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This paper presents a noise covariance estimation method for dynamical models with rectangular noise gain matrices. A novel
receding horizon least squares criterion to achieve high estimation accuracy and stability under environmental uncertainties and
experimental errors is proposed. The solution to the optimization problem for the proposed criterion gives equations for a novel
covariance estimator. The estimator uses a set of recent information with appropriately chosen horizon conditions. Of special
interest is a constant rectangular noise gain matrices for which the key theoretical results are obtained. They include derivation
of a recursive form for the receding horizon covariance estimator and iteration procedure for selection of the best horizon length.
Efficiency of the covariance estimator is demonstrated through its implementation and performance on dynamical systems with
an arbitrary number of process and measurement noises.

1. Introduction

Filtering and system identification are powerful techniques
for building models of complex control systems in time
and frequency domains [1–5]. The Kalman filtering and its
variations are signal processing techniques in widely used
applications, such as navigation, target tracking, vehicle state
estimation, communications engineering, air traffic control,
and many others [6–9]. As the well-known standard Kalman
filter (KF) equations do not directly depend on the original
process andmeasurement noise covariances 𝑄 and 𝑅, respec-
tively. They depend on the transformed covariances,

�̃� = 𝐺𝑄𝐺𝑇,
and �̃� = 𝐷𝑅𝐷𝑇, (1)

where 𝐺 = 𝐺𝑘 and 𝐷 = 𝐷𝑘 are the rectangular gain matrices
associatedwith process andmeasurement noises, respectively
[1, 2, 6, 7]. In this paper, the original {𝑄, 𝑅} and transformed{�̃�, �̃�} noise covariances shall be denoted by “ONC” and
“TNC”, respectively.

The optimality of KF depends on the accuracy of TNC,
which directly depend on the prior assumptions on the
ONC. Inadequacy of the prior values for the TNC can lead
to unexpected results and the KF divergence [1, 2, 7]. The
adaptive filtering is one of the approaches to prevent the
divergence problem when precise knowledge on the noise
covariances is not available.

Adaptive Kalman filtering (AKF) is not the subject of this
paper, so we present only its brief survey.The AKF represents
a promising strategy for dynamical adjustment of the TNC{�̃�, �̃�} for online estimation. Two popular types of the AKF
algorithms are the innovation-based estimation approach
[10–13] and the adaptive fading filtering approach [14, 15].
The latter is a type of covariance scaling method, into which
suboptimal fading factors are incorporated. The innovation-
based estimation approach calculates �̃� and/or �̃�, assuming
that the innovation sequence of the KF represents a white
noise. In this approach, one of the covariance matching, the
correlation, and the maximum likelihood methods is used.
In the covariance matching method at first the sample error
covariance of a state is computed based on a moving window
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and then �̃� is estimated using the calculated sample covari-
ance. In the same way, �̃� is computed, but using the sample
covariance of the KF innovation sequence. In the correlation
method, the noise covariance matrices are estimated based
on the sample autocorrelations between the innovations by
exploiting the relations between the estimation error covari-
ance and the innovation covariance [11, 16, 17].The drawback
of the covariance matching and the correlation methods is
that they do not guarantee the positive definiteness of the
calculated covariances and require a large window of data.
Lastly, implementation of the maximum likelihood method
is very complicated which makes it impractical.

As noted the AKF procedures estimate not the ONC,
but the TNC. Therefore the estimation of the ONC remains
open. Knowledge of the ONCs is necessary to study the
quality of a system model. The resulting ONCs help to
understand howmuch environmental disturbance affects the
behavior of dynamics and to evaluate the accuracy of sensor
measurements. However, if the process 𝐺 or measurement𝐷 (“noise gain matrix”) is rectangular, we then have both
theoretical and practical challenges in calculating the ONC.
As will be shown shortly, popular approaches including the
usage of the standard least squares approach and current
data may lead to unsatisfactory results. To the best of the
authors’ knowledge, there are no existing results for the
noise covariance estimation within the Kalman filtering
framework utilizing not only current data, but finite-memory
information from the most recent time interval (receding
horizon).

The primary aim of this paper is to expand the previous
results concerning the standard least squares covariance
estimation to a new robust receding horizon covariance esti-
mation. We propose a novel general estimation method for
calculation of the ONCs with rectangular noise gain matrices𝐺 and 𝐷. The method combines the least squares (LS)
optimization and receding horizon strategy. The proposed
estimator can be integrated into the AKF for simultaneous
estimation of both transformed {�̃�, �̃�} and original {𝑄,𝑅}
noise covariances.

The main contributions of the paper are listed in the
following:

(1) A novel receding horizon least squares optimization
criterion is proposed. Using this criterion, an optimal
covariance estimator for an arbitrary structure of
noise gain matrices is derived.

(2) Constant noise gain matrices are comprehensively
investigated, including the derivation of a recursive
procedure for the optimal covariance estimator with a
horizon interval and a stopping condition during the
iteration process.

(3) Performance of the proposed estimator is illustrated
on theoretical and practical examples for proving its
correctness and efficiency.

This paper is organized as follows. In Section 2, two
motivation examples within the Kalman filtering framework
are demonstrated. Section 3 presents the standard LS noise

covariance estimator and describes consequences of process-
ing current (single) data only. In Section 4, a novel receding
horizon least squares estimator (RHLSE) is proposed. It is
based on the generalized LS approach and the novel reced-
ing horizon LS criterion. Here, the cardinal equations for
determining the RHLSE and its equivalent modifications are
derived and discussed. In Section 5, the algorithm of search-
ing for the best horizon length improving the accuracy of
the RHLSE is proposed. Section 6 demonstrates the practical
usage of theRHLSE in adaptiveKalmanfiltering. In Section 7,
performance and effectiveness of the proposed estimator are
studied via a theoretical example with rectangular noise gain
matrices and a motion with random velocity. Finally, we
conclude the paper in Section 8. The list of main notations
is given in Table 1.

2. Motivation Examples with Rectangular
Noise Gain Matrices

To begin, two typical motivation examples of a dynamical
system with rectangular noise gain matrices are presented.

Let us describe the noise estimation problem of present
interest via two motivation examples. Suppose we have a
linear discrete-time system,

𝑥𝑘+1 = 𝐹𝑘𝑥𝑘 + 𝐺𝑘𝑤𝑘, 𝑤𝑘 ∼ (0, 𝑄) ,
𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝐷𝑘V𝑘, V𝑘 ∼ (0, 𝑅) . (2)

Then the TNCs �̃�𝑘 = 𝐺𝑘𝑄𝐺𝑇𝑘 and �̃�𝑘 = 𝐷𝑘𝑅𝐷𝑇𝑘 represent
covariance matrices of the linearly transformed noises �̃�𝑘 =𝐺𝑘𝑤𝑘 and Ṽ𝑘 = 𝐷𝑘V𝑘 with the rectangular gain matrices 𝐺𝑘
and 𝐷𝑘, respectively, i.e., �̃�𝑘 = cov(�̃�𝑘) and �̃�𝑘 = cov(Ṽ𝑘).
Motivation 1 (“colored process noise”). Consider the scalar
linear system with colored process noise:

𝑥𝑘+1 = 𝜃𝑥𝑘 + 𝜂𝑘,
𝑦𝑘 = 𝑥𝑘 + V𝑘, (3)

where V𝑘 ∼ N(0, 𝑟) is a measurement white noise.
Suppose that 𝜂𝑘 is a colored process noise generated by

the autoregressive equation of order 𝑝, 𝐴𝑅(𝑝),
𝜂𝑘 = 𝑎1𝜂𝑘−1 + 𝑎2𝜂𝑘−2 . . . + 𝑎𝑝𝜂𝑘−𝑝 + 𝑤𝑘, (4)

where𝑤𝑘 ∼ N(0, 𝑞) is a white noise.
Equation (4) may be considered as some system shaping

the colored noise 𝜂𝑘 fromawhite noise𝑤𝑘 .Then the following
is a state-space representation of the 𝐴𝑅(𝑝) model (4):

𝜀𝑘+1 = �̃�𝜀𝑘 + �̃�𝑤𝑘, (5)

where

𝜀𝑘 =
[[[[[[[
[

𝜂𝑘−1𝜂𝑘−2...𝜂𝑘−𝑝

]]]]]]]
]

∈ R
𝑝,
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Table 1: List of main notations.

R𝑛 Set of n-dimensional real column-vectors
R𝑛×𝑚 Set of 𝑛 × 𝑚 real matrices𝑂𝑛×𝑚 𝑛 × 𝑚 zero matrix𝐴𝑇 Transpose of matrix𝐼𝑛 Identity matrix of size 𝑛 × 𝑛𝐴−1 Inverse of 𝑛 × 𝑛matrix 𝐴𝐴+ Moore–Penrose pseudoinverse of 𝑛 × 𝑚matrix 𝐴𝑡𝑟(𝐴) Trace of 𝑛 × 𝑛 matrix 𝐴[𝐴, 𝐵] Row block matrix consisting of 𝐴 and 𝐵𝐴 > 0 (𝐴 ≥ 0) Positive definite (semidefinite) matrix
N (𝑚, 𝐶) Normal distribution with mean𝑚 and covariance matrix 𝐶𝑤𝑘 ∼ N (0, 𝑄) Normal process with zero-mean and covariance matrix 𝑄𝑤𝑘 ∼ (0, 𝑄) Random process with zero-mean and covariance matrix 𝑄
𝐸 (∗) Expectation operator
cov (𝑥𝑘) Covariance (covariance matrix) of random vector 𝑥𝑘
cov (𝑥𝑘, 𝑦𝑘) Cross-covariance of 𝑥k and 𝑦𝑘‖𝐴‖𝐹 Frobenius norm (F-norm) of matrix, ‖𝐴‖𝐹 = √𝑡𝑟(𝐴𝐴𝑇)‖𝐴‖1 1-norm of matrix, ‖𝐴‖1 = max𝑗∑𝑛𝑖=1 |𝑎𝑖𝑗|, 𝐴 ∈ R𝑛×𝑚‖𝐴‖∞ Infinity norm (I-norm) of matrix, ‖𝐴‖∞ = max𝑖 ∑𝑛𝑗=1 |𝑎𝑖𝑗|, 𝐴 ∈ R𝑛×𝑚‖𝐴‖𝑚𝑎𝑥 Maximum norm (M-norm), ‖𝐴‖𝑚𝑎𝑥 = max𝑖,𝑗|𝑎𝑖𝑗|‖𝐴‖2 Spectral norm (S-norm), ‖𝐴‖2 = √max[𝜆(𝐴𝑇𝐴)]

�̃� =
[[[[[[[[[
[

𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑝−1 𝑎𝑝1 0 ⋅ ⋅ ⋅ 0 00 1 ⋅ ⋅ ⋅ 0 0... ... d
... ...0 ⋅ ⋅ ⋅ 0 1 0

]]]]]]]]]
]

∈ R
𝑝×𝑝,

�̃� = [[[[[[
[

10...0

]]]]]]
]

∈ R
𝑝.

(6)

We combine (3) and (6) to obtain a system model with(𝑝+1)–dimensional augmented state𝑋𝑘 and a scalar process
noise 𝑤𝑘 ∼ N(0, 𝑞),

𝑋𝑘+1 = 𝐹𝑘𝑋𝑘 + 𝐺𝑘𝑤𝑘,
𝑦𝑘 = ℎ𝑇𝑘𝑋𝑘 + V𝑘, (7)

where

𝑋𝑘 = [𝑥𝑘𝜀𝑘] ∈ R
𝑝+1,

𝐹𝑘 = [
[

𝜃 �̃�𝑇
0𝑝×1 �̃� ]

] ∈ R
(𝑝+1)×(𝑝+1),

𝐺𝑘 = [0̃𝐺] ∈ R
𝑝+1,

ℎ𝑘 = [ 10𝑝×1] ∈ R
𝑝+1,

𝑤𝑘, V𝑘 ∈ R.
(8)

Motivation 2 (“composite process white noise and colored
measurement noise”). Consider the following discrete state-
space model, 𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐺1𝜉1,𝑘 + 𝐺2𝜉2,𝑘, (9a)

𝑦𝑘 = 𝐶𝑥𝑘 + 𝜂𝑘, (9b)

𝜂𝑘 = 𝐵𝜂𝑘−1 + 𝑒𝑘−1, (9c)
where 𝑥𝑘 ∈ R𝑛, 𝑦𝑘 ∈ R𝑚, and 𝜉1,𝑘 ∈ R𝑟1 , 𝜉2,𝑘 ∈ R𝑟2 are two
uncorrelated process white noises with covariances 𝑄1 and𝑄2, respectively; and 𝑒𝑘 ∈ R𝑚, 𝑒𝑘 ∼ N(0, 𝑅).

The state equation (9a) can be written in standard form
with one composite process white noise 𝑤𝑘 ∈ R𝑟, and
rectangular gain matrix 𝐺 ∈ R𝑛×𝑟,𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐺𝑤𝑘, (10)

where 𝐺 = [𝐺1, 𝐺2], 𝑤𝑇𝑘 = [𝜉𝑇1,𝑘, 𝜉𝑇2,𝑘], 𝑤𝑘 ∈ R𝑟, 𝑟 = 𝑟1 + 𝑟2.
Following [2] we define an auxiliary measurement 𝑧𝑘 =𝑦𝑘+1 − 𝐵𝑦𝑘 described by the newmeasurement equation with

white noise V𝑘, 𝑧𝑘 = 𝐻𝑥𝑘 + 𝐷V𝑘, (11)

where𝐻 = 𝐶𝐹−𝐵𝐶,𝐷 = [𝐶𝐺, 𝐼𝑚], V𝑇𝑘 = [𝑤𝑇𝑘 , 𝑒𝑇𝑘 ], V𝑘 ∈ R𝑟+𝑚.
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Combining (10) and (11) we obtain the standard structure
of the system model (2) with rectangular noise gain matrices𝐺 ∈ R𝑛×𝑟 and 𝐷 ∈ R𝑚×(𝑟+𝑚).
3. Least Squares (LS) Estimation of Noise
Covariance Using Single Data

As noted above, the purpose of this paper is to calculate the
unknownONCs𝑄 and𝑅 based on the available TNCs𝑄𝑘 and�̃�𝑘 obtained by the AKF algorithm. In this section, we present
a simple LS solution to this problem.

For a clear presentation, let us first rewrite (1) in the
following form:

𝐴𝑘𝑛×𝑝𝑋𝑘𝑝×𝑝𝐴𝑇𝑘𝑝×𝑛 = 𝐵𝑘𝑛×𝑛, (12)

where

𝑋𝑘 = 𝑋𝑇𝑘 ∈ R
𝑝×𝑝 is an unknown ONC; (13a)

𝐵𝑘 = 𝐵𝑇𝑘 ∈ R
𝑛×𝑛 is a known TNC (single data); (13b)

𝐴𝑘 ∈ R
𝑛×𝑝 is a noise gain matrix,

𝐴𝑘 = 𝐺𝑘 or 𝐷𝑘. (13c)

In a special case where the gain matrix 𝐴𝑘 ∈ R𝑛×𝑛 is
square and nonsingular, the LS solution to (12) takes the form𝑋𝑘 = 𝐴−1𝑘 𝐵𝑘𝐴−𝑇𝑘 , where the known matrix 𝐵𝑘 represents a
current TNC at time instant 𝑘.But in practice, the gainmatrix𝐴𝑘 ∈ R𝑛×𝑝 is rectangular, as the two motivation examples
illustrated. In this rectangular case, the LS solution to (12) can
be obtained using a pseudoinverse matrix.

The linear matrix equation (12) has been considered by
many authors [18–21]. They have studied general solutions
to (12) for special solution structures, e.g., symmetric, trian-
gular, or diagonal 𝑋 using matrix decomposition techniques
such as the singular value decomposition (SVD), the gener-
alized SVD, and the canonical correlation decomposition.

Theorem 3 (see [18]). �e least squares solution to matrix
equation (12) takes the form

𝑋𝐿𝑆𝑘 ≜ 𝑋𝐿𝑆𝑘 (𝐵𝑘) = 𝐴+𝑘𝐵𝑘𝐴+𝑇𝑘 . (14)

Note that the Moore–Penrose pseudoinverse 𝐴+𝑘 always
exists and is unique.

However, the known TNC 𝐵𝑘 in practice is usually
obtained from an experiment. It is calculated by using the
AKF. Since the LS solution 𝑋𝐿𝑆𝑘 (𝐵𝑘) uses only the single
(approximately calculated) TNC 𝐵𝑘, it is likely to be unstable
or inaccurate. Therefore to overcome this disadvantage we
propose a more realistic idea to use the set of data (TNCs),𝐵𝑘, 𝐵𝑘−1, . . . , 𝐵𝑘−ℓ+1, for the calculation of unknown covari-
ance𝑋. This set of data is obtained over the most recent time
interval (receding horizon), [𝑘 − ℓ + 1, 𝑘], saving in a finite
memory. Using these data

𝐵𝑘𝑘−ℓ+1 = {𝐵𝑘−ℓ+1, 𝐵𝑘−ℓ+2, . . . , 𝐵𝑘} , (15)

we can improve the LS solution (14), and, as a result, one
can expect that the obtained receding horizon LS solution𝑋𝐿𝑆𝑘 (𝐵𝑘𝑘−ℓ+1) will be more robust against processing and
measurement errors than the LS solution 𝑋𝐿𝑆𝑘 (𝐵𝑘) which
utilizes only the current data 𝐵𝑘.
4. Receding Horizon Least Squares
Estimator (RHLSE)

In this section, we propose the novel receding horizon least
squares estimator referred to as RHLSE.

In literature, the estimation problem in dynamical sys-
tems having various uncertainties has been solved in different
ways, including finite-memory (receding horizon or sliding
window) estimations [7, 22]. As a result, the finite-memory
estimators are known to be more robust against model
uncertainties and numerical errors than the standard LS esti-
mator or Kalman filter [23–25]. For this reason, this receding
horizon strategy is chosen to improve the LS solution (14).

According to the strategy proposed above, the unknown
solution 𝑋𝑘 minimizes a new receding horizon LS criterion
representing the sum of squared residuals over the receding
horizon 𝑡 ∈ [𝑘 − ℓ + 1, 𝑘], i.e.,

min
𝑋𝑘

𝐽𝑘,ℓ (𝑋𝑘) (16)

with

𝐽𝑘,ℓ (𝑋𝑘) ≜ 𝐴𝑘𝑋𝑘𝐴𝑇𝑘 − 𝐵𝑘2𝐹
+ 𝐴𝑘−1𝑋𝑘𝐴𝑇𝑘−1 − 𝐵𝑘−12𝐹 + ⋅ ⋅ ⋅
+ 𝐴𝑘−ℓ+1𝑋𝑘𝐴𝑇𝑘−ℓ+1 − 𝐵𝑘−ℓ+12𝐹

= 𝑘∑
𝑡=𝑘−ℓ+1

𝐴 𝑡𝑋𝑘𝐴𝑇𝑡 − 𝐵𝑡2𝐹

(17)

where ℓ ≥ 1 is the receding horizon length (HL).

Theorem 4 (RHLSE for time-varying noise gain matrices).
�e solution𝑋𝑘 ≜ 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ of the receding horizon least squares
optimization problem represented by (17) satisfies the equation

𝑘∑
𝑡=𝑘−ℓ+1

(𝑀𝑡𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ 𝑀
𝑡
) = 𝑘∑

𝑡=𝑘−ℓ+1

(𝐴𝑇𝑡𝐵𝑡𝐴 𝑡) , (18)

where 𝑀𝑡 = 𝐴𝑇𝑡𝐴 𝑡.
The proof of Theorem 4 is given in Appendix.
Next consider the important case in which the noise gain

matrix 𝐴𝑘 ≡ 𝐴 is time-invariant. Then the receding horizon
LS problem (17) is rewritten as

min
𝑋𝑘

𝐽𝑘,ℓ (𝑋𝑘) (19)

with

𝐽𝑘,ℓ (𝑋𝑘) = 𝑘∑
𝑡=𝑘−ℓ+1

𝐴𝑋𝑘𝐴𝑇 − 𝐵𝑡2𝐹 , (20)

and we get the following result.
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Theorem 5 (RHLSE for time-invariant noise gain matrices).
�e optimal receding horizon least squares optimization prob-
lem for constant noise gainmatrices represented by (20) has the
explicit solution,

𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ (𝐵𝑘𝑘−ℓ+1) = 𝐴+𝐵𝑘,ℓ𝐴+𝑇, (21)

where 𝐵𝑘,ℓ is the horizon average covariance,

𝐵𝑘,ℓ = 1ℓ
𝑘∑

𝑡=𝑘−ℓ+1

𝐵𝑡. (22)

The proof of Theorem 5 is given in Appendix.
As we see from (21) and (22), the explicit solution𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ

depends only on the single data representing the horizon
average covariance 𝐵𝑘,ℓ.Therefore we get the following.

Corollary 6. �e RHLSE (21) represents the LS estimator (14)
calculated for the horizon average covariance, 𝐵𝑘,ℓ, i.e.,

𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ (𝐵𝑘𝑘−ℓ+1) = 𝑋𝐿𝑆𝑘 (𝐵𝑘,ℓ) = 𝐴+𝐵𝑘,ℓ𝐴+𝑇. (23)

5. Selection of Best Horizon Length for
Time-Invariant Noise Gain Matrices

The optimal noise covariance (21) is sequentially calculated
for each HL (iteration), ℓ = 1, 2, . . . , ℓ∗. Here we propose a
stopping criterion for selecting the best HL, ℓ∗.This stopping
criterion is based on the errors between iterations. Let us first
represent the solutions (21) and (22) in recursive form.

The recursive formula for the horizon average covariance
(22) takes the form

𝐵𝑘,ℓ = ℓ − 1ℓ 𝐵𝑘,ℓ−1 + 1ℓ𝐵𝑘−ℓ+1, âŊĹℓ = 1, 2, . . . , ℓ𝑚𝑎𝑥. (24)

Using (21) and (24) the explicit solution 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ is also
rewritten in recursive form,

𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ = 𝐴+𝐵𝑘,ℓ𝐴+𝑇
= 𝐴+ [ℓ − 1ℓ 𝐵𝑘,ℓ−1 + 1ℓ𝐵𝑘−ℓ+1]𝐴+𝑇
= ℓ − 1ℓ 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ−1 + 1ℓ𝑋𝐿𝑆𝑘−ℓ+1, âŊĹℓ
= 1, 2, . . . , ℓ𝑚𝑎𝑥,

(25)

where

𝑋𝐿𝑆𝑘−ℓ+1 = 𝐴+𝐵𝑘−ℓ+1𝐴+𝑇. (26)

For the stopping criterion based on the norm of iteration
error

Δ𝑋ℓ,ℓ−1 ≜ 𝑋𝑅𝐻𝐿𝑆𝐸
𝑘,ℓ

− 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ−1 , âŊĹℓ ≥ 2, (27)

we have the following result.

Theorem 7. Let 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ be the RHLSE (21). �en the Frobe-
nius norm of the iteration error Δ𝑋ℓ,ℓ−1 is calculated as

Δ𝑋ℓ,ℓ−1𝐹 = 1ℓ√𝑡𝑟 (�̃�2Δ𝐵2𝑘,ℓ−1), âŊĹℓ ≥ 2,
�̃� = 𝐴+𝑇𝐴+,

Δ𝐵𝑘,ℓ−1 = 𝐵𝑘,ℓ−1 − 𝐵𝑘−ℓ+1.
(28)

The proof of Theorem 7 is given in Appendix.
Using (28), the best HL ℓ∗ is defined as

ℓ∗ = min {ℓ : Δ𝑋ℓ,ℓ−1𝐹 < 𝜀} , âŊĹℓ ≥ 2, (29)

where 𝜀 is a given tolerance.

Remark 8. As noted in Section 3, the initial covariance𝑋𝑅𝐻𝐿𝑆𝐸𝑘,1 = 𝑋𝐿𝑆𝑘 (𝐵𝑘) = 𝐴+𝐵𝑘𝐴+𝑇, calculated at ℓ = 1, may
be inaccurate. Numerical examples given below confirm this
fact. Therefore to improve the covariance 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,1 , we need
to continue the iterative process 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ , ℓ ≥ 2, using the
stopping condition (29).

Remark 9. In general, the stopping condition (29) does not
guarantee the convergence of the iterative process (25); that
is, the inequality ‖𝑋−𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ ‖𝐹 < 𝜌‖𝑋−𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ−1 ‖𝐹, 𝜌 ∈ (0, 1)
may not hold. Besides, the number of iterations is limited, ℓ ≤ℓ𝑚𝑎𝑥. However, (29) seems to be still useful for stopping the
iterative process, as will be demonstrated by examples.

Remark 10. The stopping condition (29) can be carried out
in real time. In fact, the term 𝑡𝑟(�̃�2Δ𝐵2𝑘,ℓ−1) depends on the
TNCs (𝐵𝑘,ℓ−1 and 𝐵𝑘−ℓ+1) for a given horizon. Therefore, the
complexity of the real-time implementation of the stopping
condition is not an issue.

6. Application of RHLSE

In this section, an application of the RHLSE to the estimation
of process and measurement noise covariances is considered.

6.1. Kalman Filtering. The Kalman filtering framework
involves estimation of the state of a discrete-time linear
dynamical system with additive white Gaussian noise,

𝑥𝑘+1 = 𝐹𝑘𝑥𝑘 + 𝐺𝑘𝑤𝑘,
𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝐷𝑘V𝑘, (30)

where state 𝑥𝑘 ∈ R𝑛𝑥 , measurement 𝑦𝑘 ∈ R𝑛𝑦 , process noise𝑤𝑘 ∈ R𝑛𝑤 , 𝑤𝑘 ∼ N(0, 𝑄), and measurement noise V𝑘 ∈ R𝑛V ,
V𝑘 ∼ N(0, 𝑅).All matrices 𝐹𝑘, 𝐺𝑘, 𝐻𝑘, 𝐷𝑘, 𝑄 ≥ 0 and 𝑅 > 0 are
with appropriate dimensions. We assume that the initial state𝑥0 ∼ N(𝑥0, 𝐶0), and process and measurement noises 𝑤𝑘, V𝑘
aremutually uncorrelatedwith constant covariances (ONCs),𝑄 ∈ R𝑛𝑤×𝑛𝑤 and 𝑅 ∈ R𝑛V×𝑛V , respectively.
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As mentioned in Introduction the KF equations depend
on the known TNCs �̃�𝑘 = 𝐺𝑘𝑄𝐺𝑇𝑘 and �̃�𝑘 = 𝐷𝑘𝑅𝐷𝑇𝑘 , rather
than the ONCs {𝑄, 𝑅}.We have

Prediction step:

�̂�−𝑘 = 𝐹𝑘−1�̂�𝑘−1, �̂�0 = 𝑥0,
𝑃−𝑘 = 𝐹𝑘−1𝑃𝑘−1𝐹𝑇𝑘−1 + �̃�𝑘−1,𝑃0 = 𝐶0,

Correction step:

𝐾𝑘 = 𝑃−𝑘𝐻𝑇𝑘 (𝐻𝑘𝑃−𝑘𝐻𝑇𝑘 + �̃�𝑘)−1 ,
�̂�𝑘 = �̂�−𝑘 + 𝐾𝑘 (𝑦𝑘 − 𝐻𝑘�̂�−𝑘 ) ,
𝑃𝑘 = (𝐼𝑛𝑥 − 𝐾𝑘𝐻𝑘) 𝑃−𝑘 .

(31)

6.2. Adaptive Kalman Filtering. In a real problem the ONCs
and, as a consequence, the TNCs are unknown. In this case
theAKF simultaneously estimates both the state𝑥𝑘 andTNCs{�̃�, �̃�}. The general scheme for adaptive estimation of the
TNCs can be presented in Table 2.

Then the AKF equations for the system model (30) are
given by

Initial values: �̂�0 = 𝑥0,𝑃0 = 𝐶0,𝑄0 > 0,
𝑅0 > 0.
�̃�0 = 𝐺0𝑄0𝐺𝑇0 ,
�̃�0 = 𝐷0𝑅0𝐷𝑇0 .
�̂�−𝑘 = 𝐹𝑘−1�̂�𝑘−1,
𝑃−𝑘 = 𝐹𝑘−1𝑃𝑘−1𝐹𝑇𝑘−1 + �̃�𝑘−1,
�̃�𝑘 = 𝑦𝑘 − 𝐻𝑘�̂�−𝑘 ,
𝐶𝑦
𝑘
= 1𝑘0

𝑘∑
𝑡=𝑘−𝑘0+1

�̃�𝑡�̃�𝑇𝑡 ,
�̃�𝑘 = 𝐶𝑦

𝑘
− 𝐻𝑘𝑃−𝑘𝐻𝑇𝑘 ,

𝐾𝑘 = 𝑃−𝑘𝐻𝑇𝑘 (𝐻𝑘𝑃−𝑘𝐻𝑇𝑘 + �̃�𝑘)−1 ,
�̂�𝑘 = �̂�−𝑘 + 𝐾𝑘 (𝑦𝑘 − 𝐻𝑘�̂�−𝑘 ) ,
𝑃𝑘 = (𝐼𝑛𝑥 − 𝐾𝑘𝐻𝑘) 𝑃−𝑘 ,
�̃�𝑘 = �̂�𝑘 − �̂�−𝑘 ,
�̃�𝑘 = 1𝑛0

𝑘∑
𝑡=𝑘−𝑛0+1

�̃�𝑡�̃�𝑇𝑡 .

(32)

To estimate the unknown ONCs {𝑄, 𝑅} using the available
TNCs {�̃�𝑘, �̃�𝑘} we apply the RHLSE. Equation (21) for the
corresponding estimates �̂�𝑘,ℓ ≜ 𝑅𝑅𝐻𝐿𝑆𝐸𝑘,ℓ and �̂�𝑘,ℓ ≜ 𝑄𝑅𝐻𝐿𝑆𝐸𝑘,ℓ
are

�̂�𝑘,ℓ = 𝐷+𝐵𝑟𝑘,ℓ𝐷+𝑇,
𝐵𝑟𝑘,ℓ = 1ℓ

𝑘∑
𝑡=𝑘−ℓ+1

�̃�𝑡,
�̂�𝑘,ℓ = 𝐺+𝐵𝑞𝑘,ℓ𝐺+𝑇,
𝐵𝑞𝑘,ℓ = 1ℓ

𝑘∑
𝑡=𝑘−ℓ+1

�̃�𝑡.

(33)

Here �̃�𝑡 and �̃�𝑡 are calculated in (32), and the bestHLs ℓ∗ = ℓ𝑟
for �̂�𝑘,ℓ and ℓ∗ = ℓ𝑞 for �̂�𝑘,ℓ are determined by (29), i.e.,

ℓ𝑟 = min {ℓ : Δ𝑅ℓ,ℓ−1𝐹 < 𝜀} , ℓ ≥ 2,
Δ𝑅ℓ,ℓ−1𝐹 = 1ℓ√𝑡𝑟 (�̃�2𝐷Δ�̃�2𝑘,ℓ−1),

�̃�𝐷 = 𝐷+𝑇𝐷+,
Δ�̃�𝑘,ℓ−1 = 𝐵𝑟𝑘,ℓ−1 − �̃�𝑘−ℓ+1,

(34)

and

ℓ𝑞 = min {ℓ : Δ𝑄ℓ,ℓ−1𝐹 < 𝜀} , ℓ ≥ 2,
Δ𝑄ℓ,ℓ−1𝐹 = 1ℓ√𝑡𝑟 (�̃�2𝐺Δ�̃�2𝑘,ℓ−1),

�̃�𝐺 = 𝐺+𝑇𝐺+,
Δ�̃�𝑘,ℓ−1 = 𝐵𝑞𝑘,ℓ−1 − �̃�𝑘−ℓ+1,

(35)

respectively.

7. Simulation Examples

In this section, we first test the efficiency of the proposed
RHLSE and the stopping criterion on a theoretical example
for which the true ONC is known (Section 7.1). And then,
performance of the RHLSEs (33)-(35) shall be demonstrated
with the example of a moving object (Section 7.2).

7.1. �eoretical Example. Let us estimate a random constant𝜃 ∼ N(𝑚𝜃, 𝜎2𝜃) given two single sensor measurements 𝑦1,𝑘 and𝑦2,𝑘 of 𝜃 corrupted by their own uncorrelated Gaussian white
noises (measurement errors) V1,𝑘 and V2,𝑘, respectively. We
assume that the two sensors contain a common environmen-
tal Gaussian white noise 𝜂𝑘, which is uncorrelated with V1,𝑘
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Table 2: Adaptive estimation of transformed noise covariances.

R estimation Q estimation

Sequence Innovation sequence Residual sequence�̃�𝑘 = 𝑦𝑘 − 𝐻𝑘�̂�−𝑘 �̃�𝑘 = �̂�𝑘 − �̂�−𝑘
Sample covariance 𝐶𝑦

𝑘
= 1𝑘0

𝑘∑
𝑡=𝑘−𝑘0+1

�̃�𝑡�̃�𝑇𝑡 𝐶𝑥𝑘 = 1𝑘0
𝑘∑

𝑡=𝑘−𝑘0+1

�̃�𝑡�̃�𝑇𝑡
Estimated noise covariance (TNC) �̃�𝑘 = 𝐶𝑦

𝑘
− 𝐻𝑘𝑃−𝑘𝐻𝑇𝑘 �̃�𝑘 = 𝐶𝑥𝑘

and V2,𝑘.Then the dynamic equations describing this situation
are

State: 𝑥𝑘+1 = 𝑥𝑘,
𝑘 = 0, 1, . . . ; 𝑥0 = 𝜃 ∼ N (𝑚𝜃, 𝜎2𝜃) ,

Sensor 1: 𝑦1,𝑘 = 𝑥𝑘 + V1,𝑘 + 𝜂𝑘,
V1,𝑘 ∼ N (0, 𝑟1) , 𝜂𝑘 ∼ N (0, 𝜎2𝜂) ,

Sensor 2: 𝑦2,𝑘 = 𝑥𝑘 + V2,𝑘 + 𝜂𝑘, V1,𝑘 ∼ N (0, 𝑟2) .

(36)

Here we calculate the estimation accuracy of the proposed
RHLSE in terms of the receding HL, ℓ ≥ 1, for the two
measurement models.

Model 1 (“measurement model without environmental noise𝜂𝑘”).
𝑦1,𝑘 = 𝑥𝑘 + V1,𝑘,
𝑦2,𝑘 = 𝑥𝑘 + V2,𝑘, (37)

or in matrix form

𝑌𝑘 = 𝐻𝑥𝑘 + 𝐷(1)𝑉(1)𝑘 ,
𝑌𝑘 = [𝑦1,𝑘𝑦2,𝑘] ,
𝐻 = [11] ,

𝐷(1) = [1 00 1] ,
𝑉(1)𝑘 = [V1,𝑘

V2,𝑘
] ∼ N (0, 𝑅(1)) .

(38)

Here the ONC and TNC take the form

𝑅(1) = [𝑟1 00 𝑟2] ,
�̃�(1) = 𝐷(1)𝑅(1)𝐷(1)𝑇 = [𝑟1 00 𝑟2] ,

(39)

respectively.
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Figure 1: Norms of true and iteration errors for Model 1.

For the model (36)-(39) the measurement noise gain
matrix 𝐷 ≜ 𝐷(1) = 𝐼2, and 𝐷+ ≜ 𝐷(1)+ = 𝐼2 and �̃�𝐷 =𝐷+𝑇𝐷+= 𝐼2. Then using (33) and (34) the RHLSE �̂�𝑘,ℓ ≜𝑅𝑅𝐻𝐿𝑆𝐸𝑘,ℓ for the measurement noise covariance 𝑋 ≜ 𝑅(1) and
the best HL ℓ∗ ≜ ℓ𝑟 take the following form,

�̂�𝑘,ℓ = 𝐵𝑟𝑘,ℓ = 1ℓ
𝑘∑

𝑡=𝑘−ℓ+1

�̃�(1)𝑡 , ℓ = 2, 3, . . . , ℓ∗,
ℓ∗ = min {ℓ : Δ�̃�ℓ,ℓ−1𝐹 < 𝜀} ,

(40)

whereΔ�̃�ℓ,ℓ−1𝐹 = 1ℓ√𝑡𝑟 (Δ�̃�2𝑘,ℓ−1), ℓ ≥ 2,
Δ�̃�𝑘,ℓ−1 = 𝐵𝑟𝑘,ℓ−1 − �̃�(1)𝑘−ℓ+1,

�̃�(1)𝑡 = 𝐶𝑦
𝑡
− 𝐻𝑃−𝑡 𝐻𝑇,

𝐶𝑦
𝑡
= 1𝑡 − 𝑡0

𝑡∑
𝑖=𝑡0+1

�̃�𝑖�̃�𝑇𝑖 , 𝑡 = 𝑘 − ℓ + 1, , . . . , 𝑘,
�̃�𝑖 = 𝑌𝑖 − 𝐻�̂�𝑖−1, 𝑖 = 𝑡0 + 1, . . . , 𝑡,

(41)

and 𝑡0 is chosen empirically to give some statistical smooth-
ing.

The simulation results are illustrated in Table 3 and
Figure 1 for 𝑘 = 50, 𝑟1 = 0.1, 𝑟2 = 0.8, and ℓ𝑚𝑎𝑥 = 30. Our
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Table 3: Norms of true and iteration errors for Model 1.

HLℓ
Absolute and relative norms for

iteration errorΔ𝑅ℓ,ℓ−1
Norm of true error‖∗‖ = 𝐸𝑡𝑟𝑢𝑒ℓ 

A-normΔ𝑅ℓ,ℓ−1𝐹
R-normΔ𝑅ℓ,ℓ−1𝐹�̂�𝑘,ℓ𝐹

F-norm‖∗‖𝐹 M-norm‖∗‖𝑚𝑎𝑥 I-norm‖∗‖∞ = ‖∗‖1 S-norm‖∗‖2
I II III IV V VI VII
1 - - - - - - 0.3832 0.3365 0.3572 0.3392
2 0.0276 0.0417 0.3674 0.3308 0.3398 0.3312
3 0.0207 0.0316 0.3717 0.3330 0.3381 0.3331
4 0.0122 0.0185 0.3712 0.3341 0.3472 0.3351
5 0.0114 0.0171 0.3693 0.3325 0.3534 0.3350
6 0.0085 0.0129 0.3680 0.3279 0.3520 0.3314
7 0.0220 0.0330 0.3716 0.3330 0.3713 0.3410
8 0.0194 0.0287 0.3793 0.3434 0.3912 0.3544
9 0.0180 0.0263 0.3852 0.3515 0.4080 0.3654
10 0.0222 0.0318 0.3887 0.3565 0.4245 0.3748
11 0.0114 0.0162 0.3933 0.3637 0.4331 0.3816
12 0.0084 0.0118 0.3974 0.3700 0.4391 0.3871
13 0.0076 0.0106 0.4008 0.3740 0.4459 0.3919
14 0.0137 0.0188 0.4017 0.3778 0.4511 0.3953
15 0.0110 0.0149 0.4033 0.3817 0.4553 0.3986
16 0.0090 0.0121 0.4063 0.3868 0.4590 0.4025
17 0.0046 0.0062 0.4103 0.3912 0.4625 0.4064
18 0.0103 0.0138 0.4120 0.3951 0.4647 0.4091
19 0.0062 0.0083 0.4135 0.3982 0.4642 0.4107
20 0.0073 0.0097 0.4155 0.4017 0.4631 0.4124
21 0.0102 0.0138 0.4188 0.4045 0.4628 0.4144
22 0.0099 0.0135 0.4209 0.4064 0.4608 0.4151
23 0.0103 0.0142 0.4223 0.4080 0.4567 0.4152
24 0.0125 0.0175 0.4226 0.4086 0.4496 0.4138
25 0.0117 0.0165 0.4230 0.4090 0.4428 0.4127
26 0.0096 0.0136 0.4236 0.4095 0.4372 0.4120
27 0.0068 0.0097 0.4238 0.4097 0.4328 0.4114
28 0.0143 0.0207 0.4264 0.4092 0.4284 0.4105
29 0.0188 0.0280 0.4307 0.4082 0.4251 0.4093
30 0.0180 0.0275 0.4353 0.4071 0.4217 0.4079

point of interest are the values of different norms of the true
error 𝐸𝑡𝑟𝑢𝑒ℓ ≜ 𝑋 − 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ = 𝑅(1) − �̂�𝑘,ℓ, and the best HL ℓ∗.
In Table 3, a sign ‖ ∗ ‖ represents one of the five considered
matrix norms, ‖ ∗ ‖𝐹, ‖ ∗ ‖𝑀, ‖ ∗ ‖∞, ‖ ∗ ‖1, and ‖ ∗ ‖2 (Note:‖ ∗ ‖∞ = ‖ ∗ ‖1 for symmetric matrices). The columns II
and III show the absolute norm (A-norm) and the relative
norm (R-norm) of the iteration error Δ𝑅ℓ,ℓ−1 = �̂�𝑘,ℓ − �̂�𝑘,ℓ−1,
respectively.

Comments on Table 3 and Figure 1 are in order.

(1a) The values of norms in Table 3 confirm the known
inequalities for matrix norms ‖𝐴‖ of the symmetric
matrix 𝐴 = 𝐸𝑡𝑟𝑢𝑒ℓ ∈ R𝑛×𝑛, i.e.,

‖𝐴‖𝑚𝑎𝑥 ≤ ‖𝐴‖2 ≤ ‖𝐴‖𝐹 ≤ √𝑛 ‖𝐴‖2 ,
‖𝐴‖2 ≤ ‖𝐴‖∞ . (42)

(1b) The best HL for each of the presented norms is the
following, ℓ∗𝐴 = ℓ∗𝑅 = ℓ∗𝐹 = ℓ∗𝑀 = 6; ℓ∗𝐼 = 3; and
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Figure 2: Selection of best HL for Model 1: comparison of true error
(F-norm) and absolute iteration error (A-norm).

ℓ∗𝑆 = 2 or 6. So a small HL, 2 ≤ ℓ ≤ 6, is suitable for
Model 1 in which the sizes of the ONC and TNC are
equal, 𝑅(1), �̃�(1) ∈ R2×2.

(1c) The values of all norms of the true error 𝐸𝑡𝑟𝑢𝑒ℓ confirm
Remark 8 (see columns IV∼VII). They show that the
initial HL ℓ = 1 is not optimal, i.e., the single ONC�̂�𝑘,1 is not good.

(1d) The curves of all norms of the true error have a similar
shape. The curves slightly fluctuate and then increase
around a small HL, ℓ < 8.

(1e) The curves of the A- and R-norms are similar. There-
fore, only one of them is shown in Figure 1.

(1f) As noted in Remark 9, fulfillment of the condition‖Δ𝑅ℓ,ℓ−1‖𝐹 < 𝜀does not guarantee the convergence. In
Table 3 we can observe that the small iteration errors‖Δ𝑅19,18‖𝐹 < ‖Δ𝑅20,19‖𝐹 < ‖Δ𝑅6,5‖𝐹 = 0.0085 < 𝜀 =0.01, correspond to the large true errors, ‖𝐸𝑡𝑟𝑢𝑒20 ‖𝐹 >‖𝐸𝑡𝑟𝑢𝑒19 ‖𝐹 > ‖𝐸𝑡𝑟𝑢𝑒6 ‖𝐹. This fact is also illustrated in
Figure 2, where F-norm (‖𝐸𝑡𝑟𝑢𝑒ℓ ‖𝐹) and scaledA-norm(10‖Δ𝑋ℓ,ℓ−1‖𝐴) are plotted for a clear comparison.

Next, we consider more complicated Model 2, in which the
noise gain matrix 𝐷(2) is rectangular, and the sizes of the
original 𝑅(2) and transformed �̃�(2) measurement covariances
are different. In this case (12) represents an undefined system
of equations.

Model 2 (“measurement model with environmental noise𝜂𝑘”).
𝑦1,𝑘 = 𝑥𝑘 + V1,𝑘 + 𝜂𝑘,
𝑦2,𝑘 = 𝑥𝑘 + V2,𝑘 + 𝜂𝑘, (43)

or in matrix form

𝑌𝑘 = 𝐻𝑥𝑘 + 𝐷(2)𝑉(2)𝑘 ,
𝑌𝑘 = [𝑦1,𝑘𝑦2,𝑘] ,
𝐻 = [11] ,

𝐷(2) = [1 0 10 1 1] ,

𝑉(2)𝑘 = [[
[
V1,𝑘
V2,𝑘𝜂𝑘

]]
]

∼ N (0, 𝑅(2)) .

(44)

Here the ONC and TNC take the form

𝑅(2) = [[[[
𝑟1 0 00 𝑟2 0
0 0 𝜎2𝜂

]]]]
,

�̃�(2) = 𝐷(2)𝑅(2)𝐷(2)𝑇 = [𝑟1 + 𝜎2𝜂 𝜎2𝜂𝜎2𝜂 𝑟2 + 𝜎2𝜂] ,
(45)

respectively.
For the model (43)-(45),

𝐷 ≜ 𝐷(2) = [1 0 10 1 1] ,

𝐷+ ≜ 𝐷(2)+ = 13 [[[
2 −1−1 21 1

]]]
,

(46)

and the RHLSE (33) takes the form �̂�𝑘,ℓ = 𝐷+𝐵𝑟𝑘,ℓ𝐷+𝑇.
Setting up 𝑘 = 50, 𝑟1 = 0.1, 𝑟2 = 0.8, and 𝜎2𝜂 = 0.3,

we calculate the norms of iteration error Δ𝑅ℓ,ℓ−1 and true
error 𝐸𝑡𝑟𝑢𝑒ℓ . The simulation results are illustrated in Table 4
and Figure 3.

In general, comments (1a)∼(1f) made for Model 1 are the
same for Table 4 and Figure 3, but there are some minor
changes concerning (1b) and (1d).

(2b) The best HLs for the norms are little different, i.e.,ℓ∗𝐴 = ℓ∗𝑅 = 9, ℓ∗𝐹 = 5, ℓ∗𝑀 = ℓ∗𝐼 = 6, ℓ∗𝑆 = 7. So a
small HL, ℓ ≤ 9, is also suitable for Model 2, when the
noise gain matrix 𝐷 is rectangular.

(2d) The curves of all norms of the true error have a similar
shape. The curves increase and then slightly decrease
around a medium HL, 9 < ℓ < 20.

Here is a summary of the simulation results presented for
Models 1 and 2.
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Table 4: Norms of true and iteration errors for Model 2.

HLℓ
Absolute and relative norms for

iteration errorΔ𝑅ℓ,ℓ−1
Norm of true error‖∗‖ = 𝐸𝑡𝑟𝑢𝑒ℓ 

A-normΔ𝑅ℓ,ℓ−1𝐹
R-normΔ𝑅ℓ,ℓ−1𝐹�̂�𝑘,ℓ𝐹

F-norm‖∗‖𝐹 M-norm‖∗‖𝑚𝑎𝑥 I-norm‖∗‖∞ = ‖∗‖1 S-norm‖∗‖2
I II III V VI VII VIII
1 - - - - - - 0.1813 0.1151 0.2303 0.1724
2 0.0858 0.1636 0.1230 0.0651 0.1303 0.1197
3 0.0726 0.1248 0.0752 0.0478 0.0957 0.0727
4 0.0582 0.0926 0.0549 0.0317 0.0635 0.0541
5 0.0105 0.0165 0.0532 0.0277 0.0555 0.0501
6 0.0095 0.0147 0.0543 0.0272 0.0544 0.0476
7 0.0146 0.0222 0.0608 0.0280 0.0561 0.0457
8 0.0237 0.0359 0.0713 0.0317 0.0634 0.0520
9 0.0089 0.0136 0.0786 0.0364 0.0728 0.0582
10 0.0207 0.0319 0.0894 0.0475 0.0950 0.0726
11 0.0110 0.0171 0.0990 0.0544 0.1088 0.0825
12 0.0115 0.0181 0.1024 0.0601 0.1202 0.0908
13 0.0147 0.0236 0.1100 0.0678 0.1357 0.1020
14 0.0162 0.0267 0.1179 0.0753 0.1507 0.1130
15 0.0122 0.0203 0.1241 0.0806 0.1613 0.1210
16 0.0079 0.0133 0.1308 0.0852 0.1705 0.1280
17 0.0084 0.0143 0.1319 0.0868 0.1736 0.1305
18 0.0112 0.0195 0.1335 0.0884 0.1768 0.1332
19 0.0143 0.0255 0.1361 0.0896 0.1793 0.1361
20 0.0125 0.0227 0.1378 0.0897 0.1795 0.1376
21 0.0092 0.0167 0.1395 0.0900 0.1801 0.1395
22 0.0099 0.0176 0.1360 0.0878 0.1757 0.1358
23 0.0103 0.0181 0.1320 0.0852 0.1705 0.1312
24 0.0109 0.0188 0.1269 0.0817 0.1635 0.1250
25 0.0115 0.0194 0.1241 0.0794 0.1589 0.1206
26 0.0166 0.0274 0.1207 0.0757 0.1515 0.1141
27 0.0122 0.0197 0.1187 0.0726 0.1453 0.1091
28 0.0150 0.0237 0.1165 0.0684 0.1369 0.1027
29 0.0123 0.0191 0.1181 0.0662 0.1325 0.0996
30 0.0206 0.0313 0.1216 0.0625 0.1250 0.0952

(i) We propose to use the RHLSE 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ = 𝐴+𝐵𝑘,ℓ𝐴+𝑇
with a small HL, 2 ≤ ℓ ≤ 9, for both square and
rectangular noise matrices 𝐴 = 𝐺 or 𝐷. Usage of
short (ℓ = 1) and long (ℓ ≫ 1) horizon lengths may
lead to unsatisfactory results.

(ii) In parallel with testing the efficiency of the stopping
criterion we also study the behavior of the mean
square errors (MSEs) for the covariance estimates

𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ ∈ R2×2 (Model 1) and 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ ∈ R3×3 (Model
2),

𝑀𝑆𝐸𝑘,𝑖𝑗 ≜ 𝐸 [(𝑋𝑖𝑗 − 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ;𝑖𝑗 )2] , 𝑖, 𝑗 = 1, . . . , 𝑝, (47)

where 𝑋𝑖𝑗 is the true simulated value, 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ;𝑖𝑗 is the
RHLSE estimate of the element 𝑋𝑖𝑗, 𝑘(= 0, 1, . . .)
is the time instant, and ℓ = ℓ∗ is the best HL,
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Figure 3: Norms of true and iteration errors for Model 2.

𝑋 = [𝑋𝑖𝑗],𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ = [𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ;𝑖𝑗 ].To calculate the MSEs
the Monte-Carlo simulation with 1000 runs was used,
i.e., the expectation operator in (47) is taken for the
1000 error data at each time instant 𝑘. We observe that
the relative errors, Δ𝑀𝑆𝐸(1)

𝑘,𝑖𝑖
, for Model 1,

Δ𝑀𝑆𝐸(1)𝑘,𝑖𝑖 = 𝑀𝑆𝐸𝑘,𝑖𝑖𝑋𝑖𝑖 × 100%, 𝑖 = 1, 2,
𝑋11 = 𝑟1,
𝑋22 = 𝑟2,
ℓ∗ = 6,

(48)

range from 10.8% to 13.7% within the time zone 𝑘 ∈[0, 50], and then they decrease. At 𝑘 > 500 the maxi-
mum values of the Δ𝑀𝑆𝐸(1)

𝑘,11
and Δ𝑀𝑆𝐸(1)

𝑘,22
reach the

values of 7.4% and 8.8%, respectively. Similar results,
but slightly worse due to the rectangularity of the
noise gain matrix 𝐷(2), are obtained for Model 2. For
this model the relative errors,

Δ𝑀𝑆𝐸(2)𝑘,𝑖𝑖 = 𝑀𝑆𝐸𝑘,𝑖𝑖𝑋𝑖𝑖 × 100%, 𝑖 = 1, 2, 3,
𝑋11 = 𝑟1,
𝑋22 = 𝑟2,
𝑋33 = 𝜎2𝜂 ,
ℓ∗ = 6,

(49)

range from 12% to 16.5% within the time zone𝑘 ∈ [0, 50]. At 𝑘 > 500 the maximum values of
the Δ𝑀𝑆𝐸(2)

𝑘,11
, Δ𝑀𝑆𝐸(2)

𝑘,22
, and Δ𝑀𝑆𝐸(2)

𝑘,33
amount to7.1%, 8.4%, and 9.2%, respectively. Thus, this analysis

of the MSEs shows that the RHLSE is suitable for
practical applications.

7.2. Numerical Example: 1D Tracking with Random Velocity.
In this section, the proposed RHLSE is used in adaptive
filtering with unknown ONC (𝑄 and 𝑅).

Let the true target state at discrete time 𝑡𝑘 be defined as𝑥𝑘 = [𝑝𝑘 𝜐𝑘]𝑇, where 𝑝𝑘 and 𝜐𝑘 denote the position and
velocity in Cartesian coordinates, respectively. Assume that
the constant velocity is subjected to a random disturbance𝑤𝑘.
The measured position can be defined as 𝑦𝑘 = 𝑝𝑘 + 𝜉𝑘 + 𝜂𝑘,
where 𝜉𝑘 is a sensory error and 𝜂𝑘 is an environmental noise.
The target state dynamics is then modeled as follows:

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐺𝑤𝑘, 𝑥𝑘 ∈ R
2,

𝑦𝑘 = 𝐻𝑥𝑘 + 𝐷𝑒𝑘, 𝑦𝑘 ∈ R,
where

𝑤𝑘 ∈ R,
𝑤𝑘 ∼ N (0, 𝑄) ,
𝑒𝑘 ∈ R

2,
𝑒𝑘 ∼ N (0, 𝑅) ,
𝑥𝑘 = [𝑥1,𝑘𝑥2,𝑘] = [𝑝𝑘𝜐𝑘] ,
𝐹 = [1 Δ𝑡0 1 ] ,
𝐺 = [01] ,
𝑒𝑘 = [𝜉𝑘𝜂𝑘] ,
𝐻𝑇 = [10] ,
𝐷𝑇 = [11] ,
𝑅 = diag {𝑟𝜉 𝑟𝜂} ,
𝑥0 ∼ N (𝑥0, 𝐶0) ,
Δ𝑡 ≪ 1.

(50)

Simulation results with usage of the AKF (32) and RHLSE
(12) are illustrated in Figures 4–8 for the following model
parameters:

Δ𝑡 = 0.005,
𝑥0 = [4 10]𝑇 ,
𝐶0 = diag {10 2.5} ,
𝑄 = 0.25,

ℓ𝑚𝑎𝑥 = 100,
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Figure 4: True and estimated position, 𝑘 ∈ [500, 1000].

𝑘 ∈ [0; 1000] ,
𝑟𝜉 = 0.64,
𝑟𝜂 = 0.09.

(51)

Figures 4 and 5 show the position and velocity estimates
compared to the true values. The AKF appears to converge,
in the sense that the estimation error tends to decrease, but
slowly for velocity because the sensor measures only the
position.

The key value in adaptive filtering is the TNC �̃�𝑘 = 𝐶𝑦
𝑘
−𝐻𝑘𝑃−𝑘𝐻𝑇𝑘 .This covariance is plotted in Figure 6.

Aswe observe, the covariance �̃�𝑘 is not seriously changing
for 𝑘 ≥ 500. For this reason we fixed the receding horizon
interval [𝑘−ℓ+1, 𝑘] = [500−ℓ+1, 500] for further estimation
of the ONCs 𝑅 and 𝑄 by formulas (33). We have

�̂�𝑘,ℓ = 𝐷+𝐵𝑟𝑘,ℓ𝐷+𝑇,
�̂�𝑘,ℓ = 𝐺+𝐵𝑞𝑘,ℓ𝐺+𝑇,

𝐷+ = ⌈0.50.5⌉ , 𝐺+ = [0 1] , 𝑘 = 500, ℓ ≥ 1.
(52)

The best HLs ℓ𝑟 and ℓ𝑞 are calculated based on the iteration
errors Δ�̃�ℓ,ℓ−1 and Δ�̃�ℓ,ℓ−1, respectively,

ℓ𝑟 = min {ℓ : Δ�̃�ℓ,ℓ−1𝐹 < 𝜀 = 10−5} ,
Δ�̃�ℓ,ℓ−1𝐹 = 1ℓ√𝑡𝑟 (�̃�2𝐷Δ�̃�2𝑘,ℓ−1), �̃�𝐷 = 12 ,

(53)
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Figure 5: True and estimated velocity, 𝑘 ∈ [500, 1000].
Table 5: Best HLs for measurement noise covariance.

ℓ𝑟 Δ�̃�ℓ,ℓ−1𝐹 𝐸𝑅ℓ 𝐹
6 3.9237E-06 0.0070463
46 9.39816E-07 0.0070258
52 2.8749E-06 0.0069196
54 2.1627E-07 0.0070807
58 1.0062E-06 0.0070107

and

ℓ𝑞 = min {ℓ : Δ�̃�ℓ,ℓ−1𝐹 < 𝜀 = 2 ∙ 10−5} ,
Δ�̃�ℓ,ℓ−1𝐹 = 1ℓ√𝑡𝑟 (�̃�2𝐺Δ�̃�2𝑘,ℓ−1), �̃�𝐺 = [0 00 1] . (54)

As indicated earlier in Remark 9, the best HLs ℓ𝑟 and ℓ𝑞
do not guarantee a minimum of the true errors 𝐸𝑅ℓ and𝐸𝑄ℓ , respectively. Therefore, in addition we calculate the
norms of the true errors, ‖𝐸𝑅ℓ ‖𝐹 and ‖𝐸𝑄ℓ ‖𝐹, which confirm
that the proposed idea of choosing the best HL using the
iterative error (53) or (54) leads to good results. Figure 7
presents the norms of the true error ‖𝐸𝑅ℓ ‖𝐹 and the iteration
error ‖Δ�̃�ℓ,ℓ−1‖𝐹 for measurement covariance, respectively.
Analogously, Figure 8 presents the norms of the true error‖𝐸𝑄ℓ ‖𝐹 and iteration error ‖Δ�̃�ℓ,ℓ−1‖𝐹 for process covariance,
respectively. We observe that as well as in the theoretical
example (Section 7) the obtained best HLs ℓ𝑟 = 6 and ℓ𝑞 =5 are located within a small horizon interval. In Figure 8,
both curves show one value for the best HL, ℓ𝑞 = 5. But in
Figure 7 we observe five horizon lengths ℓ𝑟 = 6, 46, 52, 54 58,
which satisfy condition ‖Δ�̃�ℓ,ℓ−1‖𝐹 < 10−5 within the horizon
interval ℓ ∈ [1; 100], and the last four lie in the middle of the
horizon interval (see Table 5). Table 5 shows that the iteration
errors, ‖Δ�̃�ℓ,ℓ−1‖𝐹, are different; however, the true errors‖𝐸𝑅ℓ ‖𝐹 remain almost the same. Hence, it can be concluded
that the small length ℓ𝑟 = 6 is acceptable.
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To compare the relative MSEs,

Δ𝑀𝑆𝐸(𝑄)𝑘 = 𝑀𝑆𝐸(𝑄)
𝑘𝑄 × 100%,

Δ𝑀𝑆𝐸(𝜉)
𝑘

= 𝑀𝑆𝐸(𝜉)𝑘𝑟𝜉 × 100%,
Δ𝑀𝑆𝐸(𝜂)

𝑘
= 𝑀𝑆𝐸(𝜂)

𝑘𝑟𝜂 × 100%,
ℓ𝑞 = 5,
ℓ𝑟 = 6,

(55)
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Figure 8: Best HL ℓ𝑞 = 5 based on minimum of iteration errorΔ�̃�ℓ,ℓ−1 : comparison of the norms of true error and iteration error
(scaled by 1000 times).

the Monte-Carlo simulation with 1000 runs was performed.
Thenumerical values of all relative errors (55)within the time
interval 𝑘 ∈ [0, 300] range from 13.8% to 16.7%. And for large
time instants, 𝑘 > 500, they do not change much. In this
case, the maximum values of the errors Δ𝑀𝑆𝐸(𝑄)𝑘 , Δ𝑀𝑆𝐸(𝜉)𝑘 ,
and Δ𝑀𝑆𝐸(𝜂)

𝑘
amount to 14.5%, 12.7%, and 13%, respect-

ively.

8. Conclusion

In some application problems, knowledge of noise covari-
ances is necessary to study quality of the system and
measurement model. In order to estimate arbitrary process
and measurement noise covariances, a receding horizon
estimation criterionwith a generalized least squares approach
is proposed (Theorem 4).

Special attention is given for time-invariant noise gain
matrices (Theorem 5). In this case the proposed RHLSE is
comprehensively investigated, including the derivation of
compact matrix form for recursive RHLSE (25) and an
effective stopping condition for iterative estimation process
(Theorem 7). The computational procedure based on the
Moore–Penrose pseudoinverse for evaluation of the best
noise covariances is recommended.

In view of the importance of noise covariances in practice,
the proposedRHLSE is illustrated on theoretical and practical
dynamical models with different types of noises. The exam-
ples show that theRHLSEwith selection of the bestHLwithin
a small horizon interval yields reasonably good estimation
accuracy.

Simulation analysis and comparison of the proposed
estimator by several norms of estimation error show that
usage of the receding horizon strategy is a very effective
approach for the achievement of robustness against any
uncertainties and errors.
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Appendix

Proof of �eorem 4. Using the notations 𝑀𝑡 = 𝐴𝑇𝑡𝐴 𝑡 and𝑀𝑇𝑡 = 𝑀𝑡, 𝑋𝑇 = 𝑋, the criterion (17) can be rewritten as

𝐽𝑘,ℓ (𝑋) = 𝑘∑
𝑡=𝑘−ℓ+1

𝐴 𝑡𝑋𝐴𝑇𝑡 − 𝐵𝑡2𝐹
= 𝑘∑
𝑡=𝑘−ℓ+1

𝑡𝑟 [(𝐴 𝑡𝑋𝐴𝑇𝑡 − 𝐵𝑡) (𝐴 𝑡𝑋𝐴𝑇𝑡 − 𝐵𝑇𝑡 )]
= 𝑘∑
𝑡=𝑘−ℓ+1

[𝑡𝑟 (𝐴 𝑡𝑋𝑀𝑡𝑋𝐴𝑇𝑡 ) − 𝑡𝑟 (𝐵𝑡𝐴 𝑡𝑋𝐴𝑇𝑡 )
− 𝑡𝑟 (𝐴 𝑡𝑋𝐴𝑇𝑡𝐵𝑇𝑡 ) + 𝑡𝑟 (𝐵𝑡𝐵𝑇𝑡 )] .

(A.1)

Differentiating each summand of the functional 𝐽𝑘,ℓ(𝑋)
with respect to 𝑋 using formulas of the trace and matrix
derivatives, and 𝐵𝑇𝑡 = 𝐵𝑡,

𝜕𝜕𝑋𝑡𝑟 (𝐶𝑋𝐷) = 𝐶𝑇𝐷𝑇,
𝜕𝜕𝑋𝑡𝑟 (𝐶𝑋𝐷𝑋𝐶𝑇) = 2𝐶𝑇𝐶𝑋𝐷, (A.2)

we get

𝜕𝐽𝑘,ℓ𝜕𝑋 = 2 𝑘∑
𝑡=𝑘−ℓ+1

(𝐴𝑇𝑡𝐴 𝑡𝑋𝑀𝑡 − 𝐴𝑇𝑡𝐵𝑡𝐴 𝑡) . (A.3)

Then setting the result to zero, 𝜕𝐽𝑘,ℓ/𝜕𝑋 = 0, we obtain
𝑘∑

𝑡=𝑘−ℓ+1

(𝑀𝑡𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ 𝑀
𝑡
) = 𝑘∑

𝑡=𝑘−ℓ+1

(𝐴𝑇𝑡𝐵𝑡𝐴 𝑡) . (A.4)

This completes the proof.

Proof of �eorem 5. Since the matrices 𝐴𝑘 ≡ 𝐴 and 𝑀𝑘 ≡𝑀 are constant, and after simple manipulations the general
solution (18) takes the form

𝑘∑
𝑡=𝑘−ℓ+1

𝑀𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ 𝑀 = 𝑘∑
𝑡=𝑘−ℓ+1

𝐴𝑇𝐵𝑡𝐴 ⇐⇒
𝑀( 𝑘∑

𝑡=𝑘−ℓ+1

𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ )𝑀 = 𝐴𝑇( 𝑘∑
𝑡=𝑘−ℓ+1

𝐵𝑡)𝐴 ⇐⇒
ℓ(𝑀𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ 𝑀) = 𝐴𝑇( 𝑘∑

𝑡=𝑘−ℓ+1

𝐵𝑡)𝐴 ⇐⇒
𝑀𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ 𝑀 = 𝐴𝑇𝐵𝑘,ℓ𝐴 ⇐⇒
𝑋𝑅𝐻𝐿𝑆𝐸𝑘 = (𝑀+𝐴𝑇) 𝐵𝑘,ℓ (𝐴𝑀+) .

(A.5)

Next, using the equality of pseudoinverse 𝑀+𝐴𝑇 =(𝐴𝑇𝐴)+𝐴𝑇 = 𝐴+ [18], we obtain (21).
This completes the proof.

Proof of �eorem 7. Since 𝐵𝑘,ℓ = 𝐵𝑇𝑘,ℓ = 𝐵 + Δ𝐵𝑘,ℓ, and using
(25) we have

𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ − 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ−1

2𝐹 = 1ℓ (𝑋𝐿𝑆𝑘−ℓ+1 − 𝑋𝑅𝐻𝐿𝑆𝐸𝑘,ℓ−1 )
2

𝐹

= 1ℓ2 𝐴+ (𝐵𝑘,ℓ−1 − 𝐵𝑘−ℓ+1)𝐴+𝑇2𝐹 ,
(A.6)

orΔ𝑋ℓ,ℓ−12𝐹 = 1ℓ2 𝐴+Δ𝐵𝑘,ℓ−1𝐴+𝑇2𝐹
= 1ℓ2 𝑡𝑟 [𝐴+Δ𝐵𝑘,ℓ−1𝐴+𝑇 (𝐴+Δ𝐵𝑘,ℓ−1𝐴+𝑇)𝑇]
= 1ℓ2 𝑡𝑟 (𝐴+Δ𝐵𝑘,ℓ−1�̃�Δ𝐵𝑘,ℓ−1𝐴+𝑇) ,

�̃� = 𝐴+𝑇𝐴+.

(A.7)

Using the cyclic property of trace for arbitrary matrices we
get

𝑡𝑟 (𝐴+Δ𝐵𝑘,ℓ−1�̃�Δ𝐵𝑘,ℓ−1𝐴+𝑇)
= 𝑡𝑟 (𝐴+𝑇𝐴+Δ𝐵𝑘,ℓ−1�̃�Δ𝐵𝑘,ℓ−1)
= 𝑡𝑟 (�̃�Δ𝐵𝑘,ℓ−1�̃�Δ𝐵𝑘,ℓ−1) .

(A.8)

Next using the cyclic property of trace of the product of three
symmetric matrices 𝑡𝑟(𝐿1𝐿2𝐿3) = 𝑡𝑟(𝐿1𝐿3𝐿2), we obtain

𝑡𝑟(�̃�Δ𝐵𝑘,ℓ−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿1

�̃�⏟⏟⏟⏟⏟⏟⏟
𝐿2

Δ𝐵𝑘,ℓ−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿3

)
= 𝑡𝑟 (�̃�Δ𝐵𝑘,ℓ−1Δ𝐵𝑘,ℓ−1�̃�) = 𝑡𝑟 (�̃�Δ𝐵2𝑘,ℓ−1�̃�)
= 𝑡𝑟 (�̃�2Δ𝐵2𝑘,ℓ−1) .

(A.9)

Substituting (A.8) and (A.9) into (A.7) we get

Δ𝑋ℓ,ℓ−12𝐹 = 1ℓ2 𝑡𝑟 (�̃�2Δ𝐵2𝑘,ℓ−1) . (A.10)

This completes the proof.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the fund of research promotion
program, Gyeongsang National University, 2017, the National



Mathematical Problems in Engineering 15

Research Foundation of Korea (NRF) funded by the Min-
istry of Education (Grant no. NRF-2018R1D1A3A03000717),
and the Ministry of Science and ICT (Grant no. NRF-
2017R1A5A1015311).

References

[1] R. G. Brown and P. Y. Hwang, Introduction to Random Signals
and Applied Kalman Filtering with Matlab Exercises, JohnWiley
& Sons, New York, NY, USA, 4th edition, 2012.

[2] D. Simon, Optimal State Estimation. Kalman, H-Infinity, and
Nonlinear Approaches, John Wiley & Sons, Hoboken, NJ, USA,
2006.

[3] N. H. Nguyen and K. l. Dogancay, “Improved pseudolinear
Kalman filter algorithms for bearings-only target tracking,”
IEEE Transactions on Signal Processing, vol. 65, no. 23, pp. 6119–
6134, 2017.

[4] M. V. Kulikova and J. V. Tsyganova, “Improved discrete-time
Kalman filtering within singular value decomposition,” IET
Control�eory&Applications, vol. 11, no. 15, pp. 2412–2418, 2017.

[5] Y. S. Shmaliy, S. Zhao, and C. K. Ahn, “Unbiased finite impulse
response filtering: an iterative alternative to Kalman filtering
ignoring noise and initial conditions,” IEEE Control Systems
Magazine, vol. 37, no. 5, pp. 70–89, 2017.

[6] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation, John Wiley & Sons,
New York, NY, USA, 2001.

[7] M. S. Grewal, A. P. Andrews, and C. G. Bartone,Global Naviga-
tion Satellite Systems, Inertial Navigation, and Integration, John
Wiley & Sons, New Jersey, NJ, USA, 3rd edition, 2013.

[8] Y. Singh and R. Mehra, “Relative study of measurement noise
covariance R and process noise covariance Q of the Kalman
filter in estimation,” IOSR Journal of Electrical and Electronics
Engineering, vol. 10, no. 6, pp. 112–116, 2015.

[9] A. Almagbile, J. Wang, and W. Ding, “Evaluating the Per-
formances of Adaptive Kalman Filter Methods in GPS/INS
Integration,” Journal of Global Positioning Systems, vol. 9, no. 1,
pp. 33–40, 2010.

[10] A. H. Mohamed and K. P. Schwarz, “Adaptive Kalman filtering
for INS/GPS,” Journal of Geodesy, vol. 73, no. 4, pp. 193–203,
1999.

[11] R. K. Mehra, “On the Identification of Variances and Adaptive
Kalman Filtering,” IEEETransactions on Automatic Control, vol.
AC-15, no. 2, pp. 175–184, 1970.

[12] C. Hide, T. Moore, and M. Smith, “Adaptive Kalman filtering
for low-cost INS/GPS,” Journal of Navigation, vol. 56, no. 1, pp.
143–152, 2003.

[13] G. Chen, Ed., Approximate Kalman filtering, vol. 2 of Series in
Approximations and Decompositions, World Scientific Publish-
ing Co., Inc., River Edge, NJ, USA, 1993.

[14] Q. Xia, M. Rao, Y. Ying, and X. Shen, “Adaptive fading Kalman
filter with an application,” Automatica, vol. 30, no. 8, pp. 1333–
1338, 1994.

[15] C. Jiang, S. Zhang, and Q. Zhang, “Adaptive Estimation of
Multiple Fading Factors for GPS/INS Integrated Navigation
Systems,” Sensors, vol. 17, no. 6, pp. 1–18, 2017.

[16] W. Ding, J.Wang, C. Rizos, and D. Kinlyside, “Improving adap-
tive kalman estimation in GPS/INS integration,”�e Journal of
Navigation, vol. 60, no. 3, pp. 517–529, 2007.

[17] M. Oussalah and J. D. Schutter, “Adaptive Kalman filter for
noise identification,” in Proceedings of the International Seminar

on Modal Analysis, pp. 1225–1232, Kissimmee, FL, USA. KU
Leuven, Belgium, 2001.

[18] A. J. Laub, Matrix Analysis for Scientists Engineers, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, Pa,
USA, 2004.

[19] K.-W. E. Chu, “Symmetric solutions of linear matrix equations
by matrix decompositions,” Linear Algebra and its Applications,
vol. 119, pp. 35–50, 1989.

[20] H.Dai, “On the symmetric solutions of linearmatrix equations,”
Linear Algebra and its Applications, vol. 131, pp. 1–7, 1990.

[21] F. J. H. Don, “On the symmetric solutions of a linear matrix
equation,” Linear Algebra and its Applications, vol. 93, pp. 1–7,
1987.

[22] A. H. Jazwinski, “Limited Memory Optimal Filtering,” IEEE
Transactions on Automatic Control, vol. 13, no. 5, pp. 558–563,
1968.

[23] A. Alessandri, M. Baglietto, and G. Battistelli, “Receding-
horizon estimation for switching discrete-time linear systems,”
IEEE Transactions on Automatic Control, vol. 50, no. 11, pp.
1736–1748, 2005.

[24] W. H. Kwon, P. S. Kim, and P. Park, “A receding horizon
Kalman FIR filter for discrete time-invariant systems,” IEEE
Transactions on Automatic Control, vol. 44, no. 9, pp. 1787–1791,
1999.

[25] B. Kwon and S. Han, “Least-Mean-Square Receding Horizon
Estimation,” Mathematical Problems in Engineering, vol. 2012,
Article ID 631759, 19 pages, 2012.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

