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In this paper, the optimal topology structure is studied for hybrid-weighted leader-follower multiagent systems (MASs). The
results are developed by taking advantage of linear quadratic regulator (LQR) theory. We show that the multiagent star composite
structure is the optimal topology which can enable the MAS to achieve the bipartite consensus. In particular, we prove that the
optimal topology corresponding to the multiagent system with the first-order static leader and the second-order dynamic leader
is, respectively, a hybrid-weighted star composite structure and an unevenly hybrid-weighted star composite structure.The results
of the paper indicate that, in addition to the necessary information communication between leader and followers, the information
exchange among followers increases the control cost of the system.

1. Introduction

Real-life systems related to bionics, including the animal
world, ants and geese formations, can often be studied under
the framework of multiagent systems. Many other practical
systems have also benefited from the study of multiagent
systems, such as UAV formation, motion sensor control,
and team handling robots [1–32]. Consensus is one of the
most extensive and in-depth studies in the research field of
multiagent systems. Vicsek et al. pioneered the investigation
of consensus problem [33]. The consensus problem means a
group of agents which eventually converge to a common state
in the exchange of information and communication among
neighbors. Since the communications between agents have
both positive and negative weights, C. Altanfini put forward
the definition and derived determination conditions for the
bipartite consensus of multiagent systems [34]. The bipartite
consensus means that a set of agents finally converge to the
same modulus with opposite state under the exchange of
neighbor information. Based on [33], Hu et al. weakened
the conditions into spanning trees for achieving the bipartite
consensus of first-order multiagent systems [35, 36]. Along
with the in-depth study of consensus problem, more and

more scholars have devoted themselves to the investigation
of optimization problems, in which the optimal cost control
problem got special attention. Cao and Ren proposed an
optimal control protocol for MASs by taking advantage of
LQR theory without considering any leader.They proved that
the optimal structure can be obtained in the corresponding
directed graph [37]. In [38], the optimal topology structure
was proposed based on the LQR theory for the first- and
second-order leader-follower multiagent system. In this case,
consensus is still achieved.

Armed with the forementioned results, we discuss the
optimal control structure for hybrid-weighted multiagent
systems. Using the LQR theory, we show that the optimal
topological structure associated with the MAS of static
leaders is a hybrid-weighted star composite topology; and
the corresponding optimal topology structure of dynamic
leader MASs is the unevenly hybrid-weighted star composite
topology. Each of these two structures is proved to be the opti-
mal solution to the bipartite consensus for the corresponding
multiagent system.

The rest of this paper is organized as follows. Section 2
contains the basic knowledge of graph theory and LQR
theory. In Sections 3 and 4, the optimal control structure
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problem is established and solved, for the first- and second-
order leader-follower multiagent system with hybrid weights,
respectively. For the general leader-follower multiagent sys-
tem, the results on optimal topology structure are reported
in Section 5. In Section 6, several simulation results are
analyzed. Section 7 concludes this paper.

In this paper, the following symbols are used:R denotes a
real number set. R𝑛×𝑚 represents an 𝑛 × 𝑚 real matrix set.
Column vector 1n (or 0n) indicates that all items in each
column are equal to 1 (or 0). diag {𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑛} is a diagonal
block matrix whose diagonal elements are matrices 𝐴 𝑖, 𝑖 =1, ⋅ ⋅ ⋅ , 𝑛. 𝐵 = 𝐴1/2 (or 𝐵 = √𝐴) when 𝐵 satisfies 𝐵2 = 𝐴.𝐴⊗𝐵
represents theKronecker product of𝐴 and𝐵.I𝑛 = {1, ⋅ ⋅ ⋅ , 𝑛}
represents the index set.

2. Preliminaries

Graph theory can abstract the information interaction and
relative relation between agents, which plays an important
role in the research of distributed coordination. 𝐺 ={V,E,A} describes a hybrid-weighted directed graph. The
hybrid weight means that the edge weight can take positive or
negative values, with positive value indicating a cooperative
relationship between two nodes, while negative value indicat-
ing a competitive relationship. V is the set of vertices, and E

is the edge set. A is an adjacency matrix. The corresponding
concrete expression isV = {1, 2, ⋅ ⋅ ⋅ , 𝑛},E = {(𝑖, 𝑗) ∈V×V},
A = [𝑎𝑖𝑗] ∈ R𝑛×𝑛. Edge set E is an abstraction of the
information exchange. (𝑗, 𝑖) ∈ E means that agent 𝑖 receives
information from agent 𝑗. 𝑖 ∈N𝑛 denotes a set with 𝑛 agents;
and 𝑎𝑖𝑖 = 0 means that we do not consider the self-loop. We
assume that 𝑎𝑖𝑗𝑎𝑗𝑖 ≥ 0. 𝑎𝑖𝑗 = 0 indicates that there is no con-
nection between V𝑗 and V𝑖. If V𝑗 and V𝑖 are cooperative, then𝑎𝑖𝑗 > 0; otherwise 𝑎𝑖𝑗 < 0. The spanning tree of a connected
graph with 𝑛 nodes is a minimally connected subgraph of the
original graph which contains all the 𝑛 nodes in the original
graph and keeps the least connected edge of the graph.

The neighbor set of agent 𝑖 is denoted by C𝑖, C𝑖 = {𝑗 :𝑎𝑖𝑗 ̸= 0}. Degree matrix D is a diagonal matrix with diagonal
elements 𝑑𝑖𝑖 = ∑𝑗∈C𝑖 𝑎𝑖𝑗. Laplacian matrix L = D − A. In
a leader-follower multiagent system, leaders cannot receive
neighbor information from follower nodes. The followers
usually have at least one neighbor node. For a leader-
follower multiagent system, the star topology is a specific
interconnection structure, in which all nodes are individually
connected to a central hub. With the central node playing
the single leader role (the central hub of the star composite
structure plays the same rolewith respect tomultiple leaders),
the leader does not receive any information from other nodes
while any other nodes can use the central node as a neighbor
(the leader nodes cannot receive neighbor information but
can send neighbor information to other nodes). In this paper,
the leader is denoted by𝑁∗ and the follower’s neighbor set is
denoted by𝑁𝑖, 𝑖 ∈ N𝑛.The information exchange associated
with the first-order multiagent system involves only position
information, which is described by𝐺(A).The corresponding
Laplacian is 𝐿A. The information exchange associated with
the second-order multiagent system includes both position

and velocity information, which is described by an additional
digraph𝐺(V) and a Laplacian matrix 𝐿V. In association with
the second-ordermultiagent system, the directed graph𝐺(A)
represents the position information and the directed graph𝐺(V) represents the velocity information. These two graphs
have the same structure with different edge weights. The
structural model of the system is called unevenly weighted
interaction graph.

2.1. Infinite-Time Linear Quadratic Regulator Theory. Con-
sider a linear system

�̇� (𝑡) = 𝐺𝑋 (𝑡) + 𝐻𝑈 (𝑡) , (1)

where 𝑋(𝑡) ∈ R𝑛, 𝑈(𝑡) ∈ R𝑚, 𝐺 ∈ R𝑛×𝑛, and 𝐻 ∈ R𝑛×𝑚.
Let𝑄 ∈ R𝑛×𝑛, 𝑅 ∈ R𝑚×𝑚, which are symmetric, nonnegative,
and positive definite, respectively.The following cost function
is defined by

𝐽 (𝑈 (.) ,𝑋(0))
= ∫∞
0
[𝑋𝑇 (𝑡) 𝑄𝑋 (𝑡) + 𝑈𝑇 (𝑡) 𝑅𝑈 (𝑡)] 𝑑𝑡. (2)

The cost function represents the total cost of system (1) from
the initial state 𝑋(0) to the equilibrium state. The task of
the optimal control problem is to find the minimum cost
function 𝐽(𝑈(.),𝑋(0)) and the optimal control 𝑈∗(𝑡) =−𝐾∗𝑋(𝑡), where 𝐾∗ is called the optimal feedback gain
matrix [39]. In other words, optimal control can bring the
state to equilibrium without putting too much cost on it. The
LQR optimal control lemma is given below.

Lemma 1 (see [39]). Suppose that system (1) is completely
controllable or completely stabilizable. The algebraic Riccati
equation (ARE)

𝐺𝑇𝑃 + 𝑃𝐺 + 𝑄 − 𝑃𝐻𝑅−1𝐻𝑇𝑃 = 0 (3)

has a unique positive-definite solution. Furthermore, the opti-
mal control 𝑈∗(𝑡) = −𝑅−1𝐻𝑇𝑃𝑋(𝑡) minimizes the cost
function 𝐽(𝑈(.),𝑋(0)) and makes the system asymptotically
stable.

3. LQR Based Optimal Topology of First-Order
Hybrid-Weighted Multiagent Systems

3.1. Single Leader. The first-order leader-follower multiagent
system is defined as

�̇�𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 ∈ N𝑛,�̇�𝑁∗ (𝑡) = 0, (4)

where 𝑥𝑖(𝑡) ∈ R and 𝑢𝑖(𝑡) ∈ R represent the 𝑖th follower’s
position information and the control input information,
respectively. Let 𝑥𝑁∗(𝑡) represent the leader’s position infor-
mation and denote 𝑋(𝑡) = (𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡))𝑇, 𝑈(𝑡) = (𝑢1(𝑡),⋅ ⋅ ⋅ , 𝑢𝑛(𝑡))𝑇.Then achieving consensus is to design neighbor-
ing information based feedback 𝑢𝑖(𝑡)(𝑖 ∈N𝑛) so that the final
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states of both the leader and followers converge to the same
value. The corresponding expression is as follows

lim
t→∞

𝑥𝑖 (𝑡) − 𝑥𝑁∗ (𝑡) = 0, 𝑖 ∈ N𝑛. (5)

We have

𝐿A𝑓𝑓 = Δ𝑓𝑓 −A𝑓𝑓, (6)

whereΔ𝑓𝑓
= diag

{{{
𝑛∑
𝑗=1,𝑖 ̸=𝑗

𝑎1𝑗 + 𝑜1 , ⋅ ⋅ ⋅ , 𝑛∑
𝑗=1,𝑖 ̸=𝑗

𝑎𝑛𝑗 + 𝑜𝑛}}} , (7)

A𝑓𝑓 = [𝑎𝑖𝑗] ∈ R𝑛×𝑛. Define the Laplacian matrix 𝐿A as

𝐿A = (𝐿A𝑓𝑓 −𝛼
0𝑇𝑛 0 ) , (8)

where 𝐿A𝑓𝑓 ∈ R𝑛×𝑛, 𝛼 ∈ R𝑛×1, 𝛼 = (𝑜1, ⋅ ⋅ ⋅ , 𝑜𝑛)𝑇, and 𝑜𝑖 refers
to the connection between the leader and the 𝑖th follower.

Consider the following linear protocol

𝑢𝑖 (𝑡) = − 𝑛∑
𝑗=1

𝑎𝑖𝑗 [𝑥𝑖 (𝑡) − sgn (𝑎𝑖𝑗) 𝑥𝑗 (𝑡)]
− 𝑜𝑖 [𝑥𝑖 (𝑡) − sgn (𝑜𝑖) 𝑥𝑁∗ (𝑡)] ,

(9)

𝑖 ∈ N𝑛, where 𝑎𝑖𝑗 represents the (𝑖, 𝑗)th element in the
adjacency matrix A of 𝐺(A) and 𝑜𝑖 is the 𝑖th element in 𝛼.
Combining system (4) with protocol (9) yields

�̇� (𝑡) = 𝑈 (𝑡)
𝑈 (𝑡) = −𝐿A𝑓𝑓𝑋(𝑡) + 𝛼𝑥𝑁∗ (𝑡) , (10)

Gauge transformation is a coordinate transformation
performed in R𝑛+1, which is represented by matrix 𝐷 =
diag{𝜎1, ⋅ ⋅ ⋅ , 𝜎𝑛+1}. The set consisting of all gauge transfor-
mations in R𝑛+1 is represented by D = {𝐷 = diag{𝜎1, ⋅ ⋅ ⋅ ,𝜎𝑛+1}, 𝜎𝑖 ∈ ±1, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 + 1}. We assume that 𝐺(A)
is structurally balanced, which means that all nodes can
be divided into two parts, V1 and V2, with V1 ∪ V2 =
V,V1 ∩ V2 = 𝜙 and 𝑎𝑖𝑗 ≥ 0 if ∀𝑖, 𝑗 ∈ 𝑉𝑞(𝑞 ∈ {1, 2});𝑎𝑖𝑗 ≤ 0 if ∀𝑖 ∈ 𝑉𝑞, 𝑗 ∈ 𝑉𝑟, 𝑞 ̸= 𝑟(𝑞, 𝑟 ∈ {1, 2}) [34].
It is worth mentioning that if all the semicycles of 𝐺(A)
are positive, 𝐺(A) is structurally balanced [40]. Let 𝜎𝑖 =1 and 𝜎𝑗 = −1 correspond to 𝑖 ∈ V1 and 𝑗 ∈ V2,
respectively. For a structural balance graph 𝐺(A), the gauge
transformation 𝐷 can transform the adjacency matrix A of
cooperative-competition MASs into a nonnegative matrix𝐷A𝐷. Consequently, the bipartite consensus problem of
cooperative-competition systems is transformed into a stan-
dard consensus problem of cooperative systems. At the same
time, the eigenvalues of 𝐷𝐿𝐷 under this transformation

coincide with those of the laplacian 𝐿 of the original system.
For the transformation

𝐷 = [𝐷𝑛 0𝑛
0𝑇𝑛 𝜎𝑛+1] , (11)

where 𝐷𝑛 = diag{𝜎1, ⋅ ⋅ ⋅ , 𝜎𝑛}, we see that 𝐷−1 = 𝐷. For
system (4) the following gauge transformation is considered

𝜋 (𝑡) = 𝐷𝑛𝑋(𝑡) , 𝐷 ∈ D, (12)

and thus, �̇�(𝑡) = 𝐷𝑛�̇�(𝑡). One has�̇� (𝑡) = 𝑈𝜋 (𝑡)𝑈𝜋 (𝑡) = −𝐷𝑛𝐿𝐴𝑓𝑓𝐷𝑛𝜋 (𝑡) + 𝐷𝑛𝛼𝜎𝑛+1𝜋𝑁∗ (𝑡) . (13)

Set the following cost function

𝐽 (𝑈𝜋 (.) ,𝜋 (0))
= ∫∞
0
{ 𝑛∑
𝑖=1

[𝑞𝑖 (𝜋𝑖 (𝑡) − 𝜋𝑁∗ (𝑡))2 + 𝑟𝑖𝑢2𝑖 (𝑡)]} 𝑑𝑡, (14)

where 𝑞𝑖 > 0, 𝑟𝑖 > 0, which represent the weight of error and
theweight of the control cost of follower 𝑖, respectively. So, the
leader-follower multiagent system optimal control problem is
suitable for any initial state 𝑋(0) ∈ R𝑛. The goal is to find the
minimum optimal control 𝑈∗(𝑡) of 𝐽(𝑈(.),𝑋(0)). With (13),
the optimal control cost is

min
𝑈𝜋(𝑡)

𝐽 (𝑈𝜋 (𝑡) , 𝜋 (0)) . (15)

Since 𝑈∗(𝑡) has been found, by (13), the Laplacian matrix
structure can be revealed. Finding the optimal control cost
is equivalent to finding the Laplace matrix structure corre-
sponding to the system equation, which is then equivalent to
finding the optimal topological structure.

Theorem 2. For (15), the optimal topology with respect to
the control input (9) is a star structure, in which any fol-
lowers are connected only to the leader with weight 𝛼∗𝑖 =
sgn(𝜎𝑛+1)𝜎𝑖√𝑞𝑖/𝑟𝑖. The star structure is the optimal topology
solution achieving the bipartite consensus for MASs.

Proof. The control error of follower 𝑖 is denoted by 𝜀𝑖(𝑡) =𝜋𝑖(𝑡) − 𝜋𝑁∗(𝑡). The control error vector is denoted by 𝜀(𝑡) =(𝜀1(𝑡), ⋅ ⋅ ⋅ , 𝜀𝑛(𝑡))𝑇. The error system of (13) is

̇𝜀 (𝑡) = 𝑈𝜋 (𝑡)𝑈𝜋 (𝑡) = −𝐷𝑛𝐿A𝑓𝑓𝐷𝑛𝜀 (𝑡) . (16)

Substituting 𝜀(𝑡) into 𝐽(𝑈(𝑡),𝑋(0)), the optimal control prob-
lem (15) is transformed to the LQR problem

min
𝑈(𝑡)

∫∞
0
[𝜀𝑇 (𝑡) 𝑄𝜀 (𝑡) + 𝑈𝑇𝜋 (𝑡) 𝑅𝑈𝜋 (𝑡)] 𝑑𝑡. (17)
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The above formula is derived from (16), where 𝑄 = diag{𝑞1,⋅ ⋅ ⋅ , 𝑞𝑛}, 𝑅 = diag{𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑛}. Since [𝐼𝑛, 0, ⋅ ⋅ ⋅ , 0] is full row
rank, system (16) is controllable.

Lemma 1 implies that there exists a positive definite
matrix 𝑃 ∈ R𝑛×𝑛, satisfying ARE𝑃𝑅−1𝑃 = 𝑄. (18)

The optimal feedback gain matrix 𝐷𝑛𝐿A∗𝑓𝑓𝐷𝑛 = 𝑅−1𝑃
stabilizes system (16). Premultiplying𝑅−1 onboth sides of (18)
yields

𝐷𝑛𝐿A∗𝑓𝑓𝐷𝑛 = (𝑅−1𝑄)−1/2 = diag{√𝑞1𝑟1 , ⋅ ⋅ ⋅ , √ 𝑞𝑛𝑟𝑛 } . (19)

Then 𝐿A∗𝑓𝑓 = diag{√𝑞1/𝑟1, ⋅ ⋅ ⋅ , √𝑞𝑛/𝑟𝑛}. Obviously,
𝐿A∗ = (𝐷𝑛𝐿A∗𝑓𝑓𝐷𝑛 −𝐷𝑛𝛼𝜎𝑛+1

0𝑁𝑇 0
) . (20)

For all 𝑖 ∈N𝑛, their neighbor nodes constitute only 𝑥𝑁∗ .That
is, there is no exchange of information among followers. So
only followers and leaders have information exchange: 𝛼∗𝑖 =𝜎𝑖√𝑞𝑖/𝑟𝑖𝜎𝑛+1.𝐺(𝐴∗) consisting of𝑁 edges satisfies the above condition.
Because there is no information exchange among followers,
and there is only information exchange between leader
and followers; we see that the optimal topology is a star
structure. The condition of spanning tree guarantees that the
topology structure of the first-order system (10) can achieve
the bipartite consensus. Thus star topology is the optimal
structure for system to achieve the bipartite consensus.

Remark 3. The optimal topology of the leader-follower MAS
is a star structure. The weight of information exchange is𝛼∗𝑖 = 𝜎𝑖√𝑞𝑖/𝑟𝑖𝜎𝑛+1. The above arguments show that any
element of 𝐿A∗𝑓𝑓 is nonnegative. The diagonal elements of the
coordinate transformation matrix 𝐷𝑛 depend on 𝜎𝑖 = ±1.𝜎𝑛+1 represents sgn(𝜎𝑛+1) ⋅ 1. 𝛼∗ represents that the exchange
of information among topologies is a mixture of weights;
i.e., there exists cooperation situation represented by positive
weights, and there is competition situation represented by
the negative weights. The bipartite consensus means that the
individuals achieve the samemodulus with opposite sign. For
a first-ordermultiagent system, the structural equilibrium is a
necessary and sufficient condition for achieving the bipartite
consensus in an undirected connected graph or a directed
graph with spanning trees [35, 36].

As shown in Figure 1, the optimal structure for the leader(𝑦𝑒𝑙𝑙𝑜𝑤 𝑏𝑎𝑙𝑙) communicating with followers (𝑟𝑒𝑑 𝑏𝑎𝑙𝑙) is a
star topology, and the weights corresponding to each edge are𝑎𝑖 = sgn(𝜎𝑛+1)𝜎𝑖√𝑞𝑖/𝑟𝑖.
3.2.Multileader. The𝑚 leaders are denoted by 𝑛+1, . . . , 𝑛+𝑚.
The Laplacian matrix of 𝐺(A) is

𝐿A = ( 𝐿A𝑓𝑓 −𝐿A𝑓𝑟
0𝑚×𝑛 0𝑚×𝑚

) (21)
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where 𝐿A𝑓𝑓 ∈ R𝑛×𝑛, 𝐿A𝑓𝑟 ∈ R𝑛×𝑚. 𝑋𝑓(𝑡) = [𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡)]𝑇,𝑋𝑟(𝑡) = [𝑥𝑛+1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛+𝑚(𝑡)]𝑇. It follows that
�̇�𝑓 (𝑡) = −𝐿A𝑓𝑓𝑋𝑓 (𝑡) + 𝐿A𝑓𝑟𝑋𝑟 (𝑡)�̇�𝑟 (𝑡) = 0𝑚. (22)

Then the gauge transformation yields

�̇�𝑓 (𝑡) = −𝐷𝑛𝐿A𝑓𝑓𝐷𝑛𝜋𝑓 (𝑡) + 𝐷𝑛𝐿A𝑓𝑟𝐷𝑚𝜋𝑟 (𝑡) , (23)

where𝐷𝑚 = diag(𝜎𝑛+1, ⋅ ⋅ ⋅ , 𝜎𝑛+𝑚).
Theorem 4. With respect to the control input (9), the optimal
topology structure of leader-follower MASs (𝑚 > 1) is
a star composite topology, which is the best form of infor-
mation exchange between followers and leaders. The weight
between leaders and followers is the solution of convex hull:
min𝑏𝑖{𝜋𝑖(0) − √𝑟𝑖/𝑞𝑖𝑏∗𝑖 𝜋𝑟(0)}2; 𝑏∗𝑖 1𝑚 = √𝑞𝑖/𝑟𝑖, which is a
star composite structure and is the optimal structure solution
achieving the bipartite consensus of MASs, as shown in
Figure 2.
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Proof. From [41], if 𝐷𝑛𝐿A𝑓𝑓𝐷𝑛 is an invertible matrix, then𝜋𝑓(𝑡) tends to 𝜋𝑐𝑓 = (𝐷𝑛𝐿A𝑓𝑓𝐷𝑛)−1𝐷𝑛𝐿A𝑓𝑟𝐷𝑚𝜋𝑟(0). Therefore,
the cost function is𝐽 (𝑈𝜋 (𝑡) , 𝜋 (0))

= ∫∞
0
[(𝜋𝑓 (𝑡) − 𝜋𝑐𝑓)𝑇𝑄(𝜋𝑓 (𝑡) − 𝜋𝑐𝑓)

+ 𝑈𝜋 (𝑡)𝑇 𝑅𝑈𝜋 (𝑡)] 𝑑𝑡,
(24)

where 𝑄 and 𝑅 are both 𝑁-dimensional positive defi-
nite diagonal matrices; 𝑄 = diag{𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑛}, 𝑅 =
diag{𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑛}. Similar to the proof of Theorem 2, the
optimal control problem reads𝐽 (𝑈∗ (.) ,𝜋 (0)) = min

𝑈𝜋(.)
𝐽 (𝑈𝜋 (.) ,𝜋 (0)) . (25)

It follows from (22) and Lemma 1 that

𝐿A∗𝑓𝑓 = diag{√𝑞1𝑟1 , . . . , √ 𝑞𝑛𝑟𝑛 } ,
𝐷𝑛𝐿A∗𝑓𝑟 𝐷𝑚 = (𝑏∗1⋅ ⋅ ⋅𝑏∗𝑛), (26)

where b∗𝑖 ∈ R1×𝑚(𝑖 ∈N𝑛) is the solution of the convex hull.

min
𝑏𝑖
{𝜋𝑖 (0) − √ 𝑟𝑖𝑞𝑖 𝑏∗𝑖 𝜋𝑟 (0)}

2

𝑏∗𝑖 1𝑚 = √𝑞𝑖𝑟𝑖 .
(27)

From (27), we see that followers only communicate with each
pilot, and accordingly the corresponding optimal topology
is a composite structure based on a star topology. Thus the
composite topology is the optimal structure achieving bipar-
tite consensus for the first-order leader-follower multiagent
system (𝑚 > 1).

The picture in Figure 2 depicts a star-shaped composite
structure consisting of twopilots (𝑦𝑒𝑙𝑙𝑜𝑤 𝑏𝑎𝑙𝑙) and six follow-
ers (𝑟𝑒𝑑 𝑏𝑎𝑙𝑙). There is no communication between these two
leaders, and each follower only receives neighbor information
from leaders. The weight satisfies 𝑎𝑖 + 𝑏𝑖 = √𝑞𝑖/𝑟𝑖 and
min𝑏𝑖{𝜋𝑖(0) − √𝑟𝑖/𝑞𝑖(𝑎𝑖 + 𝑏𝑖)𝜋𝑟(0)}2.
4. LQR Based Optimal Topology of Second-
Order Hybrid-Weighted Multiagent Systems

4.1. Single Leader. The second-order leader-follower multia-
gent system is 𝑥𝑖 (𝑡) = V𝑖 (𝑡) ,

V̇𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 ∈N𝑛

̇𝑥𝑁∗ (𝑡) = V𝑁∗ (𝑡) ,
V̇𝑁∗ (𝑡) = 0,

(28)

where 𝑥𝑖(𝑡) ∈ R, V𝑖(𝑡) ∈ R, 𝑢𝑖(𝑡) ∈ R denote the state,
velocity, and control of follower 𝑖, respectively. 𝑥𝑁∗(𝑡) ∈
R, V𝑁∗(𝑡) ∈ R represent the leader’s state and velocity infor-
mation, respectively. In what follows, we denote 𝑋(𝑡) =(𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡))𝑇, 𝑉(𝑡) = (V1(𝑡), ⋅ ⋅ ⋅ , V𝑛(𝑡))𝑇, 𝑈(𝑡) = (𝑢1(𝑡),⋅ ⋅ ⋅ , 𝑢𝑛(𝑡))𝑇. The second-order MASs consensus is asymptot-
ically achieved if

lim
t→∞

𝑥𝑖 (𝑡) − 𝑥𝑁∗ (𝑡) = 0
lim
t→∞

V𝑖 (𝑡) − V𝑁∗ (𝑡) = 0, 𝑖 ∈ N𝑛

(29)

In this section, let us consider the following agreement

𝑢𝑖 = − 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑎𝑖𝑗 [𝑥𝑖 − sgn (𝑎𝑖𝑗) 𝑥𝑗]
− 𝑏𝑖 [𝑥𝑖 − sgn (𝑏𝑖) 𝑥𝑁∗]
− 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑤𝑖𝑗 [V𝑖 − sgn (𝑤𝑖𝑗) V𝑗]
− 𝑑𝑖 [V𝑖 − sgn (𝑑𝑖) V𝑁∗] ,

(30)

where 𝑎𝑖𝑗, 𝑤𝑖𝑗 represent the (𝑖, 𝑗) element of adjacency matrix
A andW of the directed graph 𝐺(𝐴) and 𝐺(𝑊), respectively,
and 𝑏𝑖, 𝑑𝑖 are, respectively, the 𝑖𝑡ℎ elements of b, d. With
protocol (30), system (28) is written in a matrix form

(�̇� (𝑡)�̇� (𝑡)) = 𝐺(𝑋 (𝑡)𝑉 (𝑡)) + 𝐻𝑈 (𝑡)
𝑈 (𝑡) = −𝐿𝐴𝑓𝑓𝑋(𝑡) − 𝐿𝑊𝑓𝑓𝑉 (𝑡) + b𝑥𝑁∗ (𝑡)+ dV𝑁∗ (𝑡) ,

(31)

where

𝐺 = (0𝑛×𝑛 𝐼𝑛0𝑛×𝑛 0𝑛×𝑛) ,
𝐻 = (0𝑛×𝑛𝐼𝑛 ) .

(32)

By (11), the gauge transformation of (28) is

𝜋 (𝑡) = 𝐷𝑛𝑋(𝑡) ,𝛽 (𝑡) = 𝐷𝑛𝑉(𝑡) ,𝐷 ∈ D. (33)

From𝐷 = 𝐷−1, 𝑋(𝑡) = 𝐷𝑛𝜋(𝑡), 𝑉(𝑡) = 𝐷𝑛𝛽(𝑡), one has�̇� (𝑡) = 𝐷𝑛�̇� (𝑡) = 𝐷𝑛𝑉 (𝑡) = 𝛽 (𝑡) . (34)
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It follows that �̇�𝑖 (𝑡) = 𝛽𝑖 (𝑡) ,̇𝛽𝑖 (𝑡) = 𝛾𝑖 (𝑡) , 𝑖 ∈N𝑁�̇�𝑁∗ (𝑡) = 𝛽𝑁∗ (𝑡) ,𝛾𝑁∗ (𝑡) = 0.
(35)

For (31), 𝑈(𝑡) = −𝐿A𝑓𝑓𝑋(𝑡) − 𝐿W𝑓𝑓𝑉(𝑡) + b𝑥𝑁∗(𝑡) + dV𝑁∗(𝑡).
Therefore𝛾 (𝑡) = 𝐷𝑛�̇� (𝑡)= −𝐷𝑛𝐿A𝑓𝑓𝐷𝑛𝜋 (𝑡) − 𝐷𝑛𝐿W𝑓𝑓𝐷𝑛𝛽 (𝑡)+ 𝐷𝑛b𝜎𝑛+1𝜋𝑁∗ (𝑡) + 𝐷𝑛d𝜎𝑛+1𝛽𝑁∗ (𝑡) ,

(36)

where𝐷𝑛 = diag{𝜎1, ⋅ ⋅ ⋅ , 𝜎𝑛}. We get

(�̇� (𝑡)̇𝛽 (𝑡)) = (𝐼2 ⊗ 𝐷𝑛) 𝐺 (𝐼2 ⊗ 𝐷𝑛) (𝜋 (𝑡)𝛽 (𝑡))
+ (𝐼2 ⊗ 𝐷𝑛)𝐻𝐷𝑛𝛾 (𝑡)𝛾 (𝑡) = −𝐷𝑛𝐿A𝑓𝑓𝐷𝑛𝜋 (𝑡) − 𝐷𝑛𝐿W𝑓𝑓𝐷𝑛𝛽 (𝑡)+ 𝐷𝑛b𝜎𝑛+1𝜋𝑁∗ (𝑡) + 𝐷𝑛d𝜎𝑛+1𝛽𝑁∗ (𝑡) .

(37)

By (37), the optimal control problem of (35) is

min
𝛾(𝑡)

𝐽 (𝛾 (𝑡) , [𝜋 (0) , 𝛽 (0)]𝑇) , (38)

𝐽 (𝛾 (𝑡) , [𝜋 (0) , 𝛽 (0)]𝑇) = ∫∞
0

𝑁∑
𝑖=1

𝑟𝑖𝛾2𝑖 (𝑡) 𝑑𝑡
+ ∫∞
0

𝑛∑
𝑖=1

𝑞𝑖 (𝜋𝑖 (𝑡) − 𝜋𝑁∗ (𝑡))2 𝑑𝑡
+ ∫∞
0

𝑛∑
𝑖=1

𝑞𝑖 (𝛽𝑖 (𝑡) − 𝛽𝑁∗ (𝑡))2 𝑑𝑡,
(39)

where 𝑞𝑖 > 0, 𝑟𝑖 > 0. Therefore, finding the optimal con-
trol 𝛾∗(𝑡) is equivalent to finding the optimal topology
structures which correspond to their velocity and state graphs(𝐺(A∗),𝑊(A∗)), respectively.

Note that the structure is included, respectively, in Lapla-
cian matrices 𝐷𝑛𝐿A∗𝐷𝑛 and 𝐷𝑛𝐿W∗𝐷𝑛.
Theorem 5. For the optimal control problem (38) with the
control input (30), the optimal topology is an unevenlyweighted
star structure, in which each follower 𝑖 is only connected with
the leader. The weight of the state graph is 𝜎𝑖𝜎𝑛+1√𝑞𝑖/𝑟𝑖, and
the weight in velocity graph is 𝜎𝑖𝜎𝑛+1√2√𝑞𝑖/𝑟𝑖 + 𝑞𝑖/𝑟𝑖. The
star structure is the optimal topology solution achieving the
bipartite consensus of MASs.

Proof. The consensus error system of (35) is as follows

𝜀 (𝑡) = (𝜋 (𝑡)𝛽 (𝑡)) − [1𝑇𝑛 ⊗ 𝜋𝑁∗ (𝑡) , 1𝑇𝑛 ⊗ 𝛽𝑁∗ (𝑡)]𝑇 . (40)

The corresponding error power system is

̇𝜀 (𝑡) = (𝐼2 ⊗ 𝐷𝑛) 𝐺 (𝐼2 ⊗ 𝐷𝑛) 𝜀 (𝑡)+ (𝐼2 ⊗ 𝐷𝑛)𝐻𝐷𝑛𝛾 (𝑡)𝛾 (𝑡) = −𝐾𝜀 (𝑡) ,
(41)

where 𝐾 = [𝐷𝑛𝐿A𝑓𝑓𝐷𝑛, 𝐷𝑛𝐿W𝑓𝑓𝐷𝑛]. Therefore, the optimal
control problem (38) is transformed into the following LQR
problem

min
𝛾(𝑡)

∫∞
0
[𝜀𝑇 (𝑡) (𝐼2 ⊗ 𝑄) 𝜀 (𝑡) + 𝛾𝑇 (𝑡) 𝑅𝛾 (𝑡)] 𝑑𝑡, (42)

subject to (41), where 𝑄 = diag{𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑛}, 𝑅 = diag{𝑟1,⋅ ⋅ ⋅ , 𝑟𝑛}.
rank [(𝐼2 ⊗ 𝐷𝑛)𝐻𝐷𝑛, (𝐼2 ⊗ 𝐷𝑛) 𝐺𝐻𝐷𝑛, ⋅ ⋅ ⋅ , (𝐼2 ⊗ 𝐷𝑛)
⋅ 𝐺2𝑛−1𝐻𝐷𝑛] = rank [𝐻,𝐺𝐻, ⋅ ⋅ ⋅ , 𝐺2𝑛−1𝐻] = 2𝑛. (43)

Since the above matrix is full row rank, system (38) is
controllable.

Similar to Theorem 2, the ARE equation corresponding
to (42) is

𝑃 (𝐼2 ⊗ 𝐷𝑛)𝐻𝑅−1𝐻𝑇 (𝐼2 ⊗ 𝐷𝑛) 𝑃= 𝑃 (𝐼2 ⊗ 𝐷𝑛) 𝐺 (𝐼2 ⊗ 𝐷𝑛)+ (𝐼2 ⊗ 𝐷𝑛) 𝐺𝑇 (𝐼2 ⊗ 𝐷𝑛) 𝑃 + 𝐼2 ⊗ 𝑄.
(44)

This equation has a unique positive definite solution. In
addition, the optimal control is 𝛾∗(𝑡) = −𝑅−1𝐷𝑛𝐻𝑇(𝐼2 ⊗𝐷𝑛)𝑃𝜀(𝑡). In (44), the structure forms of matrices 𝐺,𝑄, 𝑅,𝐻
imply that 𝑃 is a symmetric matrix. It can be written as

𝑃 = (𝑃11 𝑃12𝑃𝑇12 𝑃22) , (45)

where 𝑃11 ∈ R𝑛×𝑛, 𝑃22 ∈ R𝑛×𝑛 are both symmetric. 𝑃12 =𝑃𝑇12 ∈ R𝑛×𝑛. It follows that

𝐾∗ = [𝐷𝑛𝐿A∗𝑓𝑓𝐷𝑛, 𝐷𝑛𝐿W∗𝑓𝑓 𝐷𝑛]
= 𝑅−1𝐷𝑛𝐻𝑇 (𝐼2 ⊗ 𝐷𝑛) 𝑃 = [𝑅−1𝑃𝑇12, 𝑅−1𝑃22] . (46)

From (44), we have

𝑃12𝑅−1𝑃22 = 𝑃11 = 𝑃22𝑅−1𝑃𝑇12 ,𝑃𝑇12 + 𝑃12 + 𝑄 = 𝑃22𝑅−1𝑃22, (47)

𝑄 = 𝑃12𝑅−1𝑃𝑇12. (48)
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Figure 3

Premultiplying 𝑅−1 on both sides of (48), we have

𝐿A∗𝑓𝑓 = 𝐷𝑛 (𝑅−1𝑄)1/2𝐷𝑛
𝐿W∗𝑓𝑓 = 𝐷𝑛 (𝑅−1 (2𝑃12 + 𝑄))1/2𝐷𝑛, (49)

where 𝐷𝑖𝑏∗𝑖 𝜎𝑛+1 = √𝑞i/𝑟𝑖, 𝐷𝑖𝑑∗𝑖 𝜎𝑛+1 = √2√𝑞𝑖/𝑟𝑖 + 𝑞𝑖/𝑟𝑖.
Therefore

𝐿A∗ = (𝐷𝑛𝐿A∗𝑓𝑓𝐷𝑛 −𝐷𝑛b∗𝜎𝑛+1
0𝑇𝑛 0 )

𝐿W∗ = (𝐷𝑛𝐿W∗𝑓𝑓 𝐷𝑛 −𝐷𝑛d∗𝜎𝑛+1
0𝑇𝑛 0 ) .

(50)

In (50), b∗ = 𝐷𝑛𝐿A∗𝑓𝑓 (𝐼𝑛 ⊗ 𝜎𝑛+1), d∗ = 𝐷𝑛𝐿W∗𝑓𝑓 (𝐼𝑛 ⊗ 𝜎𝑛+1),
which means that the optimal topology is a nonuniformly
weighted star topology; i.e., follower 𝑖 has only information
exchangewith the single leader; theweights on the state graph
and velocity graph are 𝜎𝑖𝜎𝑛+1√𝑞𝑖/𝑟𝑖, 𝜎𝑖𝜎𝑛+1√2√𝑞𝑖/𝑟𝑖 + 𝑞𝑖/𝑟𝑖,
respectively.

As a consequence, the star topology with uneven hybrid
weights can make system (28) achieve both the bipartite
consensus and the optimal topology.

As shown in Figures 3 and 4, the unevenly hybrid-
weighted star structure is the optimal communication topol-
ogy consisting of leader (yellow ball) and followers (red
and blue ball). The star topology has the same position
and velocity topology structure with different weights. The
corresponding weight in the position and velocity topology
is sgn(𝜎𝑛+1)𝜎𝑖√𝑞𝑖/𝑟𝑖 and sgn(𝜎𝑛+1)𝜎𝑖√2√𝑞𝑖/𝑟𝑖 + 𝑞𝑖/𝑟𝑖, respec-
tively.
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4.2. Multileader. Consider a leader-follower MAS with mul-
tiple leaders (𝑚 > 1).

̇𝑥𝑖 (𝑡) = V𝑖 (𝑡) ,
V̇𝑖 (𝑡) = 𝑢𝑖 (𝑡) ,𝑖 ∈ I𝑛,�̇�𝑟 (𝑡) = V𝑟 (𝑡) ,
V̇𝑟 (𝑡) = 0, 𝑟 ∈ I𝑛+𝑚,

(51)

where 𝑥𝑖(𝑡) ∈ R, V𝑖(𝑡) ∈ R, 𝑢𝑖(𝑡) ∈ R denote the state,
velocity, and control of follower 𝑖, respectively. 𝑥𝑟(𝑡) ∈
R, V𝑟(𝑡) ∈ R represent the leaders’ state and velocity
information, respectively. In what follows, we denote𝑋𝑓(𝑡) =[𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡)]𝑇, 𝑋𝑟(𝑡) = [𝑥𝑛+1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛+𝑚(𝑡)]𝑇, 𝑉𝑓(𝑡) =[V1(𝑡), ⋅ ⋅ ⋅ , V𝑛(𝑡)]𝑇, 𝑉𝑟(𝑡) = [V𝑛+1(𝑡), ⋅ ⋅ ⋅ , V𝑛+𝑚(𝑡)]𝑇, 𝑈(𝑡) =[𝑢1(𝑡), ⋅ ⋅ ⋅ , 𝑢𝑛(𝑡)]𝑇.

The 𝑚 leaders are indicated by 𝑛 + 1, . . . , 𝑛 + 𝑚. The
Laplacian matrices of 𝐺(A) and 𝐺(W) are

𝐿A = ( 𝐿A𝑓𝑓 −𝐿A𝑓𝑟
0𝑚×𝑛 0𝑚×𝑚

) ,
𝐿W = ( 𝐿W𝑓𝑓 −𝐿W𝑓𝑟

0𝑚×𝑛 0𝑚×𝑚
) , (52)

where 𝐿A𝑓𝑓 ∈ R𝑛×𝑛, 𝐿A𝑓𝑟 ∈ R𝑛×𝑚, 𝐿W𝑓𝑓 ∈ R𝑛×𝑛, and 𝐿W𝑓𝑟 ∈ R𝑛×𝑚.
Consider the following linear protocol

𝑢𝑖 (𝑡) = − 𝑛∑
𝑗=1,𝑗 ̸=𝑖

{𝑎𝑖𝑗 [𝑥𝑖 (𝑡) − sgn (aij) 𝑥𝑗 (𝑡)] + 𝑤𝑖𝑗 [V𝑖 (𝑡) − sgn (wij) V𝑗 (𝑡)]}
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− 𝑛+𝑚∑
𝑟=𝑛+1

{𝑏𝑖𝑟 [𝑥𝑖 (𝑡) − sgn (bir) 𝑥𝑟 (𝑡)] + 𝑑𝑖𝑟 [V𝑖 (𝑡) − sgn (dir) V𝑟 (𝑡)]} ,
(53)

where 𝑎𝑖𝑗, 𝑤𝑖𝑗 denote the (𝑖, 𝑗)𝑡ℎ element of A and W,
respectively. Then 𝑏𝑖𝑟, 𝑑𝑖𝑟 are the (𝑖, 𝑟)𝑡ℎ element of 𝐿A𝑓𝑟 and𝐿W𝑓𝑟, respectively. In view of system (51) and protocol (53), we
have

(�̇�𝑓 (𝑡)�̇�𝑓 (𝑡)) = 𝐺(𝑋𝑓 (𝑡)𝑉𝑓 (𝑡)) + 𝐻𝑈 (𝑡)
𝑈 (𝑡) = −𝐿A𝑓𝑓𝑋𝑓 (𝑡) − 𝐿W𝑓𝑓𝑉𝑓 (𝑡) + 𝐿A𝑓𝑟𝑋𝑟 (𝑡)

+ 𝐿W𝑓𝑟𝑋𝑟 (𝑡) ,
(54)

where

𝐺 = (0𝑛×𝑛 𝐼𝑛0𝑛×𝑛 0𝑛×𝑛) ,
𝐻 = (0𝑛×𝑛𝐼𝑛 ) .

(55)

Similar to the gauge transformations implemented in
Theorem 4, we see that

𝛾 (𝑡) = 𝐷𝑛V̇ (𝑡)= −𝐷𝑛𝐿A𝑓𝑓𝐷𝑛𝜋𝑓 (𝑡) − 𝐷𝑛𝐿W𝑓𝑓𝐷𝑛𝛽𝑓 (𝑡)

+ 𝐷𝑛𝐿𝐴𝑓𝑟𝐷𝑚𝜋𝑟 (𝑡) + 𝐷𝑛𝐿𝑊𝑓𝑟𝐷𝑚𝛽𝑟 (𝑡) ,
(56)

where 𝐷𝑛 = diag{𝜎1, ⋅ ⋅ ⋅ , 𝜎𝑛}, 𝐷𝑚 = diag{𝜎𝑛+1, ⋅ ⋅ ⋅ , 𝜎𝑛+𝑚}.
Hence

(�̇�𝑓 (𝑡)̇𝛽𝑓 (𝑡)) = (𝐼2 ⊗ 𝐷𝑛) 𝐺 (𝐼2 ⊗ 𝐷𝑛)(𝜋𝑓 (𝑡)𝛽𝑓 (𝑡))
+ (𝐼2 ⊗ 𝐷𝑛)𝐻𝐷𝑛𝛾 (𝑡) ,

𝛾 (𝑡) = 𝐷𝑛V̇ (𝑡)
= −𝐷𝑛𝐿A𝑓𝑓𝐷𝑛𝜋𝑓 (𝑡) − 𝐷𝑛𝐿W𝑓𝑓𝐷𝑛𝛽𝑓 (𝑡)
+ 𝐷𝑛𝐿A𝑓𝑟𝐷𝑚𝜋𝑟 (𝑡) + 𝐷𝑛𝐿W𝑓𝑟𝐷𝑚𝛽𝑟 (𝑡) .

(57)

The optimal control problem is considered subject to (57)

min
𝛾(𝑡)

𝐽 (𝛾 (𝑡) , [𝜋𝑇 (0) , 𝛽𝑇 (0)]𝑇) . (58)

In a second-order leader-follower MAS with 𝑚 > 1
leaders, we assume that the position state tends to 𝜋𝜉(𝑡) and
the velocity state tends to 𝛽𝜉(𝑡). Define the cost function

𝐽 (𝛾 (𝑡) , 𝜋 (0)) = ∫∞
0
{ 𝑛∑
𝑖=1

[𝑞𝑖 ((𝜋𝑖 (𝑡) − 𝜋𝜉 (𝑡))2 + (𝛽𝑖 (𝑡) − 𝛽𝜉 (𝑡))2) + 𝑟𝑖𝛾2𝑖 (𝑡)]} 𝑑𝑡, (59)

where 𝑞𝑖 > 0, 𝑟𝑖 > 0.
Theorem 6. For the optimal control problem (58) with the
control input (30), the optimal structure of leader-follower
MASs (𝑚 > 1) is an unevenly hybrid-weighted star composite
topology consisting of a star structure formed by followers
and leaders. In addition, the structure is the optimal topology
solution achieving the bipartite consensus of MASs, as shown
in Figure 5.

Proof. For system (54), the consensus error vector is defined
by

𝜀 (𝑡) = (𝜋𝑓 (𝑡) − 𝜋𝜉 (𝑡)𝛽𝑓 (𝑡) − 𝛽𝜉 (𝑡)) . (60)

Similar to Theorem 4, the corresponding error dynamics
system is ̇𝜀 (𝑡) = (𝐼2 ⊗ 𝐷𝑛) 𝐺 (𝐼2 ⊗ 𝐷𝑛) 𝜀 (𝑡)

+ (𝐼2 ⊗ 𝐷𝑛)𝐻𝐷𝑛𝛾 (𝑡) ,𝛾 (𝑡) = −𝐾𝜀 (𝑡) ,
(61)

where 𝐾 = [𝐷𝑛𝐿A𝑓𝑓𝐷𝑛, 𝐷𝑛𝐿W𝑓𝑓𝐷𝑛]. Therefore, the optimal
control problem (53) is converted to the following LQR
problem

min
𝛾(𝑡)

∫∞
0
[𝜀𝑇 (𝑡) (𝐼2 ⊗ 𝑄) 𝜀 (𝑡) + 𝛾𝑇 (𝑡) 𝑅𝛾 (𝑡)] 𝑑𝑡

subject to (58) , (62)

where 𝑄 = diag{𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑛}, 𝑅 = diag{𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑛}. Similar to
Theorem 5, we have

𝐷𝑛 (𝑖) 𝑏∗𝑖 𝐷𝑚 = √𝑞𝑖𝑟𝑖 ,
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𝐷𝑛 (𝑖) 𝑑∗𝑖 𝐷𝑚 = √2√ 𝑞𝑖𝑟𝑖 + 𝑞𝑖𝑟𝑖 .
(63)

We have the following matrices:

𝐿𝐴∗ = (𝐷𝑛𝐿𝐴∗𝑓𝑓𝐷𝑛 −𝐷𝑛𝐿𝐴∗𝑓𝑟𝐷𝑚
0𝑇𝑛 0 ) ,

𝐿𝑊∗ = (𝐷𝑛𝐿𝑊∗𝑓𝑓 𝐷𝑛 −𝐷𝑛𝐿W∗𝑓𝑟 𝐷𝑚
0𝑇𝑛 0 ) .

(64)

From b∗ = 𝐷𝑛𝐿A∗𝑓𝑓𝐷𝑚, d∗ = 𝐷𝑛𝐿W∗𝑓𝑓 𝐷𝑚, we see that the
optimal topology of the leaders-followers MASs (𝑚 > 1)
is the unevenly hybrid-weighted star topology, in which
follower 𝑖 only exchanges information with the leaders.Then,
the unevenly hybrid-weighted star composite structure is
the optimal topology for system (51) to achieve the bipartite
consensus.

Remark 7. For a leader-follower MAS (𝑚 > 1), the leaders’
states drive the followers to make their states tend to a fixed
value. In the above arguments, 𝜋𝜉(𝑡) and 𝛽𝜉(𝑡) described
the final converge value of followers’ position and velocity,
respectively [41].

As shown in Figures 5 and 6, for a second-order leaders-
followers multiagent system (𝑚 > 1), the optimal communi-
cation topology is a hybrid-weighted weight star composite
structure. In this structure, there is no information exchange
between leaders; and the connection weights between leaders
and followers in position graph are different from those in
velocity graph.

5. LQR Based Optimal Topology of General
Linear Hybrid-Weighted Leader-Follower
Multiagent Systems

The general linear leader-follower multiagent system is
defined as follows

�̇�𝑖 (𝑡) = 𝐴𝑥𝑖 (𝑡) + 𝐵𝑢𝑖 (𝑡) , 𝑖 ∈ N𝑛̇𝑥𝑁∗ (𝑡) = 𝐴𝑥𝑁∗ (𝑡) , (65)

where 𝑥𝑖(𝑡) ∈ R and 𝑢𝑖(𝑡) ∈ R denote the state and
control of follower 𝑖(𝑖 ∈ N𝑛), respectively. 𝑥𝑁∗(𝑡) represents
the leader’s position. 𝑋(𝑡) = (𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡))𝑇, 𝑈(𝑡) =(𝑢1(𝑡), ⋅ ⋅ ⋅ , 𝑢𝑛(𝑡))𝑇. The Laplace matrix 𝐿A is defined as
Theorem 2. Consider the common linear protocol

𝑢𝑖 (𝑡) = − 𝑛∑
𝑗=1

𝑎𝑖𝑗 [𝑥𝑖 (𝑡) − sgn (𝑎𝑖𝑗) 𝑥𝑗 (𝑡)]
− 𝑜𝑖 [𝑥𝑖 (𝑡) − sgn (𝑜i) 𝑥𝑁∗ (𝑡)] , 𝑖 ∈ 𝑁𝑛,

(66)
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where 𝑎𝑖𝑗 represents the (𝑖, 𝑗)th element of adjacency matrix
A of 𝐺(A); 𝑜𝑖 is the 𝑖th element of 𝛼. By (65) and (66)

�̇� (𝑡) = 𝐼𝑛 ⊗ 𝐴𝑋 (𝑡) + 𝐼𝑛 ⊗ 𝐵𝑈 (𝑡)𝑈 (𝑡) = −𝐿A𝑓𝑓𝑋(𝑡) + 𝛼𝑥𝑁∗ (𝑡) . (67)

As in Theorem 2, 𝐷 is a diagonal matrix with diagonal
elements ±1.

𝐷∗ = (𝐷∗𝑛 0𝑇

0 𝐷𝑛+1) (68)

where 𝐷∗𝑛 = diag{𝐷1, ⋅ ⋅ ⋅ , 𝐷𝑛}. For (67), consider the gauge
transformation

𝜋 (𝑡) = 𝐷∗𝑛𝑋 (𝑡) , 𝐷∗𝑛 ∈ 𝐷∗. (69)

From𝐷−1 = 𝐷, we have
�̇� (𝑡) = 𝐷∗𝑛 �̇� (𝑡) , (70)
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and then �̇� (𝑡) = 𝐼𝑛 ⊗ 𝐴𝑋 (𝑡) − 𝐼𝑛 ⊗ 𝐵𝐿A𝑓𝑓𝑋(𝑡) + 𝐼𝑛⊗ 𝐵𝛼𝑥𝑁∗ (𝑡) . (71)

Therefore�̇� (𝑡) = 𝐷∗𝑛�̇� (𝑡)
= 𝐷∗𝑛𝐼𝑛 ⊗ 𝐴𝐷∗𝑛𝜋 (𝑡) − 𝐷∗𝑛𝐼𝑛 ⊗ 𝐵𝐿A𝑓𝑓𝐷∗𝑛𝜋 (𝑡)+ 𝐷∗𝑛𝐼𝑛 ⊗ 𝐵𝛼𝐷𝑛+1𝜋𝑁∗ (𝑡) .

(72)

Assuming that (𝐴, 𝐵) is controllable, we consider the follow-
ing cost function

𝐽 (𝑈𝜋 (.) ,𝜋 (0))
= ∫∞
0
{ 𝑛∑
𝑖=1

[𝑞𝑖 (𝜋𝑖 (𝑡) − 𝜋𝑁∗ (𝑡))2 + 𝑟𝑖𝑢2𝑖 (𝑡)]} 𝑑𝑡, (73)

where 𝑞𝑖 > 0, 𝑟𝑖 > 0 represent the weight of error and control
cost of follower 𝑖, respectively. Find the optimal control cost
under (72)

min
𝑈⋅(𝑡)

𝐽 (𝑈𝜋 (𝑡) , 𝜋 (0)) . (74)

Theorem 8. For system (65) with the control input (66), the
star structure is the optimal topology solution to achieve the
bipartite consensus. For this star structure, any follower 𝑖(𝑖 ∈
N𝑛) is only connected to the leader.
Proof. We denote the control error of follower 𝑖 with 𝜀𝑖(𝑡) =𝜋𝑖(𝑡) − 𝜋𝑁∗(𝑡). Let 𝜀(𝑡) = (𝜀1(𝑡), ⋅ ⋅ ⋅ , 𝜀𝑁(𝑡))𝑇 represent the
control error vector. Then the error system of (72) is

̇𝜀 (𝑡) = 𝐷∗𝑛𝐼𝑛 ⊗ 𝐴𝐷∗𝑛 𝜀 (𝑡) + 𝐷∗𝑛𝐼𝑛 ⊗ 𝐵𝐷∗𝑛𝑈𝜋 (𝑡)𝑈𝜋 (𝑡) = −𝐷∗𝑛𝐿A𝑓𝑓𝐷∗𝑛𝜀 (𝑡) . (75)

The optimal control problem (74) can be transformed into a
LQR problem

min
𝑈(𝑡)

∫∞
0
[𝜀𝑇 (𝑡) 𝑄𝜀 (𝑡) + 𝑈𝑇𝜋 (𝑡) 𝑅𝑈𝜋 (𝑡)] 𝑑𝑡, (76)

where 𝑄 = diag{𝑞1, ⋅ ⋅ ⋅ , 𝑞𝑛}, 𝑅 = diag{𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑛}. Since[𝐵,𝐴𝐵, ⋅ ⋅ ⋅ , 𝐴𝑛−1𝐵] is full row rank, system (75) is control-
lable. There is a positive definite matrix 𝑃 ∈ R𝑁×𝑁, satisfying
ARE

(𝐷∗𝑛𝐼𝑛 ⊗ 𝐴𝐷∗𝑛 )𝑇 𝑃 + 𝑃 (𝐷∗𝑛𝐼𝑛 ⊗ 𝐴𝐷∗𝑛 ) + 𝑄
= 𝑃 (𝐷∗𝑛𝐼𝑛 ⊗ 𝐵𝐷∗𝑛) 𝑅−1 (𝐷∗𝑛𝐼𝑛 ⊗ 𝐵𝐷∗𝑛)𝑇 𝑃. (77)

The optimal feedback gain matrix𝐷∗𝑛𝐿A∗𝑓𝑓𝐷∗𝑛 = 𝑅−1 × (𝐷∗𝑛𝐼𝑛 ⊗𝐵𝐷∗𝑛)𝑇𝑃 satisfies system (75). Since 𝑃 is a solution of (77),
the cost function is only related to 𝜀(𝑡). Hence, the optimal
topology is a star structure which enables the system to
achieve the bipartite consensus.
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Figure 7: The first-order state response of MASs.

Remark 9. Theorem 8 points out that hybrid weighted star
(composite) structure is the optimal topology for the first-
order and second-order system to achieve the bipartite
consensus. In this situation, followers only exchange neces-
sary information with leaders and the information exchange
between followers increases the cost of control. For example,
in an aircraft queue, followers are only controlled by the
pilot, and no communication is performed with followers.
The control cost can be effectively reduced and the target
requirement can be achieved.

6. Simulation Result

In this section, simulations are given to show that, for the
first- and second-order multiagent system, the information
exchange among followers is not conducive to reducing the
cost of control. Moreover, it is verified that star topology is
the optimal structure for minimizing the control cost.

6.1. First-Order Multiagent System Simulation. For a first-
order multiagent system which is shown in Figures 8, 9, 10,
and 11, respectively, the single leader is represented by the
yellow node and the five followers are represented by nodes
with other colors.The information communications between
the leader and followers are hybrid-weighted. Three different
topology structures are considered which are depicted by
Figures 8, 9, and 10, respectively. The control cost under these
topologies is listed in Table 1 with respect to different initial
values. The data analysis in Table 1 shows that the control
cost is minimum under star topology, and accordingly star
topology is a feasible solution to achieve the optimal control.
Take 𝑄 = 𝑅 = 𝐼5, and 1 as the initial state of the leader.
Let 𝑥0 = [−7.54, −7.73, 6.21, 2.39, 4.32]𝑇 be the initial state
vector of followers. Then the convergence state of the first-
order MAS is shown in Figure 7.The 𝑥-axis and the 𝑦-axis in
Figure 12 represent the weight variables 𝑥 and 𝑦 in Figure 11,
respectively. The 𝑧-axis in Figure 12 represents the cost. The
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Table 1

initial-value(X(0)) J (U (t) ,X (0))GA J (U (t) ,X (0))GB J (U (t) ,X (0))GC[3.32, 6.54, −7.66, −2.78, 1.77]𝑇 204.75 185.59 125.95[4.31, 4.49, −1.77, 0.67, 1.34]𝑇 45.06 47.81 33.71[9.85, −8.77, −6.52, 6.68, 0.96]𝑇 373.05 409.19 266.43[−7.54, −7.73, 6.21, 2.39, 4.32]𝑇 252.64 273.40 189.25[7.01, −7.09, 8.32, −23.01, 5.00]𝑇 1140.20 1165.20 747.64
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changes in the value of 𝑧-axis indicate that the control cost is
lowest when the values of 𝑥 and 𝑦 are both taken as 1.This is
consistent with Theorem 2.

6.2. Second-Order Multiagent System Simulation. For a
second-order multiagent system, there are two graphs
associated with state and velocity, respectively, in which
the leader is represented by a yellow node and the five
followers are represented with nodes of other colors. These
two graphs have the same topology structure, while the
edges are different. For the second-order system, the graphs
associated with states are depicted by Figures 8, 9, and 10.
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The topology structure of velocity graph is the same as state
graph, while its link weights are√3 times the weights of state
graph. Take 𝑄 = 𝑅 = 𝐼5, and set 0 as the initial value of state
and velocity. Table 2 shows the control cost for three different
topology structures when followers take different state and
velocity initial values. The data analysis in Table 2 tells us
that there is a minimum of control cost in the unevenly
hybrid-weighted star topology. That is to say, star topology
is the solution of achieving the optimal control. The initial
values of followers and the leader are taken, as [𝑋0, 𝑉0]𝑇 =[3.77, 4.21, −7.86, 2.91, −1.74, 6.22, 3.78, −1.95, 0.03, 9.56]𝑇
and 1, respectively. Then the convergence states of MASs are



12 Mathematical Problems in Engineering

3

2

1

0

3

2

1

0

230

220

210

200

190

180

225

220

215

210

205

200

195

190

Figure 12

Ｒ1

Ｒ2

Ｒ3

Ｒ4

Ｒ5

Ｒ6

5 10 150
Time (sec)

−20

−15

−10

−5

0

5

10

15

20

so
lu

tio
n 

x

Figure 13: The second-order state response of MASs.

shown in Figures 13 and 14. For Figure 17, 𝑧-axis represents
control cost. The link weights 𝑥 and 𝑦 in Figures 15 and 16
correspond to the values of 𝑥-axis and 𝑦-axis in Figure 17,
respectively. By analyzing the 𝑧 variable in Figure 17, it can
be seen that, at point (1,√3), the control cost is lowest, which
conforms to Theorem 5.

7. Conclusion

In this paper, we focused on the LQR based optimal control
structure for multiagent systems in which the communi-
cation between agents is represented in a hybrid weighted
form. We showed that the optimal topological structure is
characterized by the hybrid-weighted composite star struc-
ture (the star structure is regarded as a simple composite
structure). More specifically, the paper proposed a quadratic
cost function independent of the topological structure
first. Then, gauge transformation was implemented to the
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Figure 14: The second-order velocity response of MASs.
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hybrid-weighted multiagent system.The related Riccati equa-
tion is employed for the system to obtain the optimal
topology. For the first- and second-order leader-follower
multiagent system, it was shown that the optimal solution
always corresponds to a star composite structure, in which
there is no information exchange between followers, and
only leaders’ communication information is received by
followers. Future research will focus on the optimal control of
distributed multiagent systems, such as the optimal topology
of static and dynamic systems, and the convergence rate.
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Table 2

initial-value([X(0),V(0)]𝑇) J (U (t) , [X (0) ,V (0)]𝑇)𝐺∗𝐴 𝐺∗𝐵 𝐺∗𝐶[3.77, 4.21, −7.86, 2.91, −1.74, 6.22, 3.78, −1.95, 0.03, 9.56]𝑇 715.49 583.15 439.03[22.51, 51.34, −17.28, −19.74, 7.39, −8.42, 19.66, 23.37, −28.83, 43.31]𝑇 22733 21443 15284[−29.31, 28.41, 5.21, 6.79, −73.71, −80.94, 91.91, −3.31, 6.97, 69.1]𝑇 69636 73254 46528[3.33, 56.8, −70.53, −9.69, 58.88, 6.13, −31.31, 53.31, 49.11, −7.11]𝑇 35130 19349 17948[6.66, 2.19, 53.22, −7.07, 0.07, 88.28, 67.48, −7.71, 91.19, 45.56]𝑇 106990 46804 42090
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