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This paper investigates the algebraic formulation and stability analysis for a class of Markov jump networked evolutionary games
by using the semitensor productmethod and presents a number of new results. Firstly, a proper algorithm is constructed to convert
the given networked evolutionary games into an algebraic expression. Secondly, based on the algebraic expression, the stability of
the given game is analyzed and an equivalent criterion is given. Finally, an example works out to support the new results.

1. Introduction

The importance of networked evolutionary games (NEGs)
[1] has been recognized many scholars recently. Unlike
traditional 𝑛-player game, an NEG consists of a network
graph and a basic game. The nodes in the network represent
players and the edges in the network represent interaction
relationship among players. Every player in the given game
only plays with its neighbors. Furthermore, in the given
game, players have the specialized strategy updating rules
to adjust their own strategy choices. They are only affected
by their neighbors. It coincides with an obvious fact that, in
many practical economic activities, each individual is only in
contract with its trade partners. This distinguishing feature
makes NEGs theory be a very appealing research topic in
recent years [2].

In the last decades, a very useful mathematical tool,
called the semitensor product method (STP) of matrices,
has been proposed by [3]. With this tool, [3] proposed a
method to transform Boolean networks, Boolean control
networks, and mix-valued logical networks into some kinds
of difference equations. Then, one could investigate them by
using mathematical tools in control theory.

Up to now, this method has been successfully applied
to the analysis and control of Boolean networks and mix-
valued logical networks, andmany essential results have been
obtained, such as the calculation of fixed points and cycles
and the controllability and observability of Booleannetworks;

see [3–19] for details. References [17, 20] presented the
recent applications for STPmethod in engineering and finite-
valued systems, respectively. See [20–29] for more recent
developments about the application of STPmethod in logical
networks.

In recent years, many scholars have attempted to study
NEGs via STP method. For many specific NEGs, they trans-
formed the given NEGs into some proper algebraic expres-
sions, logical networks, for example. Based on “the myopic
best response adjustment rule”, [30] designed a proper
algorithm to construct the structuralmatrices of the updating
laws for every players in the given NEG. Reference [31] gave
the description of the NEG and investigated the relationship
between the givenNEG and the given logical networks. NEGs
defined on finite networks were considered by [32], which
converted the given NEGs to a kind of logical networks
and solved the optimization problem when one player was
regarded as a control. Reference [33] investigated evolution-
ary game theoretic demand-sidemanagement and control for
a class of networked smart grid. A class of event-triggered
control for finite evolutionary networked games was studied
by [34]. Reference [16] studied stochastic set stabilization
of 𝑛-person random evolutionary Boolean games and its
applications.

It is worth noting that all of the above results are con-
centrated on NEGs with pure strategy dynamics except [16].
However, the fact that most evolutionary games are related
to random dynamics more or less cannot be neglected. The
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work [35] considered an interesting evolutionary game. In the
game,major player is with infinite time horizon and the other
players, called minor players, are with finite time horizons.
At any time, when some new players enter the evolutionary
game, the number of them is a random variable, which
has a distribution depending on the number of the players
who have entered the game at that moment. This situation
is called random entrance, which is modeled as a Markov
chain. In random entrance, there exists a long living player
which has interaction relationshipswith the other players and
the interactions are existing for a certain period. This situ-
ation is very common, University-Student Games [36], for
example.

Actually, we can model the above evolutionary games
with random entrance as a kind of networked evolutionary
defined onfinite networks. For every time, the entered players
make up a network. The given game evolves on these finite
networks. Thus, this paper considers this kind of networked
evolutionary games as Markov jump networked evolutionary
games (MJNEGs). In this paper, we would give the formal
description of MJNEGs and analyze the stability of MJNEGs.

The main works of this paper are as follows: (1) The
STP method is firstly applied to the study of MJNEGs. (2)
The method to formulate the given MJNEGs as an algebraic
expression is proposed. (3)The stability analysis of MJNEGs
is presented in this paper, and an equivalent test criterion is
given.

Notations: R𝑚×𝑛 denotes the set of 𝑚 × 𝑛 real matrices.
R+𝑚×𝑛 denotes the set of 𝑚 × 𝑛 nonnegative real matrices.Δ 𝑛 fl {𝛿𝑖𝑛 | 𝑖 = 1, 2, . . . , 𝑛}, where 𝛿𝑖𝑛 is the 𝑖-th column of
the identity matrix 𝐼𝑛. An 𝑛 × 𝑡 matrix 𝑀 is called a logical
matrix, if 𝑀 = [𝛿𝑖1𝑛 𝛿𝑖2𝑛 ⋅ ⋅ ⋅ 𝛿𝑖𝑡𝑛 ] and denote 𝑀 briefly by𝑀 = 𝛿𝑛[𝑖1 𝑖2 ⋅ ⋅ ⋅ 𝑖𝑡]. Define the set of 𝑛 × 𝑡 logical matrices
asL𝑛×𝑡. 𝐶𝑜𝑙𝑖(𝐿)(𝑅𝑜𝑤𝑖(𝐿)) is the 𝑖-th column (row) of matrix𝐿. 𝑟 = (𝑟1, . . . , 𝑟𝑘)𝑇 ∈ R𝑘 is a probabilistic vector, if 𝑟𝑖 ≥ 0, 𝑖 =1, . . . , 𝑘, and ∑𝑘𝑖=1 𝑟𝑖 = 1. Υ𝑘 denotes the set of 𝑘 dimensional
probabilistic vectors. If𝑀 ∈ R+𝑚×𝑛 and 𝐶𝑜𝑙(𝑀) ⊂ Υ𝑚,𝑀 is
called a probabilistic matrix. Υ𝑚×𝑛 denotes the set of 𝑚 × 𝑛
probabilistic matrices. ⋉ denotes the default matrix product
throughout this paper. Please refer to [3] for the definition
and properties of STP. Because ⋉ is a generalization of the
ordinarymatrix product.We omit “⋉” without confusion and
call it “product”.𝑀∗𝑁 denotes Khatri-Rao product of𝑀 and𝑁.

2. Preliminaries

This section gives some necessary mathematic tools, which
will be used in this paper.

Lemma 1 (see [3]).

(1) Consider 𝑋 ∈ R𝑚 and 𝑌 ∈ R𝑛 as two column vectors.
Then, 𝑊[𝑚,𝑛]𝑋𝑌 = 𝑌𝑋, where 𝑊[𝑚,𝑛] is the swap
matrix. Especially𝑊[𝑛,𝑛] fl𝑊[𝑛].

(2) Define 𝑋 ∈ R𝑡 and 𝐴 ∈ R𝑚×𝑛. Then, one gets 𝑋𝐴 =(𝐼𝑡 ⊗ 𝐴)𝑋.

Lemma 2 (see [31]). Consider 𝑋 ∈ Υ𝑝 and 𝑌 ∈ Υ𝑞.
Define dummy matrices, called “front-maintaining operator”
and “rear-maintaining operator”, respectively, as

𝐷𝑝,𝑞𝑓 = 𝛿𝑝 [1 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞

2 2 ⋅ ⋅ ⋅ 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞

⋅ ⋅ ⋅ 𝑝 𝑝 ⋅ ⋅ ⋅ 𝑝⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑞

] ,
𝐷𝑝,𝑞𝑟 = 𝛿𝑞 [[[1 2 ⋅ ⋅ ⋅ 𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 1 2 ⋅ ⋅ ⋅ 𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⋅ ⋅ ⋅ 1 2 ⋅ ⋅ ⋅ 𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝

]]] .
(1)

Then𝐷𝑝,𝑞𝑓 𝑋𝑌 = 𝑋,𝐷𝑝,𝑞𝑟 𝑋𝑌 = 𝑌.
Lemma 3 (see [37]). Consider 𝑓 : Δ𝑛𝑘 → R (or 𝑓 : Δ𝑛𝑘 →Δ𝑚) as a pseudological (or logical) function. Then, there exists
a unique matrix 𝑀𝑓 ∈ R1×𝑘𝑛 (or 𝑀𝑓 ∈ L𝑚×𝑘𝑛), called the
structural matrix of 𝑓, such that𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑀𝑓⋉𝑛𝑖=1𝑥𝑖, (2)

where 𝑥𝑖 ∈ Δ 𝑘, 𝑖 = 1, 2, . . . , 𝑛, 𝐶𝑜𝑙𝑗(𝑀𝑓) = 𝑓(𝛿𝑗𝑘𝑛), and 𝑗 =1, 2, . . . , 𝑘𝑛.
In the rest of this section, we present some basic concepts

in networked evolutionary games.

Definition 4 (see [31]). A normal game with two players is
a fundamental network game (FNG), if the strategy set is{1, 2, . . . , 𝑘} and player’s payoff function is 𝑐 = 𝑐(𝑥, 𝑦).
3. Main Results

This section firstly gives the description of MJNEGs. Then,
the method to formulate the given MJNEGs is given. Finally,
this section analyzes the stability of the MJNEG based on its
corresponding algebraic expression.

3.1. Description of MJNEGs. At first, we give the description
of an MJNEG as follows:

(a) A set of finite networks M fl {1, 2, . . . , 𝑚}: the
topological structure of each network is a connected
undirected graph (𝑁𝑧,E𝑧), where 0 ̸= 𝑁𝑧 ⊂{1, 2, . . . , 𝑛} is the set of nodes in network 𝑧, E𝑧 ={(𝑖, 𝑗) | there exists interaction between node 𝑖 and
node 𝑗 in network 𝑧} is the set of edges, and 𝑧 ∈M.

(b) An FNG: if (𝑖, 𝑗) ∈ E𝑧, then node 𝑖 and node 𝑗 play
the FNG in network 𝑧 with strategies 𝑥𝑖(𝑡) and 𝑥𝑗(𝑡)
at time 𝑡, respectively.

(c) Players’ strategy updating rule: in network 𝑧, the rule
can be expressed as𝑥𝑖 (𝑡) = 𝑓𝑖,𝑧 (𝑥𝑖 (0) , 𝑥𝑖 (1) , . . . , 𝑥𝑖 (𝑡 − 1) , 𝑥𝑗 (0) , 𝑥𝑗 (1) , . . . ,𝑥𝑗 (𝑡 − 1) | 𝑗 ∈N𝑖,𝑧) , (3)

where 𝑥𝑗(𝜏) ∈ 𝑆0 is the strategy of player 𝑗 at time 𝜏,𝜏 = 0, 1, . . . , 𝑡 − 1, and N𝑖,𝑧 is the neighborhood of
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player 𝑖 in the network 𝑧, that is, 𝑗 ∈ N𝑖,𝑧 if and only
if (𝑖, 𝑗) ∈ E𝑧, 𝑖 ∈ 𝑁, and 𝑧 ∈ M. Obviously, 𝑖 ∉ N𝑖,𝑧
and 𝑗 ∈N𝑖,𝑧 ⇐⇒ 𝑖 ∈N𝑗,𝑧.

(d) Network evolve process: {𝜃(𝑡) : 𝑡 ∈ N} represents
the discrete-time homogeneous Markov chain taking
values in a finite set M with a transition probability
matrix 𝑃 = (𝑝𝑖𝑗)𝑚×𝑚 as𝑝𝑖𝑗 = 𝑃𝑟 {𝜃 (𝑡 + 1) = 𝑗 | 𝜃 (𝑡) = 𝑖} , (4)

where 𝑝𝑖𝑗 ≥ 0, for ∀𝑖, 𝑗 ∈ M, ∑𝑚𝑗=1 𝑝𝑖𝑗 = 1 for any 𝑖 ∈
M, and 𝜃(𝑡) = 𝑘 represents that the MJNEG evolves
on network 𝑘 at time 𝑡.

In network 𝑧, at each time, node 𝑖 only plays with its
neighbors, and its aggregate payoff 𝑝𝑖,𝑧 : 𝑆|N𝑖,𝑧 |+10 → R is
the sum of payoffs gained by playing with all its neighbors,
i.e., 𝑝𝑖,𝑧 (𝑥𝑖, 𝑥𝑗 | 𝑗 ∈N𝑖,𝑧) = ∑

𝑗∈N𝑖,𝑧

𝑐 (𝑥𝑖, 𝑥𝑗) (5)

inwhich 𝑐 is the payoff function of the given FNGand 𝑥𝑖, 𝑥𝑗 ∈𝑆0.
In this paper, we adopt the myopic best response adjust-

ment rule [38], that is, every player forecasts that its neighbors
will repeat their last-step strategy choice, and the strategy
choice at present time is the best response against its neigh-
bors’ strategies choice of the last one. Based on that, one has𝑥𝑖 (𝑡) ∈ 𝑄𝑖,𝑧 fl argmax

𝑥𝑖∈𝑆
𝑝𝑖,𝑧 (𝑥𝑖, 𝑥−𝑖 (𝑡 − 1)) ,𝑖 ∈N𝑖,𝑧, 𝑧 ∈M. (6)

When player 𝑖 may have more than one best strategies to
choose, define a priority for the strategy choice as follows:𝑥 ∈ 𝑆0 has priority over 𝑦 ∈ 𝑆0, if and only if 𝑥 > 𝑦.
Thus, player 𝑖 updates its strategy according to the following
expression:𝑥𝑖 (𝑡) = max {𝑥 | 𝑥 ∈ 𝑄𝑖,𝑧} , 𝑖 ∈ 𝑁𝑧, 𝑧 ∈M. (7)

We let the initial state 𝑥0 for nodes 𝑗 ∉ 𝑁𝑧, which are not
activated at that moment in the network 𝑧; i.e., 𝑥𝑗(𝑡) = 𝑥0
holds.

Remark 5. Weassign the initial state 𝑥0 for the new participa-
tors. It implies an obvious fact that every new participator has
the same conditions when they enter the evolutionary game.

In addition to the evolution of strategies for players, the
Markov chain {𝜃(𝑡) | 𝑡 ∈ N} decides the probability with
which network the given MJNEG stays at a specific time 𝑡.

The aim of this paper is to study the algebraic formulation
and stability analysis of the given MJNEG as a 𝑘-valued
switched logical system with a given switching signal as a
Markov chain.

3.2. Algebraic Expression of the Given MJNEG. This subsec-
tion algebraically formulates the given MJNEG as Markov
jump 𝑘-valued logical system. To achieve it, we can take the
following steps: (𝑖) Find the proper structural matrices of
the payoff function for every node in each networks. (𝑖𝑖)
Find the proper structural matrix of the updating law for
every node in each networks. (𝑖𝑖𝑖)Via the obtained structural
matrices and the transition probability matrix of Markov
chain {𝜃(𝑡), 𝑡 ∈ N}, we construct the algebraic formulation
for the given MJNEGs.

Step (𝑖), using the vector form of logical variables, we
identify 𝑆0 ∼ Δ 𝑘, where |𝑆0| = 𝑘, “∼” denotes that the strategy𝑗 ∈ 𝑆0 is equivalent to 𝛿𝑗𝑘 ∈ Δ 𝑘, 𝑗 = 1, 2, . . . , 𝑘. Then, when𝑖 ∈ 𝑁𝑧 holds, by Lemmas 1, 2, and 3, and (5), the payoff
function of player 𝑖 in network 𝑧 can be rewritten as𝑝𝑖,𝑧 (𝑥𝑖 (𝑡) , 𝑥𝑗 (𝑡) | 𝑗 ∈N𝑖,𝑧) = 𝑀𝑐 ∑

𝑗∈N𝑖,𝑧

𝑥𝑖 (𝑡) 𝑥𝑗 (𝑡)
= 𝑀𝑐 ∑
𝑗∈N𝑖,𝑧

𝑊[𝑘]𝑥𝑗 (𝑡) 𝑥𝑖 (𝑡)
= 𝑀𝑐𝑊[𝑘]( ∑

𝑗<𝑖,𝑗∈N𝑖,𝑧

𝑥𝑗 (𝑡) 𝑥𝑖 (𝑡)
+ ∑
𝑗>𝑖,𝑗∈N𝑖,𝑧

𝑥𝑗 (𝑡) 𝑥𝑖 (𝑡))
= 𝑀𝑐𝑊[𝑘]𝐷𝑘𝑛−2,𝑘2𝑟 ( ∑

𝑗<𝑖,𝑗∈N𝑖,𝑧

𝑊[𝑘𝑗,𝑘𝑛−𝑗−1]
+ ∑
𝑗>𝑖,𝑗∈N𝑖,𝑧

𝑊[𝑘𝑗−1 ,𝑘𝑛−𝑗])𝑥−𝑖 (𝑡) 𝑥𝑖 (𝑡) fl𝑀𝑖,𝑧𝑥−𝑖 (𝑡)
⋅ 𝑥𝑖 (𝑡) ,

(8)

where𝑀𝑐 ∈ R1×𝑘2 is the structural matrix of the FNG’s payoff
function and 𝑀𝑖,𝑧 ∈ R1×𝑘𝑛 is the structural matrix of 𝑝𝑖,𝑧,𝑥𝑖(𝑡) ∈ Δ 𝑘 is the strategy of player 𝑖 at time 𝑡, 𝑥−𝑖(𝑡) fl𝑥1(𝑡) ⋉ 𝑥2(𝑡) ⋉ ⋅ ⋅ ⋅ ⋉ 𝑥𝑖−1(𝑡) ⋉ 𝑥𝑖+1(𝑡) ⋉ ⋅ ⋅ ⋅ ⋉ 𝑥𝑛(𝑡) ∈ Δ 𝑘𝑛−1 ,
and 𝑧 ∈M.

In Step (𝑖𝑖), we consider the following two cases.
Case I. If 𝑖 ∈ 𝑁𝑧, divide𝑀𝑖,𝑧 into 𝑘𝑛−1 equal blocks as𝑀𝑖,𝑧 = [𝐵𝑙𝑘1 (𝑀𝑖,𝑧) , 𝐵𝑙𝑘2 (𝑀𝑖,𝑧) , . . . , 𝐵𝑙𝑘𝑘𝑛−1 (𝑀𝑖,𝑧)] , (9)

where 𝐵𝑙𝑘𝑙(𝑀𝑖,𝑧) is all possible benefits of player 𝑖 with other
players’ strategy 𝑥−𝑖(𝑡) = 𝛿𝑙𝑘𝑛−1 , 𝑙 = 1, 2, . . . , 𝑘𝑛−1.

Next, we find the best response of player 𝑖 to make its
benefit maximum. For all 𝑙 = 1, 2, . . . , 𝑘𝑛−1, let the column
index set Ξ𝑖,𝑙,𝑧, such thatΞ𝑖,𝑙,𝑧 = {𝜉𝑙 | 𝐶𝑜𝑙𝜉𝑙 (𝐵𝑙𝑘𝑙 (𝑀𝑖,𝑧))

= max
1⩽𝜉⩽𝑘

𝐶𝑜𝑙𝜉 (𝐵𝑙𝑘𝑙 (𝑀𝑖,𝑧))} . (10)
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If there aremore than onemaximum columns, i.e., |Ξ𝑖,𝑙,𝑧| > 1,
one can choose the unique column index 𝜉𝑖,𝑙,𝑧 with the help
of the priority of strategy choice given in (7).

By Lemma 2, letting �̃� 𝑖,𝑧 = 𝛿𝑘[𝜉𝑖,1,𝑧, . . . , 𝜉𝑖,𝑘𝑛−1 ,𝑧], we can
construct the algebraic form of the updating law for node 𝑖 in
network 𝑧 as𝑥𝑖 (𝑡 + 1) = �̃� 𝑖,𝑧𝑥−𝑖 (𝑡) = �̃� 𝑖,𝑧𝐷𝑘,𝑘𝑛−1𝑟 𝑊[𝑘𝑖−1 ,𝑘]𝑥 (𝑡)

fl 𝐿 𝑖,𝑧𝑥 (𝑡) . (11)

Case II. If 𝑖 ∉ 𝑁𝑧, by Lemma 2, we define𝑥𝑗 (𝑡 + 1) = 𝑥0 = 𝐷𝑘,𝑘𝑛𝑓 𝑥0𝑥1 (𝑡) 𝑥2 (𝑡) ⋅ ⋅ ⋅ 𝑥𝑛 (𝑡)
fl 𝐿𝑗,𝑧𝑥 (𝑡) , (12)

where 𝑥(𝑡) = 𝑥1(𝑡)𝑥2(𝑡) ⋅ ⋅ ⋅ 𝑥𝑛(𝑡). Then, each new player
entering the MJNEG would have the initial state 𝑥0.

Thus, by (11) and (12), one gets the MJNEGs evolving on
fixed network 𝑧 as follows:𝑥 (𝑡 + 1) = 𝐿𝑧𝑥 (𝑡) , (13)

where 𝑥(𝑡) = 𝑥1(𝑡)𝑥2(𝑡) ⋅ ⋅ ⋅ 𝑥𝑛(𝑡) and 𝐿𝑧 = 𝐿1,𝑧 ∗ 𝐿2,𝑧 ∗ ⋅ ⋅ ⋅ ∗𝐿𝑛,𝑧.
In Step (𝑖𝑖𝑖), by the aforementioned analysis, we formulate

the given MJNEG as follows:𝑥 (𝑘 + 1) = 𝐿𝜃(𝑡)𝑥 (𝑘) , (14)

where {𝜃(𝑡) : 𝑡 ∈ N} is the discrete-time Markov chain and𝑥(𝑘) = 𝑥1(𝑘)𝑥2(𝑘) ⋅ ⋅ ⋅ 𝑥𝑛(𝑘).
Based on the aforementioned analysis, the following

algorithm is constructed to formulate the MJNEG.

Algorithm 6. This algorithm contains four steps:

(1) Calculate the structural matrix, 𝑀𝑖,𝑧, of the payoff
functions of the player in node 𝑖, when N𝑖,𝑧 ̸= 0, for
each network 𝑧 by
𝑀𝑖,𝑧 = 𝑀𝑐𝑊[𝑘]𝐷𝑘𝑛−2,𝑘2𝑟 ( ∑

𝑗<𝑖,𝑗∈N𝑖,𝑧

𝑊[𝑘𝑗,𝑘𝑛−𝑗−1]
+ ∑
𝑗>𝑖,𝑗∈N𝑖,𝑧

𝑊[𝑘𝑗−1 ,𝑘𝑛−𝑗]) . (15)

(2) For each network 𝑧, divide the matrices𝑀𝑖,𝑧 into 𝑘𝑛−1
equal blocks as𝑀𝑖,𝑧 = [𝐵𝑙𝑘1 (𝑀𝑖,𝑧) , 𝐵𝑙𝑘2 (𝑀𝑖,𝑧) , . . . , 𝐵𝑙𝑘𝑘𝑛−1 (𝑀𝑖,𝑧)] , (16)

and for all 𝑙 = 1, 2, . . . , 𝑘𝑛−1, find the column index𝜉𝑖,𝑙,𝑧, such that 𝜉𝑖,𝑙,𝑧 = max{𝑗 | 𝐶𝑜𝑙𝑗(𝐵𝑙𝑘𝑙(𝑀𝑖,𝑧)) =
max1⩽𝜉⩽𝑘𝐶𝑜𝑙𝜉(𝐵𝑙𝑘𝑙(𝑀𝑖,𝑧))};

(3) Formulate the MJNEG evolving on network 𝑧 under
study as 𝑥 (𝑡 + 1) = 𝐿𝑧𝑥 (𝑡) , (17)

where 𝐿𝑧 = 𝐿1,𝑧 ∗ 𝐿2,𝑧 ∗ ⋅ ⋅ ⋅ ∗ 𝐿𝑛,𝑧, �̃� 𝑖,𝑧 =𝛿𝑘[𝜉𝑖,1,𝑧, 𝜉𝑖,2,𝑧, . . . , 𝜉𝑖,𝑘𝑛−1 ,𝑧], 𝑖 ∈ 𝑁𝑧, 𝐿𝑗,𝑧 = 𝐷𝑘,𝑘𝑛𝑓 𝑥0, and𝑗 ∉ 𝑁𝑧.
(4) Finally, one has the algebraic formulation as follows:𝑥 (𝑘 + 1) = 𝐿𝜃(𝑡)𝑥 (𝑘) , (18)

where 𝑥(𝑘) = 𝑥1(𝑘)𝑥2(𝑘) ⋅ ⋅ ⋅ 𝑥𝑛(𝑘).
3.3. Stability Analysis. This subsection investigates the
stochastic global stability of the given MJNEG as𝑥 (𝑡 + 1) = 𝐿𝜃(𝑡)𝑥 (𝑡) , (19)

where 𝑥(𝑡) = ⋉𝑛𝑖=1𝑥𝑖(𝑡) and {𝜃(𝑡) : 𝑡 ∈ N} denotes the given
Markov chain. In an evolutionary game, some strategy profile𝑥𝑒 has specific meaning, Nash equilibrium, for example. This
subsection analyzes the globally stability at 𝑥𝑒 in stochastic
sense. In addition, because of transformation of coordinates,
we assume that 𝑥𝑒 = 𝛿𝑘𝑛𝑘𝑛 ∈ Δ 𝑘𝑛 holds.

In the following, we give the definition for MJNEG of
global stability in stochastic sense.

Definition 7. The given MJNEG with algebraic form (19) is
said to be globally stable in stochastic sense at 𝑥𝑒 = 𝛿𝑘𝑛𝑘𝑛 ∈ Δ 𝑘𝑛 ,
if, for ∀𝑥(0) and ∀𝜃(𝑡), lim𝑡→+∞E{𝑥(𝑡) | 𝑥(0), 𝜃(0)} = 𝛿𝑘𝑛𝑘𝑛
holds.

Denote 𝑧𝑗(𝑡) = 𝐸{𝑥(𝑡)1{𝜃(𝑡)=𝑗}}, where 1{𝜃(𝑡)=𝑗} represents
the Dirac measure ever the set {𝜃(𝑡) = 𝑗} with 𝑗 ∈ M. Since{𝜃(𝑡) = 𝑗} is independent from {𝑥(𝑡) = 𝛿𝑖𝑘𝑛}, one has𝐸 {𝑥 (𝑡)} = 𝑘𝑛∑

𝑖=1

𝛿𝑖𝑘𝑛𝑃 {𝑥 (𝑡) = 𝛿𝑖𝑘𝑛}
= 𝑘𝑛∑
𝑖=1

𝛿𝑖𝑘𝑛 𝑚∑
𝑗=1

𝑃 {𝑥 (𝑡) = 𝛿𝑖𝑘𝑛 | 𝜃 (𝑡) = 𝑗} 𝑃 {𝜃 (𝑡) = 𝑗}
= 𝑚∑
𝑗=1

𝑘𝑛∑
𝑖=1

𝛿𝑖𝑘𝑛𝑃 {𝑥 (𝑡) = 𝛿𝑖𝑘𝑛} 𝑃 {𝜃 (𝑡) = 𝑗} = 𝑚∑
𝑗=1

𝑧𝑗 (𝑡) .
(20)

Then, we have𝑧𝑗 (𝑡 + 1) = 𝐸 {𝑥 (𝑡 + 1) 1{𝜃(𝑡+1)=𝑗}}= 𝑚∑
𝑖=1

𝐸 {𝑥 (𝑡 + 1) 1{𝜃(𝑡+1)=𝑗}1{𝜃(𝑡)=𝑖}}
= 𝑚∑
𝑖=1

𝑝𝑖𝑗𝐿 𝑖𝑧𝑖 (𝑡) .
(21)

Rewrite 𝑧𝑗(𝑡) as 𝑧𝑗(𝑡) = (𝑤𝑇𝑗 (𝑡), 𝜇𝑗(𝑡))𝑇, where 𝑤𝑗(𝑡) ∈
R𝑘𝑛−1,1, 𝜇𝑗(𝑡) ∈ R and 𝑗 ∈M; one has𝑤𝑗 (𝑡 + 1) = 𝑚∑

𝑖=1

𝑝𝑖,𝑗𝐿1,1𝑖 𝑤𝑖 (𝑡) + 𝑚∑
𝑖=1

𝑝𝑖,𝑗𝐿1,2𝑖 𝜇𝑖 (𝑡) ,
𝜇𝑗 (𝑡 + 1) = 𝑚∑

𝑖=1

𝑝𝑖,𝑗𝐿2,1𝑖 𝑤𝑖 (𝑡) + 𝑚∑
𝑖=1

𝑝𝑖,𝑗𝐿2,2𝑖 𝜇𝑖 (𝑡) , (22)
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where 𝑗 ∈M and

(𝐿1,1𝑖 𝐿1,2𝑖𝐿2,1𝑖 𝐿2,2𝑖 ) = 𝐿 𝑖, 𝐿1,1𝑖 ∈ Υ(𝑘𝑛−1)×(𝑘𝑛−1), 𝑖 ∈M. (23)

Thus, via (22), the following result reveals some property
for the given MJNEG.

Theorem 8. The given MJNEG with algebraic form (19) is
globally stable at 𝑥𝑒 = 𝛿𝑘𝑛𝑘𝑛 in stochastic sense if and only if,∀𝑥(0) and ∀𝜃(𝑡),

lim
𝑡→+∞

𝑤𝑖 (𝑡) = 0𝑘𝑛−1, ∀𝑖 ∈M. (24)

Proof. Sufficient. If, ∀𝑥(0) and ∀𝜃(𝑡), (24) holds, then
lim𝑡→+∞∑𝑚𝑖=1 𝜇𝑖(𝑡) = 1 according to that 1 = 1𝑇𝑘𝑛𝐸{𝑥(𝑡)} =
1𝑇𝑘𝑛 ∑𝑚𝑗=1 𝑧𝑗(𝑡). It is easy to see that lim𝑡→+∞𝐸{𝑥(𝑡)} =
lim𝑡→+∞∑𝑚𝑗=1 𝑧𝑗(𝑡) = 𝛿𝑘𝑛𝑘𝑛 .

Necessity. If system (19) is globally stable in stochastic
sense at𝑥𝑒 = 𝛿𝑘𝑛𝑘𝑛 , thenusingDefinition 7, for∀𝑥(0) and initial
distribution of 𝜃(𝑡), lim𝑡→+∞E{𝑥(𝑡)} = 𝛿𝑘𝑛𝑘𝑛 , which yields that
lim𝑡→+∞∑𝑚𝑖=1𝑤𝑖(𝑡) = 0𝑘𝑛−1. Note that 𝑤𝑖(𝑡) ≥ 0, then one
has, for every 𝑖 ∈M, lim𝑡→+∞𝑤𝑖(𝑡) = 0𝑘𝑛−1.

With the help of the above theorem, we can get the main
result in this paper.The following theoremgives an equivalent
criterion for the stability of the given NEG.

Theorem 9. The given system with algebraic form (19) is
globally stable in stochastic sense at 𝑥𝑒 = 𝛿𝑘𝑛𝑘𝑛 if and only if there
exist vectors 𝜆𝑖 ∈ R𝑘𝑛 , 𝑖 ∈M such that the following conditions
hold: 𝜆𝑇𝑖 𝛿𝑘𝑛𝑘𝑛 = 0,𝜆𝑇𝑖 𝛿𝑡𝑘𝑛 > 0,

𝑚∑
𝑗=1

𝑝𝑖,𝑗𝜆𝑇𝑗𝐿 𝑖𝛿𝑘𝑛𝑘𝑛 = 0,
( 𝑚∑
𝑗=1

𝑝𝑖,𝑗𝜆𝑇𝑗𝐿 𝑖 − 𝜆𝑇𝑖 )𝛿𝑡𝑘𝑛 < 0,
(25)

for 𝑖 = 1, 2, . . . , 𝑚, and 𝑡 = 1, 2, . . . , 𝑘𝑛 − 1.
Proof. Sufficient. To prove the part of sufficient, we need first
prove the fact that each network has a common fixed point as𝑥𝑒 under conditions (25).

Assume that 𝑥𝑒 is not a fixed point of network 𝑖0, then𝐿𝑖0𝑥𝑒 ̸= 𝑥𝑒, i.e., 𝐶𝑜𝑙𝑘𝑛(𝐿𝑖0) = 𝛿𝑠𝑘𝑛 , for some 𝑠 ̸= 𝑘𝑛.
Subsequently, by the second equation in (25), one has that for
every 𝑗 ∈M, 𝜆𝑇𝑗𝐿𝑖0𝛿𝑘𝑛𝑘𝑛 = 𝜆𝑇𝑗 𝛿𝑠𝑘𝑛 > 0. Note that ∑𝑚𝑗=1 𝑝𝑖0,𝑗 ≥ 0,
then there exists at least one integer 𝑗∗ such that 𝑝𝑖0 ,𝑗∗ > 0.
Therefore,
𝑚∑
𝑗=1

𝑝𝑖0 ,𝑗𝜆𝑇𝑗𝐿𝑖0𝛿𝑘𝑛𝑘𝑛 = 𝑚∑
𝑗=1

𝜆𝑇𝑗𝛿𝑠𝑘𝑛 ≥ 𝑝𝑖0 ,𝑗 ∗ 𝜆𝑇𝑗 ∗ 𝛿𝑠𝑘𝑛 > 0, (26)

which is contradictory to the third equation in (25). Thus, 𝑥𝑒
is a common fixed point of each network, which implies that𝐶𝑜𝑙𝑘𝑛(𝐿𝑖) = 𝛿𝑘𝑛𝑘𝑛 , for ∀𝑖 ∈ M. Therefore, 𝐿1,2𝑖 = 0𝑘𝑛−1 and𝐿2,2𝑖 = 1 for ∀𝑖 ∈ M in (23). Then, the first equation of (22)
can be rewritten as𝑤𝑗 (𝑡 + 1) = 𝑚∑

𝑖=1

𝑝𝑖,𝑗𝐿1,1𝑖 𝑤𝑖 (𝑡) , 𝑗 ∈M. (27)

Let 𝑤(𝑡) = (𝑤𝑇1 (𝑡), 𝑤𝑇2 (𝑡), . . . , 𝑤𝑇𝑚(𝑡)) ∈ R𝑚(𝑘𝑛−1), then𝑤 (𝑡 + 1) = 𝑄𝑤 (𝑘) , (28)

where

𝑄 = (𝑃𝑇 ⊗ 𝐼2𝑛−1)(
(
𝐿111 0 ⋅ ⋅ ⋅ 0
0 𝐿112 ⋅ ⋅ ⋅ 0... ... d

...
0 0 ⋅ ⋅ ⋅ 𝐿11𝑚

)
)∈ Υ𝑚(2𝑛−1)×𝑚(2𝑛−1).

(29)

It is worth noting that 𝑄 ≥≥ 0. Thus, from Lemma 1 in [39]
system, (28) is a positive system. Rewrite 𝜆𝑖 as 𝜆𝑖 = (�̂�𝑇𝑖 , 0)𝑇,
where �̂�𝑖 ∈ R𝑘

𝑛−1, 𝑖 ∈ M, then by (25) and denoting �̂� =(�̂�𝑇1 , �̂�𝑇2 , . . . , �̂�𝑇𝑠 )T ∈ R𝑘𝑛−1, one has �̂� >> 0 and �̂�𝑇(𝑄 −𝐼𝑠(𝑘𝑛−1)) << 0. Therefore, system (28) is stable by Proposition
1 in [39]. ByTheorem 8, network (19) is stochastically globally
stable.

Necessity. Because system (19) is stochastically globally
stable. From Theorem 8, we have (24). For Markov process{𝜃(𝑘), 𝑘 ≥ 0} is ergodic, one get that there exists 𝐾 ∈ N+

such that the probability of reaching every mode 𝑖 ∈ M is
positive after time 𝐾. Thus, for all networks, 𝑥𝑒 is a common
fixed point. Otherwise, if 𝑥𝑒 is not a fixed point of network 𝑖0,
then 𝐿22𝑖0 = 0 and 𝐿22𝑖 = 1 for 𝑖 ̸= 𝑖0. By (22) and (24), one has

lim
𝑘→+∞

𝑠∑
𝑗=1

𝜇𝑗 (𝑘 + 1) = lim
𝑘→+∞

𝑠∑
𝑗=1

𝑠∑
𝑖=1

𝑝𝑖𝑗𝐹𝑖22𝜇𝑖 (𝑘)
= lim
𝑘→+∞

𝑠∑
𝑗=1

𝑠∑
𝑖=1,𝑖 ̸=𝑖0

𝑝𝑖𝑗𝐹𝑖22𝜇𝑖 (𝑘)
= lim
𝑘→+∞

𝑠∑
𝑖=1,𝑖 ̸=𝑖0

𝑠∑
𝑗=1

𝑝𝑖𝑗𝐹𝑖22𝜇𝑖 (𝑘)
= lim
𝑘→+∞

𝑠∑
𝑖=1,𝑖 ̸=𝑖0

𝜇𝑖 (𝑘) .
(30)

With lim𝑘→+∞𝜇𝑖(𝑘) = 1 in hands, one obtains that
lim𝑘→+∞𝜇0(𝑘) = 0, which implies that lim𝑘→+∞𝑧𝑖0(𝑘) = 0𝑘𝑛
holds. It is contrary to that the probability of every reaching
mode 𝑖 ∈ M is positive after time 𝐾. Therefore, for each𝑖 ∈M, 𝐹𝑖22 = 1 and 𝐹𝑖12 = 0𝑘𝑛−1. So,𝑤(𝑘) satisfies (28). System
(28) is a positive and stable system. Then, by Proposition 1 in
[39], there exists a vector �̂� = (�̂�𝑇1 , �̂�𝑇2 , . . . , �̂�𝑇𝑚)𝑇 ∈ R𝑚(𝑘

𝑛−1),
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Table 1: Payoff bimatrix.𝑃𝑙𝑎𝑦𝑒𝑟1\𝑃𝑙𝑎𝑦𝑒𝑟2 M F
M (2, 2) (1, 0)
F (0, 1) (3, 3)

where �̂�𝑖 ∈ R𝑘
𝑛−1 and �̂�𝑖 >> 0, 𝑖 ∈ M such that �̂�𝑇(𝑄 −𝐼𝑚(𝑘𝑛−1)) << 0. Define 𝜆𝑖 = (�̂�𝑇𝑖 , 0)𝑇, 𝑖 ∈ M, then (25) holds.

The proof is completed.

Remark 10. It worth noting that this manuscript consists
of two important part: (1) The modeling and algebraic
formulation of the given MJNEGs; (2) Based on the obtained
algebraic expressions, we investigate the stability analysis for
the given MJNEGs. Actually, this paper can be considered as
a further research of [40]. Compared with the model adopted
in [40], the description of MJNEGs is more general, i.e., the
MJNEGs given in this paper can include the research target in
[40] as a special case. In addition to that, the stability analysis
for the MJNEGs in this paper is deeper than the stability
analysis in [40]. We obtain better results in this paper.

4. An Illustrative Example

In this section, we use a classical example University-students
game [36] to show the effective of our results.

Example 1. In an evolutionary game G with random
entrance, minor players have time horizon 2. 𝑛𝑚 = 2 denotes
the maximum possible number of active players in Ξ. At the
time 𝑡, the number of the minor players is modelled by the
vector 𝑦 (𝑡) = (𝑛0 (𝑡) , 𝑛1 (𝑡)) , (31)

where 𝑛𝑙(𝑡) = |𝐼𝑙(𝑡)|, 𝐼𝑙(𝑡) is the set of players with entrance
time 𝑡 − 𝑙, 𝑙 = 0, 1. Furthermore, major player plays game
with minor players and minor players do not player game
with each other. Thus, the random entrance is denoted by a
Markov chain with states: (0, 1), (1, 0), and (1, 1).

Define an MJNEG as follows:

(i) Network topological structures, denote by (𝑁𝑧,E𝑧),
where 𝑁1 = {1, 3}, 𝑁2 = {2, 3}, 𝑁3 = {1, 2, 3},
E1 = {(1, 3)}, E2 = {(2, 3)}, E3 = {(1, 3), (2, 3)} node
3 represents the major player, and 𝑧 ∈ M = {1, 2, 3}.
See in Figure 1.

(ii) The FNG’s payoff is shown in Table 1.

(iii) The updating rule is MBRA.

(iv) Network evolve process: {𝜃(𝑡) : 𝑡 ∈ N} with a
transition probability matrix

𝑃 = ( 0 0 10.4 0 0.60 0 1 ) . (32)

Firstly, we rewrite the MJNEG into an algebraic expres-
sion. Denote𝑀 ∼ 𝛿12, 𝐹 ∼ 𝛿22, (0, 1) ∼ 𝛿13 , network 𝑗 ∼ 𝛿𝑗3, and𝑗 = 1, 2, 3. Using the vector form of logical variables, we have𝑝𝑖,𝑧 = 𝑀𝑖,𝑧𝑥−𝑖(𝑡)𝑥𝑖(𝑡), 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)), 𝑥𝑖(𝑡) ∈ Δ 2,
and 𝑧 ∈M.

With (11), one obtains𝑀3,1 = [2 0 2 0 1 3 1 3] ,𝑀3,2 = [2 0 1 3 2 0 1 3] ,𝑀3,3 = [4 0 3 3 3 3 2 6] ,𝑀𝑐 = [2 0 1 3] , 𝑖 ∈ {1, 2} , 𝑧 ∈M.
(33)

Then, by (11) and (12), we have𝐿3,1 = 𝛿2 [1 1 1 1 2 2 2 2] ,𝐿3,2 = 𝛿2 [1 1 2 2 1 1 2 2] ,𝐿3,3 = 𝛿2 [1 1 2 2 2 2 2 2] ,𝐿 𝑖,𝑧 = 𝛿2 [1 2 1 2 1 2 1 2] ,𝐿𝑗,𝑧 = 𝛿2 [2 2 2 2 2 2 2 2] .
(34)

where 𝑖 ∈ 𝑁𝑧⋂{1, 2}, 𝑗 ∉ 𝑁𝑧⋂{1, 2}, and 𝑧 ∈M.
Thus, by (13), one has𝐿1 = 𝛿8 [3 7 3 7 4 8 4 8] ,𝐿2 = 𝛿8 [5 7 6 8 5 7 6 8] ,𝐿3 = 𝛿8 [1 7 2 8 2 8 2 8] . (35)

Solving (25), we have

𝜆1 = [156.5833 93.8453 130.6051 87.0810 103.0636 51.2119 69.1398 0]𝑇 ,𝜆2 = [154.2605 96.0248 107.3501 56.5912 154.3603 118.9928 79.4038 0]𝑇 ,𝜆3 = [186.6039 89.6133 120.7651 45.4087 121.5054 51.2119 93.5792 0]𝑇 (36)

Therefore, it follows fromTheorem 9 that the given game
is globally stable at 𝑥𝑒 = 𝛿88 in stochastic sense. Figure 2

demonstrates the effective of the calculation of 𝜆1, 𝜆2, and𝜆3.
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Figure 1: The networks.

０{Ｒ(Ｎ)=
8
8}

2 4 6 8 10 12 14 16 18 200
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty

Figure 2: The trajectory of the given game.

5. Conclusion

This paper has investigated the algebraic formulation and
stability analysis for a class of MJNEG. A proper algorithm
has been constructed to convert the given MJNEG into an
algebraic expression. Based on the above results, the stability
of the given game has been analyzed and an equivalent
criterion is given. Finally, an interesting example has proved
the effectiveness of our results.

In the future work, we could consider the given MJNEG
with time delay. Actually, time delay is a very common
situation. Many great works in the community of control and
engineering have reached towards this kind of systems. See
[41–60] for details.
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