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Abstract. 
In this article, the  method is connected to search for new hyperbolic, periodic, and rational solutions of -dimensional fifth-order nonlinear integrable equation and -dimensional Date-Jimbo-Kashiwara-Miwa equation. The obtained solutions consist of trigonometric, hyperbolic, rational functions and W-shaped soliton. Furthermore, 3D and 2D graphs are plotted by choosing the suitable values of the parameters involved.



1. Introduction
Firstly, consider the -dimensional fifth-order nonlinear integrable equation. In [1], Wazwaz proposed a new -dimensional fifth-order nonlinear integrable equation of the formwhere  stands for wave propagation of physical quantity and subscripts represent partial differentiation with respect to the given variable and obtained multiple soliton solutions using the simplified Hirota’s method established by Hereman and Nuseir [2].
Furthermore, Yuan et al. [3] consider the -dimensional Date-Jimbo-Kashiwara-Miwa equation. To study the -dimensional Date-Jimbo-Kashiwara-Miwa equation, many researchers considered the following integrable equation:where  is the real function of the variables , , and . With the help of the Hirota method and auxiliary variables, the bilinear Bäcklund transformation and N-soliton solutions are obtained.
Nonlinear evolution equations (NLEEs) are one of the fastest developing zones of research in the field of science and engineering, especially in mathematical biology, nonlinear optics, optical fiber, fluid mechanics, solid state physics, biophysics, chemical physics, chemical kinetics, etc. Many effective methods have been proposed to solve the NLEEs, such as the Hirota method [1], Hereman-Nuseir method [2], inverse scattering transformation [4], Painlevé technique [5], Bäcklund transformation [6], Darboux transformation [7, 8], Binary-Bell-polynomial scheme [9], first integral method [10, 11], expansion method [12], the  expansion method [13], Exp-function method [14], ansatz method [15], sine-Gordon expansion method [16, 17], the trial equation method [18, 19], homotopy asymptotic [20], and so on.
The present paper organized as follows: In Section 2, description of the  method for finding the exact traveling wave solutions of NLEEs is presented. Section 3 illustrates the method to solve the -dimensional fifth-order nonlinear integrable equation and -dimensional Date-Jimbo-Kashiwara-Miwa equation. Results and discussion are presented in Section 4. Finally, in Section 5, some conclusions are given.
2. Traveling Wave Hypothesis
Consider a NLEE in two independent variables  and  of the form aswhere  is an unknown function and  is the polynomial in  which have various partial derivatives. Under the wave transformationwhere  and  are the wave number and wave speed, respectively. Eq. (3) can be transformed into the following nonlinear ordinary differential equation aswhere prime denotes the derivatives with respect to .
2.1. The  Expansion Method: Quick Recapitulation
The key steps of  method are given as
Step 1.  According to  method, the wave solution can be expressed aswhere  are constants to be determined and  satisfies the auxiliary ODE given asThe auxiliary Eq. (7) has the general solutions given as follows. 
Case 1 (hyperbolic function solutions). When  and ,Case 2 (trigonometric function solutions). When  and ,Case 3 (hyperbolic function solutions). When , and ,Case 4 (rational function solutions). When , and ,Case 5. When , and ,where  is integration constant.
Step 2.  The positive integer  can be determined by balancing the highest derivative term with the highest order nonlinear term in Eq. (5). Substituting Eq. (6) into Eq. (5) yields an algebraic equation involving powers of . Equating the coefficients of each power of  to zero gives a system of algebraic equations for , , , , and 
Step 3.  Substituting , , , , and , a variety of exact solutions of Eq.(3) can be constructed.
3. Application of the  Method
3.1. The -Dimensional Fifth-Order Nonlinear Integrable Equation
The -dimensional fifth-order nonlinear integrable equation is given asApplying the wave transformation ,  to Eq. (13) yields the following nonlinear ODE:Set  to getwhere the integration constant is taken as zero. Balance the linear term of highest order  with the highest order nonlinear term  in Eq. (15), to get balancing number as . Thus the solution isSubstituting Eq. (16) into Eq. (15) and collecting the coefficient of each power of  and then setting each of coefficients to zero give a system of algebraic equations as Solving the above system of equations yieldsConsequently, the following different cases are obtained for the exact solutions of -dimensional fifth-order nonlinear integrable equation. 
Case 1 (hyperbolic function solutions). When  and ,
Case 2 (trigonometric function solutions). When  and ,
Case 3 (hyperbolic function solutions). When , and ,
Case 4 (rational function solutions). When , and ,
Case 5. When , and ,where  and  is the integration constant.
The solutions () of the -dimensional fifth-order nonlinear integrable equation are graphically presented by Figures 1, 2, 3, 4, and 5.




	
	
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
		
		
		
		
		
			
		
			
		
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
		
		
		
		
			
		
		
		
			
		
		
		
			
		
		
		
		
			
		
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
	


Figure 1: 3D and 2D plot of  with , , and  for 2D graphics.




	
	
		
		
		
		
			
		
			
		
			
		
		
			
		
		
			
		
		
		
			
		
			
		
			
		
		
		
		
			
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
		
		
		
			
		
			
		
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		


Figure 2: 3D and 2D plot of  with , , and  for 2D graphics.






	
	
		
			
		
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
		
			
		
		
		
		
			
		
		
		
		
		
			
		
			
		
		
		
		
			
		
		
		
		
		
			
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
			
		
			
		
		
		
			
		
		
			
		
		
			
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 3: 3D and 2D plot of  with , , and  for 2D graphics.






	
	
		
			
		
		
		
			
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 4: 3D and 2D plot of  with , , and  for 2D graphics.






	
	
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		


Figure 5: 3D and 2D-plot of  with , , and  for 2D graphics.


3.2. -Dimensional Date-Jimbo-Kashiwara-Miwa Equation
The -dimensional Date-Jimbo-Kashiwara-Miwa equation is given asApplying the wave transformation ,  to Eq. (24) yields the following nonlinear ODE:Set  to getwhere the integration constant is taken as zero. Balance the linear term of highest order  with the highest order nonlinear term  in Eq. (26), to get balancing number as . Thus, the solution can be written asSubstituting Eq. (27) into Eq. (26) and collecting the coefficient of each power of  and then setting each of coefficient to zero give a system of algebraic equations asSolving the above system of equations yieldsConsequently, the following different cases are obtained for the exact solutions of -dimensional Date-Jimbo-Kashiwara-Miwa equation. 
Case 1 (hyperbolic function solutions). When  and ,
Case 2 (trigonometric function solutions). When  and ,
Case 3 (hyperbolic function solutions). When , and ,
Case 4 (rational function solutions). When , and ,
Case 5. When , and ,where  and  is the integration constant.
The graphical representation of the solutions  for the -dimensional Date-Jimbo-Kashiwara-Miwa equation is shown by Figures 6–10.




	
	
		
			
		
		
		
		
			
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
			
		
			
		
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
	


Figure 6: W-shaped soliton 3D and 2D plot of  with , , and  for 2D graphics.




	
	
		
			
		
		
		
			
		
			
		
			
		
		
			
		
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
			
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
			
				
			
				
		
		
			
				
			
				
			
				
		
	


Figure 7: 3D and 2D plot of  with , , and  for 2D graphics.






	
	
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
			
		
			
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
			
		
		
			
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
	


Figure 8: 3D and 2D plot of  with , , and  for 2D graphics.






	
	
		
			
		
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 9: 3D and 2D plot of  with , , and  for 2D graphics.






	
	
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
			
		
		
			
		
		
		
			
		
			
		
		
		
			
		
			
		
		
			
		
		
		
			
		
		
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		


Figure 10: 3D and 2D plot of  with , , and  for 2D graphics.


4. Results and Discussion
In this manuscript, several traveling wave solutions are developed. A new kind of W-shaped soliton solution is demonstrated and the other obtained solutions consist of trigonometric, hyperbolic, rational functions which are also new. On comparing our results with the well-known results obtained in [1, 3], it may be concluded that the obtained results for Eq. (13) and Eq. (24) are newly constructed. Wazwaz [1] reported some multiple soliton solutions to Eq. (13) using simplified Hirota’s method and Yuan et al. [2] acquired N-soliton solutions to Eq. (24) using Hirota method and auxiliary variables. In both equations for case , the absolute behavior of the solution  and  is shown in Figures 1 and 6, respectively. The graphical representation of the other solutions () for the -dimensional fifth-order nonlinear integrable equation and  for the -dimensional Date-Jimbo-Kashiwara-Miwa equation is shown by Figures 2–5 and 7–10, respectively.
5. Conclusion
The  method is used to investigate the exact solutions of the -dimensional fifth-order nonlinear integrable equation and -dimensional Date-Jimbo-Kashiwara-Miwa equation. With the implementation of the  method, many exact traveling wave solutions are obtained including trigonometric, hyperbolic, rational, and W-shaped soliton. The reported solutions in this article may be useful in explaining the physical meaning of the studied models and other nonlinear models arising in the field of fiber optics and other related fields. These results indicate that the proposed method is very useful and effective in performing solution to the NLEEs.
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