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We propose a derivative-free trust region algorithm with a nonmonotone filter technique for bound constrained optimization.The
derivative-free strategy is applied for special minimization functions in which derivatives are not all available. A nonmonotone
filter technique ensures not only the trust region feature but also the global convergence under reasonable assumptions. Numerical
experiments demonstrate that the new algorithm is effective for bound constrained optimization. Locally, optimal parameters with
respect to overall computational time on a set of test problems are identified. The performance of the best choice of parameter
values obtained by the algorithm we presented which differs from traditionally used values indicates that the algorithm proposed
in this paper has a certain advantage for the nondifferentiable optimization problems.

1. Introduction

Many of the objective functions in mathematical optimiza-
tion that occur in engineering are obtained from a mass of
numerical experiments and have special characteristics such
as being nonconvex for which their first-order or second-
order derivatives are unavailable. In this paper, we analyze the
solution of the nonlinear problem with bound constraints:

min 𝑓 (𝑥) (1a)

subject to 𝑥 ∈ Ω, (1b)

whereΩ = {𝑥 ∈ R𝑛 | 𝑙 ≤ 𝑥 ≤ 𝑢} and 𝑓(𝑥) : Ω ⊂ R𝑛 → R is
a twice continuously differentiable function, but its first-
order or second-order derivatives are not explicitly avail-
able. It mainly emerges in the field of operations research,
management science, industrial engineering, applied math-
ematics, and network transmission [1] and in engineering
disciplines that deal with analytical optimization techniques
such as banking business and weather analysis. The unavail-
able first- or second-order derivatives may result in tradi-
tional derivative-based methods like quasi-Newton methods
and conjugate gradient methods are not work. Therefore,

researches focus on derivative-free methods which could
effectively avoid the use of derivative information.

1.1. Derivative-Free Trust Region Method. Derivative-free
technique has been explored to tune parameters of nonlinear
optimization methods [2], to automatic error analysis [3, 4]
and to design helicopter rotor blade [5, 6] and hydrodynamic
[7]. These methods are all special algorithms designed for
particular optimizations, but have their usage limitations. In
[8–12] another type of derivative-free methods is proposed
based on the traditional derivative-based algorithm frame-
work [8, 13–15]. They construct a function with all available
derivatives to approximate the original objective function.
Conn and Scheinberg and Vicente [8, 13] have already given
a derivative-free method under trust region method frame-
work. They construct the trust region subproblem

𝑚𝑘 (𝑥𝑘 + 𝑝) = 𝑚𝑘 (𝑥𝑘) + 𝑞𝑚𝑘
(𝑝)

= 𝑚𝑘 (𝑥𝑘) + 𝑔T𝑘𝑝 + 12𝑝T𝐻𝑚𝑘
𝑝, (2)

where𝑚𝑘(𝑥𝑘) is the function value at 𝑘th iteration point, 𝑔𝑘 is
the gradient of𝑚𝑘(𝑥𝑘+𝑝) at 𝑘th iteration point, and𝐻𝑚𝑘

is the
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Hessian. Although the function model and the true objective
function are meant to coincide the model gradients and
Hessian may be (and typically are) different from the original
objective function gradient ∇𝑓𝑘 and Hessian 𝐻𝑓𝑘

, function
(2) defined in [8] is called fully linear or fully quadratic
model, dependent upon the related chosen truncated Taylor
series conditions; it must be occasionally updated in order
to guarantee that the residual between the approximated and
real functions (and more critically, their gradients) is within
the related error bounds. In fact, by definition, the function
values are essentially the same. We will show the definition of
fully linear model after a reasonable assumption.

Assumption (A1). Suppose that a level setL(𝑥0) and a maxi-
mal radius Δmax are given. Suppose furthermore that 𝑓 is
twice continuously differentiable with Lipschitz continuous
Hessian in an appropriate open domain containing the Δmax
neighborhood⋃𝑥∈L(𝑥0)

B(𝑥, Δmax) of the setL(𝑥0).
Definition 1. Let a function 𝑓, which satisfies assumption
(A1), be given. A set of model functions M = {𝑚 : R𝑛 →
R, 𝑚 ∈ 𝐶2} is called a fully linear class of models if the
following hold.

There exist positive constants 𝜅𝑒𝑓, 𝜅𝑒𝑔, and 𝜅𝑏𝑙𝑔, such that,
for any 𝑥 ∈ L(𝑥0), Δ ∈ (0, Δmax]. There is a model function𝑚(𝑥 + 𝑝) in M, with Lipschitz continuous gradient and
corresponding Lipschitz constant bounded by 𝜅𝑏𝑙𝑔, such that

(1) the error between the gradient of the model and the
original objective function satisfies
∇𝑓 (𝑥 + 𝑝) − ∇𝑚 (𝑥 + 𝑝) ≤ 𝜅𝑒𝑔Δ, ∀𝑝 ∈ B (0, Δ) , (3)

(2) the error between themodel and the original objective
function satisfies

𝑓 (𝑥 + 𝑝) − 𝑚 (𝑥 + 𝑝) ≤ 𝜅𝑒𝑓Δ2, ∀𝑝 ∈ B (0, Δ) . (4)

Such a model𝑚 is called fully linear onB(𝑥, Δ).

Remark 2. For this class M there exists an algorithm which
we will call a model-improvement algorithm that, in a finite,
uniformly bounded (with respect to𝑥 andΔ) number of steps
can

(1) either establish that a given model 𝑚 ∈ M is fully
linear onB(𝑥, Δ)
(we will say that a certificate has been provided and
the model is certifiably fully linear)

(2) or find amodel �̃� ∈ M that is fully linear onB(𝑥, Δ).
1.2. Affine-Scale Trust Region Method for Bound Constrained
Optimization. Since we analyze the bound constrained opti-
mization (1a) and (1b), the trust region subproblem is

min 𝑞𝑚𝑘
(𝑝)

subject to 𝑙 ≤ 𝑥𝑘 + 𝑝 ≤ 𝑢,𝑝∞ ≤ Δ 𝑘.
(5)

As the solution of subproblem (5), 𝑝𝑘 induces following de-
crease:

𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) = −𝑞𝑚𝑘
(𝑝𝑘) ≥ 𝜅1𝜒𝑚𝑘

min {1, Δ 𝑘, 𝜒𝑚𝑘
} (6)

with constant 𝜅1 > 0 independent of 𝑘. Hereby, the norm of
the projected gradient

𝜒𝑚𝑘
= 𝑥𝑘 − 𝑃𝑋 (𝑥𝑘 − 𝑔𝑘) = 𝑔 (𝑥𝑘) (7)

is a suitably chosen criticality measurement. In order to
obtain a relatively short and elegant convergence result, we
describe a concrete implementation by means of a Cauchy
step that is defined by an affine-scaled gradient used here have
stronger smoothness properties. Similar approaches can be
found in [16–18]. Define the diagonal affine-scaling matrix𝐷𝑚𝑘

(𝑥) ∈ R𝑛×𝑛 as

𝐷𝑚𝑘
(𝑥)𝑖𝑖 = {{{{{

1, 𝑙𝑖 = −∞ and 𝑢𝑖 = +∞,
min {𝑥𝑖 − 𝑙𝑖 + 𝛾max {𝜅𝐷, − (𝑔𝑘)𝑖} , 𝑢𝑖 − 𝑥𝑖 + 𝛾max {𝜅𝐷, (𝑔𝑘)𝑖}} , otherwise, (8)

where 𝜅𝐷 > 0 and 𝛾 > 0 are given constants and (𝑔𝑘)𝑖 is the𝑖th component of the gradient of 𝑚𝑘(𝑥𝑘 + 𝑝). Solve the sub-
problem

min 𝑞𝑚𝑘
(𝑝)

subject to 𝑝 = −𝑡𝐷𝑚𝑘
(𝑥𝑘)2 𝑔𝑘𝑡 ≥ 0,

𝑝 ∈ 𝑋𝑘 = [𝑙 − 𝑥𝑘, 𝑢 − 𝑥𝑘] ∩ [−Δ 𝑘, Δ 𝑘]𝑛 .
(9)

Following the idea of [18], we are able to prove that the
solution of this quadratic model (9) also satisfies the decrease
(6).

1.3. Nonmonotone Filter Technique. The filter method was
first introduced for constrained nonlinear optimization by
Fletcher and Leyffer [19] and then it has a wide range of
applications in various optimization problems; see [18, 20–
23]. In 2005, the filter method has been extended into a filter
trust region method by Gould et al [24] for unconstrained
optimization and by Sainvrtu [25] for general box constrained
optimization. They indicate that the filter method is a reliable
and efficient way for nonlinear optimizations. In this paper,
we will make a further study on nonmonotone filter method
and propose a new algorithm for (1a) and (1b). The main
features of this paper are as follows:
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(i) We present a further extension of that filter trust re-
gion method by introducing both a suitable nonmo-
notonicity criterion and a derivative-free strategy for
bound constrained optimization.

(ii) The global convergence of the presented derivative-
free trust region method with the nonmonotone fil-
ter technique for bound constrained optimization is
established.

(iii) Numerical results indicate that the new algorithm is
effective for problems for which the derivative func-
tions are unavailable.

The paper is therefore in the following way: we present
our algorithmic scheme in Section 2.There we first show that
the decrease direction described in this paper satisfies the
predicted decrease inequality and recall the nonmonotone
trust region method from [18, 26] and then make the nec-
essary modifications for a derivative-free version. The global
convergence properties of the derivative-free trust region
method with nonmonotone filter technique is shown in Sec-
tion 3. The corresponding numerical results are reported in
Section 4 together with some additional tests. Finally, con-
clusions and further discussions are given.

Notation. Unless otherwise specified, throughout this paper,
the norm ‖ ⋅ ‖ is the 2-norm for a vector and the induced
2-norm for a matrix. Let 𝐵 denote a closed ball in Ω ⊂ R𝑛

andB(𝑥, Δ) denote the closed ball centered at 𝑥, with radiusΔ > 0. In addition, L(𝑥0) = {𝑥 ∈ Ω | 𝑓(𝑥) ≤ 𝑓(𝑥0)} is the
level set about 𝑓. We use the subscript 𝑓𝑘 and subscript 𝑚𝑘

to distinguish the relevant information between the original
function and the approximate function; for example, 𝜒𝑓𝑘

is
the criticality measurement of 𝑓(𝑥𝑘) and 𝜒𝑚𝑘

is the criticality
measurement of𝑚𝑘(𝑥𝑘+𝑝).𝑥+

𝑘 is the trial step in𝑘th iteration.𝑔+
𝑘 and 𝐻+

𝑚𝑘
is the gradient and Hessian of the trial step,

respectively.

2. The Derivative-Free Trust Region Algorithm
with Nonmonotone Filter Technique

Weanalyze the behaviors of subproblem (9) with the diagonal
matrix defined by (8). Let 𝜒𝑚𝑘

denote the criticality measure-
ment such that

𝜅2𝜒𝑚𝑘
≤ 𝐷𝑚𝑘

(𝑥𝑘) 𝑔 (𝑥𝑘) (10)

holds on 𝑋𝑘 for some 𝜅2 > 0. Fraction of Cauchy decrease
condition defined as

𝑞𝑚𝑘
(𝑝𝑘) ≤ 𝛼𝑞𝑚𝑘

(𝑝𝑐
𝑘) , (11)

where 𝛼 ∈ (0, 1) is a constant and 𝑞𝑚𝑘
(𝑝𝑐

𝑘) = 𝑞𝑚𝑘
(𝑡∗𝑑𝑘) =

min{𝑞𝑚𝑘
(𝑡𝑑𝑘) : 𝑡 ≤ 0, 𝑡𝑑𝑘 ∈ 𝑋𝑘} with 𝑑𝑘 = 𝐷𝑚𝑘

(𝑥𝑘)𝑔𝑘.
It is not difficult to prove that both ‖𝐷𝑚𝑘

(𝑥)𝑔(𝑥)‖ and 𝜒𝑚𝑘
are criticality measurement, i.e., satisfying that 𝜒𝑚𝑘

= 0 if
and only if 𝑥 is the KKT point of problem (1a) and (1b).
Furthermore, if 𝑔(𝑥) is bounded and uniformly continuous
on (𝑙, 𝑢), then ‖𝐷𝑚𝑘

(𝑥)𝑔(𝑥)‖ is uniformly continuous. The
proof is similar to Lemma 6.1 and Lemma 6.2 in [18] except

that we now have to replace ∇ℎ(𝑥) by the approximated
gradient 𝑔𝑘. In order to discuss the global convergence we
first provide the following lemma to show that the decrease
direction 𝑝𝑘 satisfies the predicted decrease inequality (6).

Lemma 3. Suppose that criticality measurement 𝜒𝑚𝑘
satisfies

(10). If 𝜒𝑚𝑘
̸= 0 and if the trial step 𝑥𝑘 +𝑝𝑘 satisfies the fraction

of Cauchy decrease condition (11), then (6) holds.

Proof. Considering that 𝑑𝑘 = 𝐷𝑚𝑘
(𝑥𝑘)𝑔𝑘 and 𝑞𝑚𝑘

(𝑝𝑐
𝑘) is

defined above, firstly we obtain from following inequality that𝑑𝑘 is a decrease direction of 𝑞𝑚𝑘
(𝑥) at 0, that is,

∇𝑞𝑚𝑘
(0)T 𝑑𝑘 = 𝑔T𝑘𝑑𝑘 = − 𝐷𝑚𝑘

(𝑥𝑘) 𝑔 (𝑥𝑘)2
≤ −𝜅2

2𝜒2
𝑚𝑘

< 0. (12)

In the case that the maximum stepsize is determined by the
trust region constraint 𝑡‖𝑑𝑘‖ ≤ Δ 𝑘, we obtain

𝑡1 = min{ Δ 𝑘(𝑑𝑘)𝑖 ; (𝑑𝑘)𝑖 ̸= 0}
≥ Δ 𝑘𝐷𝑚𝑘

(𝑥𝑘)𝑖𝑖 𝐷𝑚𝑘
(𝑥𝑘)𝑖𝑖 𝑔𝑘


≥ Δ 𝑘𝛾𝜅𝐷

𝐷𝑚𝑘
(𝑥𝑘) 𝑔𝑘

 .
(13)

In the case that the maximum stepsize is determined by the
lower bounds of the set 𝑋𝑘, then

𝑡2 = min{(𝑥𝑘 − 𝑙)𝑖(𝑑𝑘)𝑖 ; (𝑑𝑘)𝑖 < 0}

= min
{{{

(𝑥𝑘 − 𝑙)𝑖𝐷𝑚𝑘
(𝑥𝑘)𝑖𝑖 (𝐷𝑚𝑘

(𝑥𝑘) 𝑔𝑘)𝑖 ; (𝑔𝑘)𝑖

> 0, (𝑥𝑘)𝑖 > 𝑙𝑖}}}
≥ min{ (𝑥𝑘 − 𝑙)𝑖

min {𝜅𝐷, (𝑥𝑖 − 𝑙𝑖)} 𝐷𝑚𝑘
(𝑥𝑘) 𝑔𝑘

 ; (𝑔𝑘)𝑖

> 0, (𝑥𝑘)𝑖 > 𝑙𝑖} ≥ 𝜅𝐷𝐷𝑚𝑘
(𝑥𝑘) 𝑔𝑘

 .

(14)

In the same way, the stepsize 𝑡3 admitted by the upper bounds
of the set 𝑋𝑘 can be estimated:

𝑡3 = min{(𝑢 − 𝑥𝑘)𝑖(𝑑𝑘)𝑖 ; (𝑑𝑘)𝑖 < 0} ≥ 𝜅𝐷𝐷𝑚𝑘
(𝑥𝑘) 𝑔𝑘

 . (15)
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In the case 𝐷𝑚𝑘
(𝑥𝑘)𝐻𝑚𝑘

𝐷𝑚𝑘
(𝑥𝑘) = 0, we set 𝑡4 = +∞.

Otherwise, in the case that 𝐷𝑚𝑘
(𝑥𝑘)𝐻𝑚𝑘

𝐷𝑚𝑘
(𝑥𝑘) positive

definition as well as ‖𝐻𝑚𝑘
‖ less than a constant 𝜅𝐻, the

function 𝑞𝑚(𝑡𝑑𝑘), 𝑡 ≥ 0, attains its global minimum at 𝑡 = 𝑡4,
where

𝑡4 = −2𝑔T𝑘𝑑𝑘𝑑T
𝑘
𝐻𝑚𝑘

𝑑𝑘

≥ 2 𝐷𝑚𝑘
(𝑥𝑘) 𝑔 (𝑥𝑘)2𝐷𝑚𝑘

(𝑥𝑘) 𝑔 (𝑥𝑘)2 𝐷𝑚𝑘
(𝑥𝑘)𝐻𝑚𝑘

𝐷𝑚𝑘
(𝑥𝑘)

≥ 2𝛾2𝜅2
𝐷𝜅𝐻

.

(16)

We have 𝑡∗ = min{𝑡1, 𝑡2, 𝑡3, 𝑡4}. If 𝑡∗ < 𝑡4, then‖𝐷𝑚𝑘
(𝑥𝑘)𝑔(𝑥𝑘)‖2 > (1/2)‖𝑑T𝑘𝐻𝑚𝑘

𝑑𝑘‖, and if 𝑑T𝑘𝐻𝑚𝑘
𝑑𝑘 > 0

then

𝑞𝑚𝑘
(𝑡∗𝑑𝑘) = −𝑡∗ 𝐷𝑚𝑘

(𝑥𝑘) 𝑔 (𝑥𝑘)2

+ (𝑡∗)2
2 𝑑T𝑘𝐻𝑚𝑘

𝑑𝑘

< −𝑡∗2 𝐷𝑚𝑘
(𝑥𝑘) 𝑔 (𝑥𝑘)2

= −min {𝑡1, 𝑡2, 𝑡3}2 𝐷𝑚𝑘
(𝑥𝑘) 𝑔 (𝑥𝑘)2 .

(17)

If 𝑑T𝑘𝐻𝑚𝑘
𝑑𝑘 ≤ 0, then

𝑞𝑚𝑘
(𝑡∗𝑑𝑘) = −𝑡∗ 𝐷𝑚𝑘

(𝑥𝑘) 𝑔 (𝑥𝑘)2

+ (𝑡∗)2
2 𝑑T𝑘𝐻𝑚𝑘

𝑑𝑘

≤ −𝑡∗ 𝐷𝑚𝑘
(𝑥𝑘) 𝑔 (𝑥𝑘)2 .

(18)

If, on the other hand, 𝑡∗ = 𝑡4, then
𝑞𝑚𝑘

(𝑥𝑘) = −𝑡42 𝐷𝑚𝑘
(𝑥𝑘) 𝑔 (𝑥𝑘)2 . (19)

Combiningwith the assumptions (10) and (11), the conclusion
is obtained.

There are two criteria in the proposed algorithm, to
measure if the trial step 𝑥+

𝑘 = 𝑥𝑘 + 𝑝𝑘 is acceptable. One is
in the trust region method. The new algorithm is based on a
nonmonotone decrease criterion. Nonmonotone trust region
methods were investigated by Toint [26] and Ulbrich [18].
Let the increasing sequence (𝑗𝑖)𝑖≥0 enumerate all indices of
accepted steps. Moreover,

𝑥𝑘 = 𝑥𝑗𝑖
, ∀𝑗𝑖−1 < 𝑘 ≤ 𝑗𝑖, ∀𝑖 ≥ 1. (20)

Conversely, if 𝑘 ̸= 𝑗𝑖 for all 𝑖, then 𝑝𝑘 was rejected. In the
following we introduce the set of all these “successful” indices𝑗𝑖 by 𝑆:
𝑆 = {𝑗𝑖 : 𝑖 ≥ 0} = {𝑘; trial step 𝑥𝑘 + 𝑝𝑘 is accepted} . (21)

We follow [18] to choose integer 𝑙,𝑚 ≥ 0, fix 𝜆 ∈ (0, 1/𝑚], and
then compare the predicted decrease promised by the trust
region model with a relaxation of the actual decrease

𝑅𝑎𝑟𝑒𝑑𝑘 (𝑝𝑘) = max{𝑓 (𝑥𝑘) ,
𝑙𝑘−1∑
𝑟=0

𝜆𝑘𝑟𝑓 (𝑥𝑗𝑖−𝑟
)} − 𝑓 (𝑥+

𝑘 ) ,
where 𝜆𝑘𝑟 ≥ 𝜆, 𝑙𝑘 = min {𝑖 + 1, 𝑙} , 𝑟 = 0, 1, . . . , 𝑙𝑘 − 1 and

𝑙𝑘−1∑
𝑟=0

𝜆𝑘𝑟 = 1
(22)

for the computation of reduction ratio 𝜌𝑘 = 𝑅𝑎𝑟𝑒𝑑𝑘(𝑝𝑘)/𝑃𝑟𝑒𝑑𝑘(𝑝𝑘) in order to decide whether a step is acceptable or
not. The idea behind the update rule (22) is the following:
instead of requiring that 𝑓(𝑥+

𝑘 ) be smaller than 𝑓(𝑥𝑘), it is
only required that 𝑓(𝑥+

𝑘 ) is either less than 𝑓(𝑥𝑘) or less
than the weighted mean of the function values at the last𝑙𝑘 = min{𝑖 + 1, 𝑙} successful iterates. Of course, if 𝑙 = 1,
then 𝑅𝑎𝑟𝑒𝑑𝑘(𝑝) = 𝐴𝑟𝑒𝑑𝑘(𝑝) and the usual reduction ratio
is recovered. Our approach is a slightly stronger requirement
than the straightforward idea to replace 𝐴𝑟𝑒𝑑𝑘(𝑝) with
max0≤𝑟<𝑙𝑘

𝑓(𝑥𝑗𝑖−𝑟
) − 𝑓(𝑥𝑘 + 𝑝). Unfortunately, for this latter

choice it does not seem be possible to establish all the global
convergence results that are available for the monotone case.
For our approach, however, this is possible without making
the theory substantially more difficult.

The other criterion is in the filter step. We prefer a filter
mechanism to assess the suitability of 𝑥+

𝑘 . Our strategy is

inspired by that of [24]: we decide that a trial point 𝑥+
𝑘 is

acceptable for the filterF if and only if

∀𝑔ℓ ∈ F

∃𝑗 ∈ {1, . . . , 𝑛} : 𝑔𝑗 (𝑥+
𝑘 ) < 𝑔ℓ,𝑗

 − 𝛾𝑔 𝑔ℓ
 , (23)

where 𝛾𝑔 ∈ (0, 1/√𝑛) is a small positive constant and 𝑔ℓ,𝑗 =𝑔𝑗(𝑥ℓ).
Aiming to solve the nonlinear optimization with unavail-

able first- (or second-) order derivatives and to guarantee
reliable and efficient numerical performance, we now state
following derivative-free trust region method.

Algorithm 4 (a derivative-free trust region method with non-
monotone filter technique).
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Initialization Step. Choose a starting point 𝑥0 ∈ Ω and
suitable constants Δmax, Δ 0, 𝜂0, 𝜂1, 𝜇0, 𝜇1, 𝜏1, 𝜏2, 𝜁, 𝜍, 𝜀, 𝜇, 𝛽,𝜔, and 𝜄 such that Δmax > 0, Δ 0 ∈ (0, Δmax], 0 ≤ 𝜂0 ≤𝜂1 < 1, (𝜂1 ̸= 0), 𝜇0 ∈ (0, 1/2), 𝜇1 ∈ (0, 1), 𝜏1 > 0, 𝜏2 > 0,0 < 𝜁 < 1 < 𝜍, 𝜀 > 0, 𝜇 > 𝛽 > 0, 𝜔 ∈ (0, 1), and 𝜄 ∈ (0, 1). Set
NONCONVEX=0, RESTRICT=0, and 𝑘 fl 0.
Main Step

Step 1. Construct 𝑚𝑘(𝑥𝑘 + 𝑝) as in (2). Get 𝑔𝑘 and𝐻𝑚𝑘
.

If𝑚𝑘(𝑥𝑘 + 𝑝) is nonconvex, set NONCONVEX=1.
Step 2. If 𝜒𝑚𝑘

≤ 𝜀 and 𝑚𝑘(𝑥𝑘 + 𝑝) is fully linear and Δ 𝑘 ≤
𝜄𝜒𝑚𝑘

, stop; otherwise, set Δ̃ 𝑘 = Δ 𝑘, implement step 9
to obtain Δ̃ 𝑘, andmake𝑚𝑘(𝑥𝑘+𝑝) fully linear. UpdateΔ 𝑘 = min{max{Δ̃ 𝑘, 𝛽𝜒𝑚𝑘

}, Δ 𝑘}.
Step 3. Solve the trust region subproblem (5).
Step 4. Compute the trial point 𝑥+

𝑘 = 𝑥𝑘+𝑝𝑘. Obtain𝑚+
𝑘 (𝑥+

𝑘 +𝑝), 𝑔+
𝑘 and𝐻+

𝑚𝑘
.

Step 5. Evaluate ratio

𝜌𝑘 = 𝑅𝑎𝑟𝑒𝑑𝑘 (𝑝𝑘)𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) , (24)

by formulas (6) and (22).
If 𝑓(𝑥+

𝑘 ) > 𝑓𝑠𝑢𝑝, set 𝑥𝑘+1 = 𝑥𝑘 and RESTRICT=1. Go
to Step 7.

Step 6. These are tests to accept the trial step by (20) and (23).
If 𝑥+

𝑘 is acceptable for the filter F and NONCON-
VEX=0: set 𝑥𝑘+1 = 𝑥+

𝑘 and RESTRICT=0 and add
𝑔+

𝑘 to the filterF if either 𝜌𝑘 < 𝜂1.
Elseif 𝜌𝑘 ≥ 𝜂1, set 𝑥𝑘+1 = 𝑥+

𝑘 and RESTRICT=0;
Elseif NONCONVEX=1, set 𝑓𝑠𝑢𝑝 = 𝑓(𝑥𝑘+1) and
reinitialize the filterF to the empty set;
Else set 𝑥𝑘+1 = 𝑥𝑘 and RESTRICT=1.

Step 7 . Adjust trust region Δ 𝑘

Δ 𝑘+1 ∈
{{{{{{{{{{{{{{{

min {𝜍Δ 𝑘, Δmax} if 𝜌𝑘 ≥ 𝜂1 and Δ 𝑘 < 𝜄𝜒𝑚𝑘
,

[Δ 𝑘,min {𝜍Δ 𝑘, Δmax}] if 𝜌𝑘 ≥ 𝜂1 and Δ 𝑘 ≥ 𝜄𝜒𝑚𝑘
,

𝜁Δ 𝑘 if 𝜌𝑘 < 𝜂1 and 𝑚𝑘 (𝑥𝑘 + 𝑝) is fully linear,
Δ 𝑘 if 𝜌𝑘 < 𝜂1 and 𝑚𝑘 (𝑥𝑘 + 𝑝) is not fully linear.

(25)

Step 8. If 𝜌𝑘 ≥ 𝜂1, or 𝜌𝑘 ≤ 𝜂1 and RESTRICT=0 and𝑚+
𝑘 (𝑥+

𝑘 +𝑝) is not fully linear on B(𝑥𝑘+1, Δ 𝑘+1), go to Step 1;
else set RESTRICT=1, implement Step 9, and then go
to Step 2.

Step 9. Set 𝑖 = 0 and set 𝑚(0)
𝑘 (𝑥𝑘 + 𝑝) = 𝑚𝑘(𝑥𝑘 + 𝑝). Repeat:

increment 𝑖 by one, Δ̃ 𝑘 ← 𝜔𝑖−1Δ 𝑘, and improve𝑚(𝑖−1)
𝑘

(𝑥𝑘 + 𝑝) by 𝑚(𝑖)
𝑘
(𝑥𝑘 + 𝑝) until it is fully linear

(i.e., satisfying the error bounds (3) and (4)).

Set Δ̃ 𝑘 ← Δ 𝑘 and �̃�𝑘(𝑥𝑘 + 𝑝) = 𝑚(𝑖)
𝑘
(𝑥𝑘 + 𝑝).

Until Δ̃ 𝑘 ≤ 𝜄(𝜒𝑚𝑘
)(𝑖).

Remark 5. At the beginning of every iteration, Step 5 is
encountered with 𝑖 = −1. In this case the sum in (22) is empty
and thus we define

𝑅𝑎𝑟𝑒𝑑𝑘 (𝑝) = 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝑝) = 𝐴𝑟𝑒𝑑𝑘 (𝑝) . (26)

Remark 6. In order to obtain a suitable approximation func-
tion, the objective function of the trust region subproblem
needs to update if necessary. Step 9 is themodel improvement
method which has the same principle as the Algorithm 2
proposed in [14, 15].

3. Global Convergence for
First-Order Critical Points

The purpose of this section is to provide in-depth introduc-
tion to the global convergence properties of Algorithm 4 in
first-order case. We recall or state some reasonable assump-
tions that are assumed to hold for problem (1a) and (1b) in
order to get global convergence of the derivative-free trust
region method.

Assumptions

(A2) The level setL(𝑥0) is bounded.
(A3) There exist positive constants 𝜅𝐻𝑓

and 𝜅𝐻𝑚
such that‖𝐻𝑓𝑘

‖ ≤ 𝜅𝐻𝑓
and ‖𝐻𝑚𝑘

‖ ≤ 𝜅𝐻𝑚
, respectively, for all𝑥𝑘 ∈ L(𝑥0). And set 𝜅𝐻 = max{𝜅𝐻𝑓

, 𝜅𝐻𝑚
+ 1}.

The global convergence property is described by follow-
ing Theorem 7 which indicates that there exist at less one
accumulation point of a sequence generated by the derivative-
free trust region method from Algorithm 4 with filter tech-
nique which is still a stationary point of the optimization
problem (1a) and (1b).

Theorem 7. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
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hold. Suppose furthermore that 𝑚𝑘(𝑥𝑘 + 𝑝) is fully linear on
B(𝑥𝑘, Δ 𝑘). �en

lim inf
𝑘→+∞

𝜒𝑓𝑘
= 0. (27)

In order to obtain Theorem 7, the remainder of this
section will derive Lemmas 8–15 as support.

Lemma 8. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
hold. 𝑚𝑘(𝑥𝑘 + 𝑝) is the fully linear function on B(𝑥𝑘, Δ 𝑘).
�en step 3 of Algorithm 4 will terminate in a finite number
of improvement step, if 𝜒𝑓𝑘

̸= 0.
Proof. We prove this result by contradiction. Assume that the
loop in Step 9 is infinite. We will show that 𝜒𝑓𝑘

must be zero
in this case.

If Step 9 is implemented, we notice that we do not have a
certifiably fully linear model 𝑚𝑘(𝑥𝑘 + 𝑝) and that the radiusΔ 𝑘 exceeds 𝜄𝜒𝑚𝑘

. Then set 𝑚(0)
𝑘
(𝑥𝑘 + 𝑝) = 𝑚𝑘(𝑥𝑘 + 𝑝) and

improve the model until it is fully linear onB(𝑥𝑘, 𝜔(0)Δ 𝑘). If𝜒(1)
𝑚𝑘

of the resultingmodel𝑚(1)
𝑘
(𝑥𝑘+𝑝) satisfies 𝜄𝜒(1)

𝑚𝑘
≥ 𝜔(0)Δ 𝑘,

the procedure stops with Δ̃ 𝑘 = 𝜔(0)Δ 𝑘 ≤ 𝜄𝜒(1)
𝑚𝑘
.

Otherwise, that is, 𝜄𝜒(1)
𝑚𝑘

< 𝜔(0)Δ 𝑘 improve the model until
it is fully linear on B(𝑥𝑘, 𝜔Δ 𝑘). Then, estimate whether the
procedure stops or not. If not, the radius should bemultiplied
by 𝜔 again, and go on.

The only way for this procedure to be infinite is if

𝜄𝜒(𝑖)
𝑚𝑘

< 𝜔𝑖−1Δ 𝑘 for all 𝑖 ≥ 1. (28)

This construction implies

lim
𝑖→+∞

𝜒(𝑖)
𝑚𝑘

= 0. (29)

Since each model 𝑚(𝑖)
𝑘
(𝑥𝑘 + 𝑝) was fully linear on B(𝑥𝑘,𝜔𝑖−1Δ 𝑘), the bound (3) provides

𝜒(𝑖)
𝑓𝑘
= 𝑥𝑘 − 𝑃𝑋 [𝑥𝑘 − ∇𝑓𝑘]
≤ 𝑃𝑋 [𝑥𝑘 − ∇𝑓𝑘] − 𝑃𝑋 [𝑥𝑘 − (𝑔𝑘)(𝑖)]
+ 𝑥𝑘 − 𝑃𝑋 [𝑥𝑘 − (𝑔𝑘)(𝑖)]

≤ ∇𝑓𝑘 − (𝑔𝑘)(𝑖) + 𝜒(𝑖)
𝑚𝑘

≤ (𝜅𝑒𝑔Δmax + 1𝜄 )𝜔𝑖−1Δ 𝑘

for all 𝑖 ≥ 1.

(30)

The choice of 𝜔 ∈ (0, 1) in Algorithm 4 implies that

𝜒𝑓𝑘
= 0. (31)

Lemma 9. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
hold. 𝑚𝑘(𝑥𝑘 + 𝑝) is the fully linear function on B(𝑥𝑘, Δ 𝑘).

Suppose furthermore that 𝑥𝑘, 𝑝𝑘, Δ 𝑘, etc. are generated by
Algorithm 4, then for all computed indices 𝑖 ≥ 1 holds,

𝑓 (𝑥𝑗𝑖
) < 𝑓 (𝑥0) − 𝜂1𝜆 𝑖−2∑

𝑟=0

𝑃𝑟𝑒𝑑𝑗𝑟
(𝑝𝑗𝑟

)
− 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖−1

(𝑝𝑗𝑖−1
) .

(32)

Proof. We note from (6) that 𝑃𝑟𝑒𝑑𝑘(𝑝𝑘) > 0. The proof is by
induction. For 𝑖 = 1 we have by (20) and using 𝜌𝑗0

(𝑝𝑗0
) > 𝜂1

𝑓 (𝑥𝑗1
) = 𝑓 (𝑥𝑗0+1) = 𝑓 (𝑥𝑗0

) − 𝐴𝑟𝑒𝑑𝑗0
(𝑝𝑗0

)
< 𝑓 (𝑥𝑗0

) − 𝜂1𝑃𝑟𝑒𝑑𝑗0
(𝑝𝑗0

)
= 𝑓 (𝑥0) − 𝜂1𝑃𝑟𝑒𝑑𝑗0

(𝑝𝑗0
) .

(33)

Now assume that (32) holds for 1, . . . , 𝑖. If 𝑅𝑎𝑟𝑒𝑑𝑗𝑖
(𝑝𝑗𝑖

) =𝐴𝑟𝑒𝑑𝑗𝑖(𝑝𝑗𝑖
) then, using (32) and 𝜆 ≤ 1,

𝑓 (𝑥𝑗𝑖+1
) = 𝑓 (𝑥𝑗𝑖+1) = 𝑓 (𝑥𝑗𝑖

) − 𝐴𝑟𝑒𝑑𝑗𝑖
(𝑝𝑗𝑖

)
= 𝑓 (𝑥𝑗𝑖

) − 𝑅𝑎𝑟𝑒𝑑𝑗𝑖
(𝑝𝑗𝑖

)
< 𝑓 (𝑥0) − 𝜂1𝜆 𝑖−2∑

𝑟=0

𝑃𝑟𝑒𝑑𝑗𝑟
(𝑝𝑗𝑟

)
− 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖−1

(𝑝𝑗𝑖−1
) − 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖

(𝑝𝑗𝑖
)

≤ 𝑓 (𝑥0) − 𝜂1𝜆 𝑖−1∑
𝑟=0

𝑃𝑟𝑒𝑑𝑗𝑟
(𝑝𝑗𝑟

)
− 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖

(𝑝𝑗𝑖
) .

(34)

If 𝑅𝑎𝑟𝑒𝑑𝑗𝑖
(𝑝𝑗𝑖

) ̸= 𝐴𝑟𝑒𝑑𝑗𝑖(𝑝𝑗𝑖
) then 𝑅𝑎𝑟𝑒𝑑𝑗𝑖

(𝑝𝑗𝑖
) > 𝐴𝑟𝑒𝑑𝑗𝑖(𝑝𝑗𝑖

),
and with 𝑞 = min{𝑖, 𝑙 − 1} we obtain

𝑓 (𝑥𝑗𝑖+1
) = 𝑓 (𝑥𝑗𝑖+1) =

𝑞∑
𝑡=0

𝜆𝑗𝑖𝑡
𝑓 (𝑥𝑗𝑖−𝑡

)

− 𝑅𝑎𝑟𝑒𝑑𝑗𝑖
(𝑝𝑗𝑖

) < 𝑞∑
𝑡=0

𝜆𝑗𝑖𝑡
(𝑓 (𝑥0)

− 𝜂1𝜆𝑖−𝑡−2∑
𝑟=0

𝑃𝑟𝑒𝑑𝑗𝑟
(𝑝𝑗𝑟

) − 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖−𝑡−1
(𝑝𝑗𝑖−𝑡−1

))
− 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖

(𝑝𝑗𝑖
) .

(35)

Using {0, . . . , 𝑞} × {0, . . . , 𝑖 − 𝑡 − 2} ⊂ {(𝑡, 𝑟); 0 ≤ 𝑝 ≤ 𝑡, 0 ≤ 𝑟 ≤𝑖 − 𝑡 − 2}, 𝜆𝑗𝑖0
+ ⋅ ⋅ ⋅ + 𝜆𝑗𝑖𝑡

= 1, and 𝜆𝑗𝑖𝑡
≥ 𝜆, we can proceed as

follows:

𝑓 (𝑥𝑗𝑖+1
) < 𝑓 (𝑥0) − 𝜂1𝜆𝑖−𝑡−2∑

𝑟=0

( 𝑞∑
𝑡=0

𝜆𝑗𝑖𝑡
)𝑃𝑟𝑒𝑑𝑗𝑟

(𝑝𝑗𝑟
)

− 𝜂1𝜆
𝑞∑

𝑡=0

𝑃𝑟𝑒𝑑𝑗𝑖−𝑡−1 (𝑝𝑗𝑖−𝑡−1)
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− 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖 (𝑝𝑗𝑖
)

< 𝑓 (𝑥0) − 𝜂1𝜆𝑖−𝑡−2∑
𝑟=0

𝑃𝑟𝑒𝑑𝑗𝑟
(𝑝𝑗𝑟

)

− 𝜂1𝜆 𝑖−1∑
𝑟=𝑖−𝑡−1

𝑃𝑟𝑒𝑑𝑗𝑟
(𝑝𝑗𝑟

) − 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖 (𝑝𝑗𝑖
)

= 𝑓 (𝑥0) − 𝜂1𝜆 𝑖−1∑
𝑟=0

𝑃𝑟𝑒𝑑𝑗𝑟
(𝑝𝑗𝑟

)
− 𝜂1𝑃𝑟𝑒𝑑𝑗𝑖 (𝑝𝑗𝑖

) .
(36)

Lemma 9 provides the sufficiently descent property at the𝑘th iteration of Algorithm 4.

Lemma 10. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
hold. Suppose furthermore that 𝑥𝑘, 𝑝𝑘, Δ 𝑘, etc. are generated
by Algorithm 4, that 𝑚𝑘(𝑥𝑘 + 𝑝) is fully linear on B(𝑥𝑘, Δ 𝑘),
and that

Δ 𝑘 ≤ min{1, 𝜒𝑚𝑘
, 𝜅1 (1 − 𝜂1) 𝜒𝑚𝑘2𝜅𝑒𝑓

} . (37)

�en for arbitrary 𝑥 ∈ L(𝑥0) with 𝜒𝑚𝑘
̸= 0, the 𝑘th iteration

is successful.

Proof. Since 𝜒𝑚𝑘
̸= 0 and Δ 𝑘 ≤ min{1, 𝜒𝑚𝑘

}, we obtain from
the decrease condition (6)

𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) = −𝑞𝑚𝑘
(𝑝𝑘) ≥ 𝜅1𝜒𝑚𝑘

min {1, Δ 𝑘, 𝜒𝑚𝑘
}

≥ 𝜅1𝜒𝑚𝑘
Δ 𝑘. (38)

On the other hand, since the current model is fully linear on
B(𝑥𝑘, Δ 𝑘), then from the bound (3) on the error between
the function and the model and from (38), if 𝑅𝑎𝑟𝑒𝑑𝑘(𝑝𝑘) =𝐴𝑟𝑒𝑑𝑘(𝑝𝑘), then we have

𝜌𝑘 − 1 =

𝑅𝑎𝑟𝑒𝑑𝑘 (𝑝𝑘)𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) − 1

= 
𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝑝𝑘)𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) − 1

𝑓(𝑥𝑘)=𝑚𝑘(𝑥𝑘)≤ 
𝑚𝑘 (𝑥𝑘 + 𝑝𝑘) − 𝑓 (𝑥𝑘 + 𝑝𝑘)𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘)


≤ 2𝜅𝑒𝑓Δ2

𝑘𝜅1𝜒𝑚𝑘
Δ 𝑘

≤ 1 − 𝜂1

(39)

wherewehave used the assumptionΔ 𝑘 ≤ 𝜅1(1−𝜂1)𝜒𝑚𝑘
/(2𝜅𝑒𝑓)

to deduce the inequality.
If 𝑅𝑎𝑟𝑒𝑑𝑘(𝑝𝑘) > 𝐴𝑟𝑒𝑑𝑘(𝑝𝑘), then we have, with appropri-

ate 𝑥
𝑘 ∈ [𝑥𝑘, 𝑥𝑘 + 𝑝𝑘],

𝐴𝑟𝑒𝑑𝑘 (𝑝𝑘) = 𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘 + 𝑝𝑘) = −∇𝑓 (𝑥
𝑘)T 𝑝𝑘

= −𝑞𝑚𝑘
(𝑝𝑘) + [𝑔𝑘 − ∇𝑓 (𝑥

𝑘)]T 𝑝𝑘

+ 12𝑝T
𝑘𝐻𝑚𝑘

𝑝𝑘.
(40)

Since ∇𝑓 continuous, there exists 𝛿 > 0 such that

∇𝑓 (𝑥
𝑘) − ∇𝑓 (𝑥𝑘)1

≤ [(1 − 𝜂1) 𝜅1 − 𝜅𝑒𝑔 − 12𝜅𝐻Δmax] 𝜒𝑚𝑘
, (41)

for all 𝑥
𝑘 ∈ 𝑋𝑘 with ‖𝑥

𝑘 −𝑥𝑘‖ < 𝛿. Hence, for these indices 𝑘,
𝑔𝑘 − ∇𝑓 (𝑥

𝑘) + 12𝑝T
𝑘𝐻𝑚𝑘

𝑝𝑘

1
≤ 𝑔𝑘 − ∇𝑓 (𝑥𝑘) + ∇𝑓 (𝑥

𝑘) − ∇𝑓 (𝑥𝑘)1
+ 12𝜅𝐻Δ2

𝑘 ≤ (1 − 𝜂1) 𝜅1𝜒𝑚𝑘
.

(42)

At the same time, we get from (5) and (38) that

𝑝𝑘
∞ ≤ Δ 𝑘 ≤ 1𝜅1𝜒𝑚𝑘

𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) . (43)

This inequality implies that

[𝑔𝑘 − ∇𝑓 (𝑥
𝑘)]T 𝑝𝑘 + 12𝑝T

𝑘𝐻𝑚𝑘
𝑝𝑘


≤ (1 − 𝜂1) 𝜅1𝜒𝑚𝑘

𝑝𝑘
∞ ≤ (1 − 𝜂1) 𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) .

(44)

This means that

𝑅𝑎𝑟𝑒𝑑𝑘 (𝑝𝑘) ≥ 𝐴𝑟𝑒𝑑𝑘 (𝑝𝑘)
≥ 𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘)
− [𝑔𝑘 − ∇𝑓 (𝑥

𝑘)]T 𝑝𝑘 + 12𝑝T
𝑘𝐻𝑚𝑘

𝑝𝑘


≥ 𝜂1𝑃𝑟𝑒𝑑𝑘 (𝑝𝑘) .

(45)

For either case, we obtain the conclusion that 𝜌𝑘 ≥ 𝜂1; that is,
the 𝑘th iteration is successful.

Lemma 11. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
hold. Suppose furthermore that 𝑚𝑘(𝑥𝑘 + 𝑝) is fully linear on
B(𝑥𝑘, Δ 𝑘) and that there exists a constant 𝜅𝑙𝑏𝑔 > 0 such that𝜒𝑚𝑘

≥ 𝜅𝑙𝑏𝑔 for all 𝑘. �en there is a constant 𝜅𝑢𝑏𝑑 > 0 such thatΔ 𝑘 ≥ 𝜅𝑢𝑏𝑑 for all 𝑘.
Proof. The proof is the same as for Lemma 5.3 in [8] when‖𝑝𝑘‖∞ ≤ Δ 𝑘 except that we now have to replace ‖𝑔𝑘‖ by the
criticality measurement 𝜒𝑚𝑘

and use (38) instead of themodel
decrease defined in [8].
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Lemma 12. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
hold. Suppose furthermore that 𝑚𝑘(𝑥𝑘 + 𝑝) is fully linear on
B(𝑥𝑘, Δ 𝑘) and that there exists a constant 𝜅𝑙𝑏𝑔 > 0 such that𝜒𝑚𝑘

≥ 𝜅𝑙𝑏𝑔 for all 𝑘. �en there can be only finitely many
successful nonconvex iterations in the course of the algorithm,
i.e., |𝑆 ∩ 𝑁| < +∞.

Proof. Suppose, for the purpose of obtaining a contradiction,
that there are infinitelymany successful nonconvex iterations,
which we index by 𝑆 ∩ 𝑁 = {𝑘𝑖}. It follows from the fact of𝑆∩𝑁 = 𝐷∩𝑁 that the algorithm also guarantees that 𝜌𝑘 ≥ 𝜂1

for all iteration in 𝑆 ∩ 𝑁, where 𝐷 = {𝑘 | 𝜌𝑘 ≥ 𝜂1} is the set
of sufficient descent iterations, which in turn implies with (6)
that, for 𝑘 ∈ 𝑆 ∩ 𝑁,

𝑅𝑎𝑟𝑒𝑑𝑘 (𝑝𝑘) ≥ 𝜂1 [𝑚𝑘 (𝑥𝑘) − 𝑚𝑘 (𝑥𝑘 + 𝑝𝑘)]
≥ 𝜂1𝜅1𝜒𝑚𝑘

min {1, Δ 𝑘, 𝜒𝑚𝑘
}

≥ 𝜂1𝜅1𝜅𝑙𝑏𝑔 min {1, Δ 𝑘, 𝜅𝑙𝑏𝑔}
(46)

where we have used Lemma 8, (A3) and our lower bound on
the gradient norm to obtain the last inequality. Combining
now this bound with (3), we deduce that

𝑓 (𝑥0) − 𝑓 (𝑥𝑘+1) ≥ 𝑘∑
𝑗=0,𝑗∈𝑆∩𝑁

𝑅𝑎𝑟𝑒𝑑𝑘 (𝑝𝑘)

≥ 𝑘∑
𝑗=0,𝑗∈𝑆∩𝑁

[max{𝑓 (𝑥𝑘) ,
𝑙𝑘−1∑
𝑟=0

𝜆𝑘𝑟𝑓 (𝑥𝑗𝑖−1
)}

− 𝑓 (𝑥𝑘+1)] ≥ 𝜍𝑘𝜂1𝜅1𝜅𝑙𝑏𝑔 min {1, Δ 𝑘, 𝜅𝑙𝑏𝑔}

(47)

where 𝜍𝑘 = |{1, . . . , 𝑘} ∩ 𝑆 ∩ 𝑁|. As we have supposed that
there are infinitely many successful nonconvex iterations,
we have that lim𝑘→∞𝜍𝑘 = +∞, and |𝑓(𝑥0) − 𝑓(𝑥𝑘+1)|
is unbounded above, which contradicts the fact that the
objective function is bound below; as stated in assumption
A1, our initial assumption must then be false and the set 𝑆∩𝑁
of successful nonconvex iteration must be finite.

Lemma 13. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
hold. Suppose furthermore that 𝑚𝑘(𝑥𝑘 + 𝑝) is fully linear on
B(𝑥𝑘, Δ 𝑘) and that there are only finitely many successful
iterations, i.e., |𝑆| < +∞. �en lim𝑘→∞ 𝜒𝑚𝑘

= 0.
Proof. Let 𝑘0 be the index of the last successful iteration.Then𝑥∗ = 𝑥𝑘0+1 = 𝑥𝑘0+𝑗 and

𝜌𝑘0+𝑗 < 𝜂1 for all 𝑗 > 1. (48)

Nowobserve that Restrict is set by the algorithm in the course
of every unsuccessful iteration. This flag must thus be set at
the beginning of every iteration of index 𝑘0 + 𝑗 + 1 for 𝑗 > 0.

As a consequence, ‖𝑝𝑘0+𝑗+2‖ ≤ Δ 𝑘0+𝑗+2 for all 𝑗 > 0.This, (48),
and the mechanism of step 7 of the algorithm then imply that

lim
𝑘→∞

Δ 𝑘 = 0. (49)

Assume now, for the purpose of establishing a contradiction,
that 𝜒𝑚𝑘0+1

≥ 𝜀 for some 𝜀 > 0. Then Lemma 12 implies that
(49) is impossible and we deduce that

𝜒𝑚𝑘0+𝑗
= 0, for all 𝑗 > 0. (50)

Lemma 14. Suppose that Assumptions (A1)-(A3), the error
bounds (3) and (4), and the fact that Δ 𝑘 is bounded by Δmax
hold. Suppose furthermore that 𝑚𝑘(𝑥𝑘 + 𝑝) is fully linear on
B(𝑥𝑘, Δ 𝑘) and that |𝐴| = |𝑆| = +∞. �en lim inf𝑘→∞ 𝜒𝑚𝑘

=0.
Proof. Assume for the purpose of obtaining a contradiction
that, for all 𝑘 large enough,

𝜒𝑚𝑘
≥ 𝜅𝑙𝑏𝑔 (51)

for some 𝜅𝑙𝑏𝑔 > 0 and define {𝑘𝑖} = 𝐴. The bound (51) and the
Lemma 12 then imply that |𝑆 ∩ 𝑁| is finite and therefore that
the filter is no longer reset to the empty set for 𝑘 sufficiently
large. Moreover, since our assumptions imply that {𝜒𝑚𝑘𝑖+1

} is
bounded above and away form zero, there must exist a sub-
sequence 𝑘ℓ ⊆ 𝑘𝑖+1 such that

lim
ℓ→∞

𝜒𝑚𝑘ℓ
= 𝜒𝑚∞

with 𝜒𝑚∞
≥ 𝜅𝑙𝑏𝑔. (52)

By definition of {𝑘ℓ}, 𝑥𝑘ℓ
is acceptable for the filter in each

iteration ℓ − 1. This implies, since the filter is not reset for ℓ
large enough, that, for each ℓ sufficiently large, there exists an
index 𝑗ℓ ∈ {1, . . . , 𝑛} such that

𝑔𝑘ℓ,𝑗ℓ

 − 𝑔𝑘ℓ−1 ,𝑗ℓ

 ≤ −𝛾𝑔 𝑔𝑘ℓ−1

 . (53)

But (51) implies that ‖𝑔𝑘ℓ−1
‖ ≥ 𝜅𝑙𝑏𝑔 for all ℓ sufficiently large.

Hence we deduce from (53) that𝑔𝑘ℓ,𝑗ℓ

 − 𝑔𝑘ℓ−1 ,𝑗ℓ

 ≤ −𝛾𝑔𝜅𝑙𝑏𝑔. (54)

for all ℓ sufficiently large. But the left-hand side of this
inequality tends to zero when ℓ tends to infinity because of
(52), yielding the desired contradiction.Hence the conclusion
holds.

We now consider the similar conclusion of Lemma 5.7 in
[8] that if the model criticality measurement 𝜒𝑚𝑘

converges to
0 on a subsequence, then so does the true criticality measure-
ment 𝜒𝑓𝑘

.

Lemma 15. For any subsequence 𝑘𝑖 such that

lim
𝑖→+∞

𝜒𝑚𝑘𝑖
= 0 (55)

it also holds that

lim
𝑖→+∞

𝜒𝑓𝑘𝑖
= 0. (56)
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Combining both Lemmas 14 and 15, a global convergent
property immediately will be given as Theorem 7, which also
illustrates that the criticality step plays an important role in
ensuring a subsequence of the iterations being close to the
first-order stationarity.

4. Numerical Experiment

In this section, we examine the practical performance of
the derivative-free trust region method on two aspects. The
comparisons of the numerical results between the proposed
derivative-free trust region method and traditional gradient
algorithm are firstly given in order to illustrate the effec-
tiveness of Algorithm 4 in solving the general optimization
problems. And then the derivative-free trust region algorithm
with nonmonotone filter technique to parameter estimation
is presented to show the performance of Algorithm 4 to
derivative-free optimization problems. All routines are writ-
ten inMatlab R2009a and run on a PCwith 2.66GHz Intel(R)
Core(TM)2 Quad CPU and 4G DDR2.

4.1. Numerical Results of the Derivative-Free Trust Region
Algorithm with Nonmonotone Filter Technique. The Hock
[27] test set is frequently used to test derivative-free algo-
rithms onmoderate-size problems. For running the proposed
derivative-free trust region algorithm with nonmonotone
filter technique, the bound constraints of each problemdefine
the set Ω and linear (not bound) constraints of the original
problem were processed by projections. We test 27 simple
bound constrained optimization problems (List in Table 1)
from Test examples for Nonlinear Programming Codes [27–
29].The valuesΔ 0 = 2, 𝜂0 = 0.25, 𝜂1 = 0.75, 𝜁 = 0.4, 𝜍 = 2, 𝜄 =0.5, 𝛽 = 0.3, 𝜀 = 10−8, and 𝜔 = 0.5 are used. At the same time,
we introduce two different algorithms traditional quasi-
Newton method and conjugate gradient method [30] into
this section to measure the objective algorithm efficiency
through the tested problems. We denote the two algorithms
as Algorithm 1.1 and Algorithm 1.2.

We use the tool of Dolan and More [31] to analyze the
efficiency of the given three algorithms. Figures 1 and 2 show
that the performance of Algorithm 4 is feasible and has
the robust property among those three methods. It is not
difficult to see from Figure 1 that Algorithm 4 has a huge lead
among those three methods in the CPU time for solving each
test problems. Simultaneously, Figure 2 illustrates that Algo-
rithm 4 more quickly to optimal performance in terms of the
number of function evaluations than other two algorithms.

To measure the efficiency of the proposed algorithm for
large-scale optimizations, in this section, we compare this
method with Algorithm 2.1 in [32] using three characteristics
“NI,” “NF,” and “CPU,” where “NI” presents the number of
iterations, “NF” is the calculation frequency of the function,
and “CPU” is the time of the process in addressing the tested
problems. The numerical results with the corresponding
problem are listed in Table 2.

Althoughwe only list the data of dimension of 9000, obvi-
ously, the objective algorithm (Algorithm 4) is more effective
for large-scale optimizations since the iteration number and
CPU time which are two essential aspects to measure the
efficiency of an algorithm are less than Algorithm 2.1.
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Figure 1: Profile comparing the CPU time required performance of
different methods.
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Figure 2: Profile comparing the numbers of function evaluations
performance of different methods.

4.2. �e Derivative-Free Trust Region
Algorithm to Parameter Estimation

Algorithm 16 (basic trust region method).

Step 0. An initial point 𝑥0 ∈ 𝑅𝑛 and an initial trust region
radiusΔ 0 > 0 are given, as well as parameters 0 ≤ 𝜂0 < 𝜂1 < 1
and 0 < 𝜁 < 1 < 𝜍. Compute 𝑓(𝑥0) and set 𝑘 = 0.
Step 1. Solve a trust region subproblem and compute a step 𝑝𝑘

which satisfies the sufficient decrease conditions.
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Table 1: Test problems.

Problem Dim 𝑥0 Problem Dim 𝑥0

HS1 2 [−2, 1] HS2 2 [−2, 1]
HS3 2 [10, 1] HS4 2 [1.125, 0.125]
HS5 2 [0, 0] HS21 2 [−1, −1]
HS24 2 [1, 0.5] HS25 3 [100, 12.5, 3]
HS35(Beale’s problem) 3 [0.5, 0.5, 0.5] HS38(Colville No.4) 4 [−3, −1, −3, −1]
HS45 5 [2, 2, 2, 2, 2] HS110 10 [9, 9, . . . , 9]
HS119(Colville No.7) 16 [10, 10, . . . , 10] HS224 2 [0.1, 0.1]
HS232 2 [2, 0.5] HS247(Helical vally) 3 [−1, 0, 0]
HS250(Rosenbrock’s-Post-office-prob.) 3 [10, 10, 10] HS251 3 [10, 10, 10]
HS253 3 [0, 2, 0] HS257 4 [−3, −1, −3, −1]
HS262 4 [0, 0, 0, 0] HS279 8 [0, 0, . . . , 0]
HS280 10 [0, 0, . . . , 0] HS299 100 [−1, 2, . . . , −1, 2]
HS328(Gear train of minimum inertia) 2 [0.5, 0.5] HS340(Pascal problem) 3 [1, 1, 1]
HS368(Gear train of minimum inertia) 8 [1, 1, . . . , 1]

Table 2: Numerical results.

Problem Dim Algorithm 4 Algorithm 2.1
NI NF CPU NI NF CPU

Broyden Tridiagonal Function 9000 23 87 14.322854 13 54 9.718862
Extended Powell Function 9000 7 37 0.2094377 9 45 0.218401
Extended Penalty Function 9000 43 193 0.355428 65 252 0.421203
Extended Wood Function 9000 17 73 0.396603 13 50 0.124801
Extended Quadratic Penalty QP1 Function 9000 15 57 0.0953941 18 63 0.124801

Step 2. Compute 𝑓(𝑥𝑘 + 𝑝𝑘) and 𝜌𝑘 = (𝑓(𝑥𝑘) − 𝑓(𝑥𝑘 + 𝑝𝑘))/(𝑚𝑘(𝑥𝑘) −𝑚𝑘(𝑥𝑘 + 𝑝𝑘)). If 𝜂0 ≤ 𝜌𝑘, then set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘;
otherwise, set 𝑥𝑘+1 = 𝑥𝑘.

Step 3. Set

Δ 𝑘+1 =
{{{{{{{{{

𝜁 𝑝𝑘
 if 𝜌𝑘 < 𝜂0

Δ 𝑘 if 𝜂0 < 𝜌𝑘 < 𝜂1

max [𝜍 𝑝𝑘
 , Δ 𝑘] if 𝜂1 ≤ 𝜌𝑘.

(57)

Increment 𝑘 by one, and go to Step 1.

Trust region methods generate steps with the help of a
quadratic model of the objective function, but they use this
model in different ways from line search methods. Trust
region methods define a region around the current iterate
within which the trust themodel to be an adequate represent-
ation of the objective function and then choose the step to be
the approximate minimizer of the model in this region. The
size of the trust region is critical to the effectiveness of each
step.There are four parameters found in a trust region update
process (57); namely, 𝜂0, 𝜂1, 𝜁, 𝜍 are used to adjust the size of
the trust region radius.The values are arbitrary and thatmuch
better options are available. The classical parameter values

𝑠𝑐 = (0.25, 0.75, 0.5, 2) (58)

are recommended in the literature [30], but they may not
be the best choice if we consider the total CPU time or the

overall number of function evaluations which was necessary
to solve a set of optimization problems. This is a derivative-
free optimization problem. In this section, an objective is
to identify four optimal parameters found in a trust-region
update using the proposed Algorithm 4 in this paper. Next
we describe the specific representation of this parameter esti-
mation problem.

Let𝑃 be a set of optimization problems,Ω = {𝑠 ∈ 𝑅4 | 0 ≤𝜂0 < 𝜂1 < 1 and 0 < 𝜁 < 1 < 𝜍}, 𝜏𝑖(𝑠) be the CPU time which
is necessary to solve the problem 𝑝𝑖 ∈ 𝑃 with the parameter
values 𝑠, and 𝜙𝑖(𝑠) be the number of function evaluations.
Thus the small-dimensional nondifferentiable optimization
problem measuring by the overall CPU time 𝜓𝐶𝑃𝑈(𝑠) or the
overall number of function evaluations 𝜓𝑓𝑒V𝑎𝑙(𝑠) is written as

min
𝑝∈Ω

𝜓𝐶𝑃𝑈 (𝑠) = ∑
𝑖∈𝑃

𝜏𝑖 (𝑠) or

min
𝑝∈Ω

𝜓𝑓𝑒V𝑎𝑙 (𝑠) = ∑
𝑖∈𝑃

𝜙𝑖 (𝑠) (59)

We consider to minimize the total computing time 𝜓𝐶𝑃𝑈(⋅).
The test problems in 𝑃 and their dimension are list in Table 3.
The initial point chosen for Algorithm 4 is 𝑠𝑐. Thus, the best
set of parameters given by Algorithm 4 is

𝑠∗ = {0.238721, 0.923489, 0.352533, 2.304294} . (60)

Table 3 shows the results on the test problems. Timings𝜏𝑖(⋅) are in seconds. The measure 𝜙𝑖(⋅) is the number of
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Figure 3: Profile comparing the CPU time required performance
when using different parameter values.

function evaluations in each case. Failures occur when 𝜙𝑖(⋅) =1001. Table 3 demonstrates that this strategy allowed the
improvement if the truth initial value from 𝜓𝐶𝑃𝑈(𝑠𝑐) = 71.04
to 𝜓𝐶𝑃𝑈(𝑠∗) = 64.4 seconds, i.e., an improvement of approx-
imately 10.31 %. The total number of function evaluations is
improved from 𝜓𝑓𝑒V𝑎𝑙(𝑠𝑐) = 14221 to 𝜓𝑓𝑒V𝑎𝑙(𝑠∗) = 12752, i.e.,
an improvement of approximately 11.52 %.

The function which characterizes the performance profile
of parameter values 𝑠𝑐 and 𝑠∗ is the same as [2].The perform-
ance of the computing time 𝜏𝑖(⋅) required to solve each opti-
mization problem in the problem set 𝑃, with the parameter
values 𝑠𝑐, can be visualized in the profile of Figure 3 which
compares the CPU time with the parameter values 𝑠∗. The
profile of Figure 4 presents a similar comparison, using the
number of function evaluations. Both Figures 3 and 4 illus-
trate that Algorithm 4 has advantage in solving nondifferenti-
able optimization problems.

5. Conclusion

This paper proposes a derivative-free trust region algorithm
with nonmonotone filter technique for bound constrained
optimization.

(i) This algorithm is mainly designed to solve the un-
available derivatives optimization problems in engi-
neering. The proposed algorithm possesses the trust
region property and adopts nonmonotone filter tech-
nique for bound constrained optimization.

(ii) The global convergence is provided under the def-
inition of fully linear model. The sufficient descent
property is able to make the objective function value
descend, and then the iteration sequence {𝑥𝑘} con-
verges to the global limit point if the problems are
convex.
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Figure 4: Profile comparing the total numbers of function evalua-
tions performance when using different parameter values.

(iii) The preliminary numerical results compared with
traditional quasi-Newton method and conjugate gra-
dient method turn out the proposed algorithm is
feasible for those of the unavailable derivative func-
tions. Large-scale problems are done by the given
problems, which shows that the new algorithms are
very effective.

(iv) Finally, optimal parameters with respect to overall
computational time on a set of test problems are
identified.Weuse the proposed algorithm to get a best
choice of parameter values which differ from tra-
ditionally used values and compare the numerical
results affected by two different parameters from the
two aspects of the CPU time and the number of func-
tion evaluations.
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Table 3: Numerical results of the parameter estimation.

Problem name 𝑛 𝜏𝑖(𝑠𝑐) 𝜏𝑖(𝑠∗) 𝜙𝑖(𝑠𝑐) 𝜙𝑖(𝑠∗)
3PK 30 0.14 0.04 71 55
ARGLINA 200 0.64 0.34 3 3
BIGGS6 6 0.12 0.02 24 23
BOX3 3 0.02 0.02 6 6
BROWNAL 200 0.12 0.17 4 7
BROWNBS 2 0.22 0.32 23 27
BROWNDEN 4 0.02 0.02 10 9
CHNROSNB 50 0.32 0.43 66 70
CLIFF 2 0.20 0.02 27 19
CUBE 2 0.02 0.02 45 40
DECONVU 61 1.34 0.93 90 38
DENSCHND 3 0.55 0.22 31 29
DIXMAANK 15 0.10 0.02 9 9
DJTL 2 0.02 0.02 168 147
ERRINROS 50 0.22 0.11 71 73
GENROSE 500 23.37 19.55 461 413
GROWTHLS 3 0.82 0.47 179 157
GULF 3 0.03 0.02 54 49
HAIRY 2 0.04 0.09 78 51
HEART6LS 6 0.25 0.25 1001 1001
HEART8LS 8 0.25 0.18 259 178
HIELOW 3 3.09 1.29 11 6
HIMMELBF 4 0.44 0.62 201 174
HUMPS 2 0.44 0.41 1001 613
LOGHAIRY 2 0.44 0.44 1001 1001
MANCINO 100 21.33 16.79 20 24
MARATOSB 2 0.03 0.37 1001 1001
MEYER3 3 0.42 0.49 1001 472
OSBORNEA 5 0.06 0.04 69 77
OSBORNEB 11 0.11 0.16 20 53
PALMER1C 8 0.54 0.94 1001 874
PALMER1D 7 0.02 0.02 49 69
PALMER2C 8 0.71 0.71 1001 1001
PALMER3C 8 0.31 0.26 646 983
PALMER4C 8 0.03 0.06 80 548
PALMER6C 8 0.07 0.15 229 145
PALMER7C 8 0.36 0.84 1001 1001
PALMER8C 8 0.55 1.09 268 233
PENALTY2 200 0.99 0.77 13 15
PFIT1LS 3 0.23 0.65 625 368
PFIT2LS 3 0.01 0.37 242 176
PFIT3LS 3 0.27 0.49 275 377
PFIT4LS 3 0.21 0.43 510 269
SENSORS 100 8.77 11.77 22 20
SISSER 2 0.02 0.02 10 12
SNAIL 2 0.06 0.06 75 81
TOINTGOR 50 0.08 0.10 7 9
TOINTPSP 50 0.05 0.05 16 20
TOINTQOR 50 0.02 0.02 16 10

Table 3: Continued.

Problem name 𝑛 𝜏𝑖(𝑠𝑐) 𝜏𝑖(𝑠∗) 𝜙𝑖(𝑠𝑐) 𝜙𝑖(𝑠∗)
VARDIM 200 0.09 0.22 26 71
VAREIGVL 50 0.03 0.03 20 15
VIBRBEAM 8 1.63 0.95 1001 533
WATSON 12 0.77 0.48 11 4
YFITU 3 0.05 0.05 72 93
Total 𝜓 71.04 64.40 14221 12752

20160520108JH, 20170101037JC); the PhD Start-Up Fund of
Natural Science Foundation of Beihua University and the
Youth Training Project Foundation of Beihua University
(Grant no. 2017QNJJL10).
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