long arcs are in a relatively
small quantity. In contrast, there are significant numbers of
deadhead arcs that can be removed in the time-space net-
work. If the problem containsm terminal stations and n trips,
the number of deadhead arcs in a time-space network can be
reduced to o(nm), in comparison to o(n2) in the connection-
based network. In general, for a large-scale problem, the
number of timetabled trips n is much larger than the number
of terminal stations m. Consequently, the problem scale is
much smaller when using a time-space network compared to
using a connection-based network for the same scheduling

system. Moreover, as each timetabled trip is characterized
by a departure time and arrival time as well as an origin
and destination station (time and space attributes), the time
axis and space axis in the time-space network constitute a
two-dimensional space which can more clearly identify the
two attributes of each timetabled trip and the time-space
relationships of different bus tours.On that account, it ismore
favorable to use a time-space network to handle the large-
scale MDVSP as done in this study. Figure 1 illustrates the
time-space network of depot k in MDVSP.

The time-space network is a directed graph composed
of many vertices and arcs. All vertices have two attributes
(time and space) and each of them connects a group of
possible arrival arcs to the possible departure arcs of the
following group. Each arc corresponds to a transition in
time or space. Every depot and terminal station vertex
indicates a possible arrival or departure event (an arc) at
the depot or a given station at a certain time. For instance,
s11 denotes a bus that is reaching and then leaving terminal
station s1 to run a timetabled trip (s11, s21) at a time around
6:00.

For a depot k (𝑘 ∈ 𝐾, K is the set of all depots), let
𝐺𝑘=(𝑉𝑘, 𝐴𝑘) be a complete graph, where 𝑉𝑘 = {𝑜(𝑘), 𝑑(𝑘)} ∪
𝑇 ∪ 𝐸 is the vertex set. o(k) corresponds to the set of depot
vertices where buses pull out from depot k at a certain
time(e.g., k1, k2, and k3 in Figure 1), whereasd(k) corresponds
to the set of depot vertices where buses pull into depot k at a
certain time (e.g., k5, k8, and k9 in Figure 1). T is the set of
terminal station vertices where tasks start at a certain station
and time (e.g., s11, s12, and s13 in Figure 1), whereas E is the
set of terminal station vertices where tasks end at a certain
station and time (e.g., s21, s22, and s23 in Figure 1).
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There are five types of arcs in arc set 𝐴𝑘, including pull-in
arcs, pull-out arcs, deadhead arcs, waiting arcs, and task arcs
(as shown in Figure 1). A pull-out arc (o,𝑖), 𝑜 ∈ 𝑜(𝑘), 𝑖 ∈ 𝑇,
denotes a bus pulling out from depot k in order to start a
sequence of timetabled trips. A pull-in arc (𝑖, d), 𝑖 ∈ 𝐸,
𝑑 ∈ 𝑑(𝑘), denotes a bus pulling into depot k after completing
a sequence of timetabled trips. A task arc (𝑖, 𝑖), 𝑖 ∈ 𝑇, 𝑖 ∈
𝐸, represents a timetabled trip. After serving a timetabled
trip, each bus can wait to serve one of the trips starting later
from the same station where it is holding, or it can change
its location by moving unloaded to another station in order
to serve the next loaded trip starting there. The former is a
waiting arc, which indicates a bus that waits at a place for
some time. There are two kinds of waiting arcs depending on
whether the bus waits at a terminal station or at the depot.
The latter is an unloaded trip corresponding to the deadhead
arc. For a deadhead arc (𝑖, 𝑗), 𝑖 ∈ 𝐸, 𝑗 ∈ 𝑇, 𝑖 is an
end vertex in set E and 𝑗 is a start vertex in set T. For a
pair of task arcs (𝑖1, 𝑖1) and (𝑖2, 𝑖2) that end at station
vertex 𝑖1 at time ta and start at station vertex 𝑖2 at time tb,
respectively, if 𝑡𝑎 + 𝑡𝑎𝑏 < 𝑡𝑏, where tab is the travel time of
a bus from station 𝑖1 to 𝑖2, task arc (𝑖1, 𝑖1) and (𝑖2, 𝑖2)
are termed as a compatible pair of tasks. The compatibility
relationship represents whether trip (𝑖2, 𝑖2) can be served
after trip (𝑖1, 𝑖1) by the same bus. Any pair of compatible
task arcs can be connected by a deadhead arc showing a
possible tour of a bus. For example, a pair of compatible task
arcs (s11,s21) and (s42,s32) are connected by a deadhead arc
(s21,s42) in Figure 1, and the deadhead arc (s21,s42) indicates
that a bus moves unloaded from station s2 to station s4 at
time ts21 and then waits at station s4 until ts42. Figure 1 is the
time-space network of depot k. Formultiple depots (K), there
are K layers of Figure 1 that stack up together with shared
timetabled trips (task arcs).

Most deadhead arcs can be removed from the time-
space network. Among all the tasks compatible with task

arc (𝑖1, 𝑖1), the nearest one is designated as the first match
arc. Let D be the set of deadhead arcs that connect task arc
(𝑖1, 𝑖1) with all its compatible task arcs. Deadhead arc f, 𝑓 ∈
𝐷, is the connection between task arc (𝑖1, 𝑖1) and its first
match arc. Other arcs apart from f in set D can be removed
as each of them can be represented by the deadhead arc f
and a waiting arc. The total number of arcs will be reduced
significantly compared to the original situation. Nevertheless,
all possible connections remain feasible. For example, task
arcs (s42,s32) and (s43,s33) are both compatible with task
arc (s11,s21) in Figure 1, whereas task arc (s42,s32) is the first
match arc with arc (s11,s21). Deadhead arc (s21, s43) can be
replaced by deadhead arc (s21, s42) and waiting arc (s42, s43).
Let T be the set of task arcs that end at terminal station s1
with the same first match task arc t that starts at terminal
station s2. If task arc t1∈T is the nearest task arc to t among
all elements in T, t1 is designated as the nearest match arc
of t. For instance, in Figure 2, arc t4 is the first match of
arc t1, t2, and t3. As t3 is nearest to t4; t3 is the nearest
match arc of t4. Deadhead arc (s11,s21) in Figure 2 can be
removed as it can be replaced by deadhead arc (s13,s21) and
waiting arc (s11,s13). Similarly, deadhead arc (s12,s21) can be
replaced by deadhead arc (s13,s21) and waiting arc (s12,s13).
Only deadhead arc (s13,s21) is retained.

Each arc is associated with a nonnegative cost.

𝑐𝑜 = 𝑢 ⋅ 𝑙𝑑𝑠 (1)

𝑐𝑖 = 𝑢 ⋅ 𝑙𝑠𝑑 (2)

𝑐𝑤 = 𝑤 ⋅ 𝑡𝑠 (3)

𝑐𝑤 = 𝑤 ⋅ 𝑡𝑑 (4)

𝑐𝑡 = 𝑢 ⋅ 𝑡𝑡 (5)

𝑐𝑑 = 𝑢 ⋅ 𝑙𝑠𝑠 + 𝑐𝑤 (6)
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where 𝑐𝑜, 𝑐𝑖, 𝑐𝑤 , 𝑐𝑤, 𝑐𝑡, and 𝑐𝑑 in Figure 1 denote the cost
of a pull-out arc, pull-in arc, waiting arc outside the depot,
waiting arc inside the depot, task arc, and deadhead arc,
respectively; 𝑢, 𝑢, 𝑤, and 𝑤 represent the unit cost of a bus
running unloaded and loaded and waiting outside the depot
and inside the depot, respectively; lds, lsd, and lss denote the
distance from the depot to a station, from a station to the
depot, and from a station to another station, respectively; ts,
td, and tt represent the waiting time at a station and at the
depot and the duration time of a timetabled trip. A deadhead
arc cost may include the waiting cost as a busmay arrive early
before the next timetabled trip starts.

In the time-space network, the MDVSP can be described
as many circuits (bus tours) starting from their respective
depot vertex, passing by different kinds of arcs, and eventually
ending at their depot vertex. Every task arc is covered exactly
once. Every circuit, consisting of a feasible sequence of
different types of arcs chained with each other, starts with
a pull-out arc and ends up with a pull-in arc, which means
a bus leaves the depot to start performing timetabled trips
and goes back to the depot after finishing all timetabled trips.
Take a circuit “k1-s11-s21-k5-k6-k7-s43-s33-k12” in Figure 1,
for example: the bus first drives out from depot 𝑘 (pull-out
arc (k1, s11) to station s1 to perform a timetabled trip (task
arc (s11, s21)) and then drives back to the depot 𝑘 (pull-in arc
(s21, k5)) to rest (waiting arc (k5, k6) and(k6, k7) ) and then
drives out from depot 𝑘 (pull-out arc (k7, s43)) to station s4
to perform another timetabled trip (task arc (s43, s33)) and
finally drives back to depot 𝑘 (pull-in arc (s33, k12)).There are
two pull-out arcs and two pull-in arcs in the circuit, but the
starting pull-out arc and the ending pull-in arc of the circuit
are unique. The goal is to find a series of desirable circuits
with minimum total cost. The number of circuits that start
from the depot vertex is equal to the number of buses used in
the scheduling system.

2.3. Network Modeling. The key issue of the time-space
network is to reduce the number of deadhead arcs. Most
deadhead arcs can be removed as each of them can be
represented by another deadhead arc and a waiting arc
without reducing the number of compatible task pairs. For
a large-scale system, the number of compatible task pairs
is tremendous. Therefore, it is not desirable to connect all
compatible task pairs by deadhead arcs beforehand and
then reduce them. Instead, the two steps are carried out
simultaneously.

For a depot 𝑘 ∈ 𝐾, the network is constructed with four
steps.

Step 1 (generation of terminal station vertices and task
arcs). Generate task arcs and corresponding terminal station
vertices according to the known bus timetable. Every task arc
has a start terminal station vertex and an end terminal station
vertex. Every terminal station has several terminal station
vertices that are arranged in a chronological order.

Step 2 (generation of depot vertices, pull-in arcs, and pull-out
arcs). A time line connected by depot vertices that represents
all possible arrival and departure events at the depot is built.

Thepull-out arcs are constructed by connecting the departure
depot vertices to the corresponding start terminal station
vertices (generated in Step 1). Similarly, the pull-in arcs are
constructed by connecting the relative end terminal station
vertices (generated in Step 1) to the arrival depot vertices.

Step 3 (generation of waiting arcs). For a given terminal
station, the waiting arcs outside the depot are constructed
by connecting all of its terminal station vertices. For the
depot, the waiting arcs inside the depot are constructed by
connecting all of its depot vertices.

Step 4 (generation and reduction of deadhead arcs). Only
those deadhead arcs that correlate to the firstmatches and the
nearest matches are introduced into the model. Moreover, a
very long deadhead arc (i,j), starting from terminal station
vertex i at time ti and ending at terminal station vertex j at
time tj, should also be removed if tj-ti >t, where t is the
duration time of pull-in arc (from i to the depot) plus the
duration time of pull-out arc (from the depot to j ). These
techniques result in a dramatic reduction in the number of
deadhead arcs.

3. Model Formulation

The MDVSP in this study is formulated as a set-partitioning
model calling for the determination of a collection of circuits
with minimum cost, which serves each task once and satisfies
strict departure-duration restrictions.

Let K be the set of all depots. vk denotes the number of
buses in depot k, 𝑘 ∈ 𝐾. Λk is the set of all task arcs in the
time-space network of depot k. Ωk represents the set of all
possible circuits, each corresponding to a possible bus tour,
which starts with a pull-out arc and ends up with a pull-in
arc. Every circuit𝑝 ∈ Ω𝑘 has an associated cost cp. Apart from
the variable operating cost (cost of different arcs covered by
p), cp also includes fixed cost for the required bus. For every
task arc i∈Λk, let aip be a binary coefficient that takes value 1 if
task arc i is covered by circuit p and takes value 0 otherwise.
For every circuit p∈Ωk, the binary decision variable xp takes
value 1 if and only if the circuit p is selected in the optimal
solution. Otherwise, xp takes value 0. The circuit p consists
of a feasible sequence of different kinds of arcs chained with
each other.The pull-out and pull-in arcs appear in pairs. Γ𝑝 is
the set of pairs of pull-out and pull-in arcs. For a pair of pull-
out and pull-in arcs j, j∈ Γ𝑝, 𝑡𝑎𝑗 denotes the start time of the
pull-out arc and 𝑡𝑏𝑗 denotes the end time of the pull-in arc. t0
represents the working time limits of bus crews.Themodel is
as follows.

Minimize ∑
𝑘∈𝐾

∑
𝑝∈Ω𝑘

𝑐𝑝𝑥𝑝 (7)

subject to: ∑
𝑘∈𝐾

∑
𝑝∈Ω𝑘

𝑎𝑖𝑝𝑥𝑝 = 1, ∀𝑖 ∈ Λ𝑘, (8)

∑
𝑝∈Ω𝑘

𝑥𝑝 ≤ V𝑘, ∀𝑘 ∈ 𝐾, (9)
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𝑡𝑏𝑗 − 𝑡𝑎𝑗 ≤ 𝑡0, ∀𝑗 ∈ Γ𝑝, 𝑝 ∈ Ω𝑘, 𝑘 ∈ 𝐾, (10)

𝑥𝑝 ∈ {0, 1} , ∀𝑝 ∈ Ω𝑘, 𝑘 ∈ 𝐾. (11)

Objective functions (7) serve to minimize the total
scheduling cost of a bus company. Constraint (8) ensures
that every timetabled trip is covered by exactly one bus.
Constraint (9) imposes that the number of buses selected
to run the timetabled trips should be no more than the
total number in depot k. Constraint (10) imposes that the
departure-duration of every selected bus should be no longer
than the working time limits of bus crews. Constraint (11)
defines the binary decision variables to depict whether a bus
tour p is selected or not.

4. Solution Algorithm

In this section, an improved LNS algorithm based on the
branch-and-price algorithm is constructed to solve the large-
scale MDVSP. We first present the framework of the algo-
rithm before introducing the details of solving the restricted
master problem and subproblem.

4.1.The Improved Large Neighborhood Search Algorithm. The
MDVSP explored in this study is an extremely large-scale
Integer Programming (IP) problem. For one depot k, the
number of binary decision variables is equal to the number
of all possible circuits in Ωk. As the size of the circuit set
(Ωk, 𝑘 ∈ 𝐾) is very large, we do not compute the set of all
possible circuits when solving the IP problem. Traditional
exact algorithms are not applicable. On the framework of
LNS, an improved heuristic algorithm that is both accurate
and efficient is put forward. As there are departure-duration
restrictions in the explored large-scaleMDVSP, the SPFA [26]
is modified by adding an embedded preliminary exploring
tactic to solve the subproblem.

The improved LNS algorithm adheres to the following
steps.

Step 1 (obtain initial feasible solution). Generate an initial
feasible solution S0 by insertion heuristic. The reader is
referred to [27] for detailed analysis of the insertion heuristic.

Step 2 (initialize parameters). Let parameters iter=0 and
Sbest=S0, where iter denotes the number of iterations and
Sbest denotes the best solution set at present. r represents the
number of bus circuits selected from the best solution set Sbest
at present. maxIter is the maximum number of iterations.

Step 3 (generate neighborhood). Generate a neighborhood
by selecting r bus circuits from the best solution set at present
Sbest. Select r bus circuits from the set Sbest. The set of r bus
circuits is termed as Sr. Generate a new problem using all
tasks (timetabled trips) contained in the r bus circuits. This
new problem has a smaller scale which will take much less
time to be solved. The solution space of this new problem is
the neighborhood. As to the selecting strategy of the r bus
circuits, randomly select r bus circuits from those circuits that
were selected less often in set Sbest.

Step 4 (search neighborhood). Search the neighborhood
generated in Step 3 by branch-and-price and we get a better
feasible solution of the new problem, termed as 𝑆𝑟. Reinsert
𝑆𝑟 into set Sbest instead of Sr. We obtain a feasible solution 𝑆
of the original problem.

Step 5 (parameters update). Compare 𝑆 with S𝑏𝑒𝑠𝑡 ; if
𝑆 <S𝑏𝑒𝑠𝑡, let S𝑏𝑒𝑠𝑡= 𝑆 and iter=iter+1.

Step 6 (termination criterion). If iter≤maxIter, return to Step
3; otherwise proceed to Step 7.

Step 7 (the end). Sbest is the best solution that can be found.
Figure 3 shows the flowchart of the improved LNS

algorithm. The main idea of this proposed algorithm is to
find an initial feasible solution S0 at first and then improve
this feasible solution through iteration until certain iteration
stopping conditions are satisfied and we obtain the optimal
solution.The initial feasible solution and the optimal solution
are both a subset of (Ωk, 𝑘 ∈ 𝐾). As to how to improve
this feasible solution S0, the main idea is to optimize a
part of S0 (r bus circuits in S0) to get a better solution
and repeat this operation again and again until certain
iteration stopping conditions are satisfied. This operation is
the process of generating a neighborhood and then searching
the neighborhood.

The branch-and-price algorithm is based on the frame-
work of the branch-and-bound algorithm. As the linear
programming relaxation of the set-partitioning model is
typically very tight [13], the original integer programming
problem is relaxed into a linear programming (LP) problem
(master problem) at each node in the branch-and-bound tree.

For a general LP problem (master problem):

Minimize ∑
𝑞∈𝑄

𝑐𝑞𝑥𝑞 (12)

subject to: ∑
𝑞∈𝑄

𝑎𝑞𝑥𝑞 ≥ b, (13)

∑
𝑞∈𝑄

𝑥𝑞 ≥ 0, ∀𝑞 ∈ 𝑄 (14)

Q is the set of all columns and q is a column in Q.
The simplex method can be used to solve this problem if
the number of columns in Q is not large. Let 𝜆 be the
corresponding dual variable. In each iteration of the simplex
method, if there’s a column q whose 𝑐𝑞 − 𝜆𝑎𝑞 < 0, we
should select 𝑎𝑠 : 𝑐𝑠 =

𝑚𝑖𝑛

𝑞∈𝑄
(𝑐𝑞 − 𝜆𝑎𝑞). However, generally the

number of columns in Q is very large, so we can solve this
LP relaxation (master problem) using the column generation
approach by first solving the LP relaxation over a subset
of the possible columns. We refer to a master problem
with only a subset of the possible columns as a restricted
master problem. Additional columns can be generated as
needed for the restricted master problem by solving the
subproblem.
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Figure 3: Improved large neighborhood searching algorithm.

The Restricted Master Problem (RMP) is

Minimize ∑
𝑞∈𝑄

𝑐𝑞𝑥𝑞 (15)

subject to: ∑
𝑞∈𝑄

𝑎𝑞𝑥𝑞 ≥ b, (16)

∑
𝑞∈𝑄

𝑥𝑞 ≥ 0, ∀𝑞 ∈ 𝑄, 𝑄 ⊆ 𝑄 (17)

Let 𝑥∗ be the solution of this restricted master problem
and 𝜆∗ be the corresponding dual variable. The subproblem
can be expressed as 𝑐∗ = 𝑚𝑖𝑛

𝑞∈𝑄
(𝑐𝑞 − 𝜆∗𝑎𝑞).

For the MDVSP in this paper, the subproblem is the
shortest path problem with departure-duration restrictions.
Sections 4.2 and 4.3 elaborate the details of branch-and-price
techniques for neighborhood searching.

4.2. Restricted Master Problem. At each node in the branch-
and-bound tree, the original integer programming problem

is relaxed into a linear programming (LP) problem (master
problem). Relax the integer variable xp into a continuous
variable between 0 and 1. Let Ωk

0 be the subset of Ω
k. When

applying columngeneration to solve the relaxed version of the
original model in this paper, the master problem is divided
into two parts, a restrictedmaster problem and a subproblem.
The Restricted Master Problem (RMP) is

Minimize ∑
𝑘∈𝐾

∑
𝑝∈Ω𝑘
0

𝑐𝑝𝑥𝑝 (18)

subject to: ∑
𝑘∈𝐾

∑
𝑝∈Ω𝑘
0

𝑎𝑖𝑝𝑥𝑝 = 1, ∀𝑖 ∈ Λ𝑘, (19)

∑
𝑝∈Ω𝑘
0

𝑥𝑝 ≤ V𝑘, ∀𝑘 ∈ 𝐾, (20)

𝑡𝑏𝑗 − 𝑡𝑎𝑗 ≤ 𝑡0, ∀𝑗 ∈ Γ𝑝, 𝑝 ∈ Ω𝑘0 , 𝑘 ∈ 𝐾, (21)

0 ≤ 𝑥𝑝 ≤ 1, ∀𝑝 ∈ Ω𝑘0, 𝑘 ∈ 𝐾. (22)
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The dual problem of the Restricted Master Problem
(DRMP) is

Maximum
𝑛

∑
𝑖=1

𝜋𝑖 −
𝑚

∑
𝑘=1

V𝑘𝜆𝑘 (23)

subject to:
𝑛

∑
𝑖=1

𝑎𝑖𝑝𝜋𝑖 − 𝜆𝑘 ≤ 𝑐𝑝, ∀𝑝 ∈ Ω𝑘0, 𝑘 ∈ 𝐾 (24)

𝜆𝑘 ≥ 0, 𝑘 = 1, 2, . . . , 𝑚. (25)

ILOG CPLEX or Lingo can be applied to solve the DRMP
above and obtain the value of decision variables (𝜋i and 𝜆k).
The solution of the dual problem (𝜋i and 𝜆k) in this paper is
obtained by applying ILOG CPLEX to the DRMP. Update the
cost of arcs in the network according to the value of 𝜋i and 𝜆k
to solve the subproblem.

4.3. Subproblem. For the MDVSP in this paper, the subprob-
lem is the shortest path problem with departure-duration
restrictions. As there is a possibility of negative weighted arcs,
the SPFA [26] is applied to solve the subproblem. In essence,
SPFA is a Bellman-Ford algorithm with queue optimization.

As there are departure-duration restrictions in the
MDVSP, the SPFA is modified by embedding a preliminary
exploring tactic. Specifically, check if the vertex meets the
departure-duration restriction before adding it into the
queue. If the restriction is satisfied, add the vertex into the
queue. Otherwise, do not add it. The depot vertices do not
need to be checked by the preliminary exploring tactic.
Only terminal station vertices have to be checked. Let u be
the terminal station vertex that has to be checked by the
preliminary exploring tactic. 𝑇[𝑢] denotes the departure-
duration time of a bus tour that starts from a depot vertex and
ends at vertex u.𝐷[𝑢] represents the corresponding tour cost.
𝐹[𝑢] is the vertex just before u on the bus tour with minimal
tour cost among all bus tours that start from a depot vertex
and end at vertex u. For a terminal station vertex u, traverse
all arcs (including task arcs and waiting arcs) starting from u.
If it is a task arc and 𝑇[𝑢]+t+td≤ 𝑡0, where 𝑡 is the trip time
of the task arc, 𝑡𝑑 is the time from the end of the task arc to a
depot, and 𝑡0 is the known working time limits, continue the
SPFA. Otherwise, vertex u cannot be added to the queue. If it
is a waiting arc, continue searching until a task arc appears.

The flowchart of the modified SPFA is shown in Figure 4.

5. Case Study

In this section, a real-life case in China with 3 depots, 8
bus lines, and 930 timetabled trips is selected to evaluate
the performance of the proposed methodology. Some basic
information about the real-life case is shown in the “Sup-
plementary Materials” (available here). There are 96 buses in
total for the real-life case with 52 buses in Depot 1, 23 buses
in Depot 2, and 21 buses in Depot 3.

Theproposed algorithm is implemented by c# language in
Visual Studio 2005. ILOG CPLEX is used to solve the DRMP.
In this paper, let r=20. The program runs on a computer
with CPU Intel T7500 2.20GHz 2G. The optimal schedule

scheme for the real-life case is shown as Table S5 in the
“Supplementary Materials”. 87 buses are used to perform the
930 timetabled trips with 48 buses in Depot 1 performing
511 timetabled trips, 21 buses in Depot 2 performing 207
timetabled trips, and 18 buses in Depot 3 performing 212
timetabled trips, respectively.

To highlight the efficiency of the improved LNS algo-
rithm, the computational result is compared with the result
using the branch-and-price algorithm. The branch-and-price
algorithm is also implemented by c# language in Visual
Studio 2005 and runs on a computer with CPU Intel T7500
2.20GHz 2G. The comparison of the two results is shown in
Figure 5.

As shown in Figure 5, both of the algorithms have a fast
convergence speed at first and then slow down. However,
compared to the improved LNS algorithm, the number of
feasible solutions from the branch-and-price algorithm is
much smaller. Moreover, it takes much longer to obtain
the first feasible solution for branch-and-price. The total
cost of the improved LNS algorithm is 299,672 which is
slightly more than that of branch-and-price (299,017). This
result does make sense as the LNS algorithm optimizes
the problem locally while the branch-and-price optimizes
the problem globally. The difference in solution quality is
due to the difference between local optimization and global
optimization. Therefore, the branch-and-price obtains higher
quality solutions in the real-life case study. But, as we can see
from the results, the difference in the total cost is very small,
which can be ignored. However, the improved LNS algorithm
begins to converge at 34 minutes, which is much shorter
than 104 minutes using branch-and-price. In summary, the
improved LNS algorithm can ensure not only the quality
of the solution but above all the computational efficiency.
On that account, the proposed LNS algorithm is of great
significance for large-scale MDVSP, which attaches great
importance to the algorithmic efficiency.

In Figure 5 the total cost of the improved LNS algorithm
has twohops at 12minutes and 31minutes during the iteration
process. The reason probably lies in the fixed cost of buses.
Compared to other costs like 𝑐𝑜, 𝑐𝑤 in Section 2, the fixed cost
of a bus is relatively larger.The objective function's value may
change significantly as the number of buses needed decreases
during the optimization process.

6. Sensitivity Analysis

Although the proposedmethodology is tested using a real-life
case, extra computational experiments should be designed
to further validate whether the algorithm is appropriate
for large-scale systems. The most effective method for this
purpose is to compare the performance of the improved
LNS algorithm and branch-and-price in terms of quality
and efficiency, using test instances with different number of
timetabled trips. Test instances in this section are generated
in a 6km∗6km square using the same methods as Carpaneto
et al. [28]. Test instances with n=500, 1000, 1500, and 2000
timetabled trips are generated. For each n, 10 test instances
have been generated as done by Carpaneto et al. [28]. To be
comparable, let the number of depotsK=3 (which is the same
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Figure 5: Iterative outcomes of two algorithms solving a real-life
case.

as the real-life case in Section 5). Quality Gap (QG) is used
to compare the solution quality of the two algorithms and
Efficiency Ratio (ER) is used to compare the computational
efficiency of the two algorithms. QG and ER are defined as
follows:

𝑄𝐺 = 𝐶𝑙−𝐶𝑏
𝐶𝑏

∗ 100% (26)

𝐸𝑅 = 𝑇𝑏
𝑇𝑙

(27)

where𝐶𝑏 and𝑇𝑏 are the total cost and computational time
of the best solution obtained by branch and-price. 𝐶𝑙 and 𝑇𝑙
are the total cost and computational time of the best solution
obtained by the improved LNS algorithm.

All the test instances are run on a computer with CPU
Intel T7500 2.20GHz 2G. The computational results of the
test instances with different number of timetabled trips are
presented in Table 1.
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Table 1: Computational results for test instances with different number of timetabled trips.

Test
Number

Number of
timetabled

trips

Total Cost (RMB) Quality
Gap (%)

Computational
Time(min) Efficiency

Ratio
LNS(Cl) BP(Cb) LNS(Tl) BP(Tb)

NO. 1

500 151327 150844 0.32 6.0 17.7 2.95
1000 306801 305670 0.37 36.8 111.1 3.02
1500 463116 460629 0.54 104.4 380.0 3.64
2000 605876 600516 0.89 153.1 597.1 3.90

NO. 2

500 167877 167408 0.28 6.7 19.3 2.88
1000 325414 324021 0.43 36.7 110.8 3.02
1500 468142 465026 0.67 101.9 379.1 3.72
2000 588228 582392 1.00 151.8 567.7 3.74

NO. 3

500 159752 159274 0.30 7.4 20.8 2.81
1000 335644 334573 0.32 35.6 104.0 2.92
1500 448323 445457 0.64 104.9 377.6 3.60
2000 631646 625950 0.91 150.4 562.5 3.74

NO. 4

500 161611 160999 0.38 7.8 23.4 3.00
1000 306715 305493 0.40 34.5 102.1 2.96
1500 426785 423881 0.69 108.4 396.7 3.66
2000 619895 614609 0.86 162.8 613.8 3.77

NO. 5

500 165670 164944 0.44 6.5 18.9 2.91
1000 309025 307641 0.45 38.2 114.2 2.99
1500 466090 463218 0.62 114.7 410.6 3.58
2000 664978 658492 0.98 154.2 573.6 3.72

NO. 6

500 149889 149381 0.34 6.9 19.5 2.83
1000 318111 317160 0.30 35.0 103.6 2.96
1500 414619 411818 0.68 104.7 383.2 3.66
2000 629447 623647 0.93 152.6 567.7 3.72

NO. 7

500 167467 166717 0.45 7.6 21.9 2.88
1000 314987 313701 0.41 36.8 109.3 2.97
1500 459879 456909 0.65 117.0 437.6 3.74
2000 673854 668001 0.88 166.3 623.6 3.75

NO. 8

500 156926 156441 0.31 7.0 19.9 2.84
1000 313965 312652 0.42 40.5 123.1 3.04
1500 458466 455279 0.70 110.3 401.5 3.64
2000 630643 624708 0.95 164.2 635.5 3.87

NO. 9

500 157143 156642 0.32 7.0 20.6 2.94
1000 318107 317092 0.32 39.4 117.8 2.99
1500 467748 465143 0.56 103.6 371.9 3.59
2000 623549 617987 0.90 161.2 617.4 3.83

NO. 10

500 162175 161658 0.32 5.9 16.8 2.85
1000 310107 308995 0.36 36.1 105.4 2.92
1500 474581 471985 0.55 111.8 413.7 3.7
2000 629727 623369 1.02 160.6 611.9 3.81

As seen in Table 1, the total cost of the improved LNS
algorithm is slightly more than that of branch-and-price
algorithm for each test instance of different trip size (500,
1000, 1500, and 2000). But, as we can see from the Quality
Gap, the difference in the total cost is very small, which can

be ignored.However, the computational time of the improved
LNS algorithm is much less than that of branch-and-price
algorithm for each test instance of different trip size (500,
1000, 1500, and 2000) which indicates that the improved LNS
algorithm is much more efficient than branch-and-price, and
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Table 2: Results of Wilcoxon Signed Ranks Test.

(a) Costs

Ranks
N Mean Rank Sum of Ranks

BP Cost-LNS Cost Negative Ranks 40a 20.50 820.00
Positive Ranks 0b .00 .00
Ties 0c

Total 40
a. BP Cost < LNS Cost
b. BP Cost > LNS Cost
c. BP Cost = LNS Cost

Test Statisticsa

BP Cost-LNS Cost
Z -5.511b

Asymp. Sig. (2-tailed) .000
a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

(b) Time

Ranks
N Mean Rank Sum of Ranks

BP Time-LNS Time Negative Ranks 0a .00 .00
Positive Ranks 40b 20.50 820.00
Ties 0c

Total 40
a. BP Time < LNS Time
b. BP Time > LNS Time
c. BP Time = LNS Time

Test Statisticsa

BP Time-LNS Time
Z -5.511b

Asymp. Sig. (2-tailed) .000
a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

the advantages of algorithmic efficiency continue to expand
as the number of timetabled trips increases.

To test whether there are statistically significant differ-
ences between the improved LNS algorithm and the branch-
and-price algorithm in total cost and computational time,
“Wilcoxon Signed Ranks Test” in SPSS is applied to the data
in Table 1.The results are shown in Table 2.The variable name
in Table 2 consists of two parts. Take “BP Cost”, for example,
“BP” represents the method name (branch-and-price) and
“Cost” represents the total cost.

As we can see from the Ranks table in Table 2, LNS algo-
rithm had a higher total cost but a lower computational time
than the branch-and-price algorithm for all test instances.
By examining the final Test Statistics table in Table 2,
we can discover whether there are statistically significant
differences between the improved LNS algorithm and the

branch-and-price algorithm in total cost and computational
time. We are looking for the “Asymp. Sig. (2-tailed)” value,
which in this case is 0.000, illustrating that the observed
differences are statistically significant. However, compared
with the significant improvement in algorithmic efficiency
brought by the LNS algorithm, the increase in total cost is
very small, which can be ignored.

In order to better show the results, the minimum value,
lower-quartile value, median value, upper-quartile value,
maximum value, and average value of Quality Gap and
Efficiency Ratio over 10 test instances for each n (n=500, 1000,
1500, 2000) are calculated, as shown in Tables 3 and 4.

As seen in Tables 3 and 4, there is not a big change in
Quality Gap or Efficiency Ratio for different test instances
of each n (n=500, 1000, 1500, and 2000). The Quality Gap is
approximately 0.35%, 0.38%, 0.63%, and 0.93%, respectively,



12 Mathematical Problems in Engineering

Table 3: Quality gap (QG).

Quality Gap (%)

Number
of Trips

Different Values

Minimum
Value

Lower
quartile

Value

Median
Value

Upper
quartile

Value

Maximum
Value

Average
Value

500 0.28 0.31 0.32 0.37 0.45 0.35
1000 0.30 0.33 0.39 0.42 0.45 0.38
1500 0.54 0.58 0.65 0.68 0.70 0.63
2000 0.86 0.89 0.92 0.97 1.02 0.93

Table 4: Efficiency ratio (ER).

Efficiency Ratio

Number
of Trips

Different Values

Minimum
Value

Lower
quartile

Value

Median
Value

Upper
quartile

Value

Maximum
Value

Average
Value

500 2.81 2.84 2.88 2.93 3.00 2.89
1000 2.92 2.96 2.98 3.01 3.04 2.98
1500 3.58 3.61 3.65 3.69 3.74 3.65
2000 3.72 3.74 3.76 3.83 3.90 3.79

for test instances with different number of timetabled trips
(500, 1000, 1500, and 2000), while the Efficiency Ratio
reaches up to 2.89, 2.98, 3.65, and 3.79, respectively, for test
instances with different number of timetabled trips (500,
1000, 1500, and 2000). The small Quality Gap demonstrates
the effectiveness of the improved LNS algorithm to produce
high quality solutions. Meanwhile, the large Efficiency Ratio
clearly highlights the excellent computational efficiency of the
proposed heuristic.

Based on Tables 1 and 2 and the computational results of
Quality Gap and Efficiency Ratio presented in Tables 3 and
4, the findings suggest that the improved LNS algorithm is
effective in obtaining faster solutions without deteriorating
the quality, especially for large-scale instances.

7. Conclusions and Future Work

To solve this large-scale MDVSP, the only feasible approach
is to downsize the problem and improve the algorithm
simultaneously. Crews working overtime increase safety risks
for themselves and others, so buses should return to the
depot and change shifts when the crews reach their working
time limits. Therefore, an improved set-partitioning model
with departure-duration restrictions was established based
on the time-space network, calling for the determination
of a collection of circuits with minimum cost. In order to
solve the MDVSP model, an improved LNS algorithm was
proposed. To deal with departure-duration restrictions, the
SPFA was modified by embedding a preliminary exploring
tactic to solve the subproblem. A case study in China was
presented to evaluate the performance of the proposed algo-
rithm. The results indicate that the improved LNS algorithm,
which encompasses attributes of both fast computing speed

and high quality solutions, is especially appropriate for an
extremely large-scale MDVSP. The sensitivity analysis in
Section 6 further verifies the effectiveness of the proposed
methodology to solve a large-scale MDVSP.

In this study, only bus scheduling is considered, which is
just one part of the whole bus operating planning process.
Future study should be directed at researching all four parts
(i.e., bus network design, timetable design, bus scheduling,
and crew scheduling) and their integration to continue devel-
oping a more stable and sophisticated bus scheduling plan.
In addition, in the proposed LNS algorithm, the selecting
strategy of the r bus circuits and the value of parameter r
affect the computational efficiency of the proposed algorithm.
A good selecting strategy and r value will further improve
the LNS algorithm. The selecting strategy is a recommended
future research topic. How to scientifically select the value of
parameter r also needs further research.
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Supplementary Materials

Some basic information and results about the real-life case
including (1) line routes and the depot positions of the
real-life case, (2) line length, average speed, opening time,
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closing time, and the number of timetabled trips of each
bus line, (3) travel time between the depots and the origin
(destination) stations of each bus line, (4) travel time between
different origin and destination stations of each bus line, (5)
timetable information of each bus line, and (6) the optimal
schedule scheme for the real-life case are shown as Figure
S1, Table S1, Table S2, Table S3, Table S4, and Table S5 in
the “Supplementary Materials”. In Table S2 and Table S3, “
i-O” represents the origin station of Line i (upward) and “
i-D” represents the destination station of Line i (upward).
The origin station of an upward bus line is the destination
station of its corresponding downward bus line and the
destination station of an upward bus line is the origin station
of its corresponding downward bus line. Some lines have the
same origin station or destination station; for example, Line
1 (upward), Line 2 (upward), and Line 6 (upward) have the
same destination station. (Supplementary Materials)
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