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A robust newsvendor model with discrete demand is initiatively studied, and the steps to obtain the optimal ordering decision are
provided. The study shows that the optimal ordering decision with discrete demand is very different from that with continuous
demand. Besides, the total number of demand points has almost no effect on the performance of both ordering decisions.
Furthermore, for an ultralow-profit product, the ordering decision with discrete demand performs significantly better than that
with continuous demand.

1. Introduction

The newsvendor problem has been investigated as a basic
problem in stochastic inventory management since the
eighteenth century in the economic literature, and it has
been universally employed to analyze supply chains with
fashionable and perishable products. Since the 50s of the last
century, newsvendor problem has been extensively studied in
operations research and extended to model various problems
in real life. The simplest and most elegant version of the
newsvendor problem is an optimal inventory problem in
which a newsvendor needs to decide how much newspaper
to order for the future demand, where the future demand is
uncertain and follows a stationary distribution. This classical
newsvendor problem has been extended in many different
ways. See Khouja [1] and Qin et al. [2] for a review of various
newsvendor-related models. See Choi [3] for the state-of-the-
art findings on both theoretical and applied research on the
newsvendor problem.

The studies on the newsvendor problemmentioned above
focus mainly on scenarios in which the underlying distribu-
tion of the random demand is precisely known. However, it
is often very hard or impossible to figure out the demand
distribution in practice, especially in fast-changing markets.

Since the decision is made on the basis of the assumed
distribution, it might not hold for other distributions. There-
fore, instead of assuming a stationary distribution, it is more
reasonable to assume that the distribution belongs to the
set of all distributions satisfying the known parameters.
These parameters may come from estimates based on past
realizations or some prediction by industry experts. The
robust approach optimizes the worst-case objective (e.g.,
expected profit or regret or risk) over the parametric family.
Most research that uses the robust approach in newsvendor
models describes the distribution set by some known mean
and variance. In these researches, Scarf [4] can be regarded
as a pioneer who derived a closed-form formula for the
optimal ordering rule that maximizes the expected profit
against the worst possible distribution of the demand with
the given mean and variance. He also pointed out that the
worst distribution of the demand has positive mass at two
points. Gallego and Moon [5] provided a simpler proof of
Scarf ’s formula and extended his ideas. In the last 25 years,
since the appearance of Gallego and Moon [5], there have
been numerous results in the literature related to extensions
of Scarf ’s ordering rule to different settings and applications;
see, for example, maximizing the worst-case expected profit
as a target [6–18], minimax regret as a target [10, 19–21], and
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optimizing theworst-case conditional value-at-risk as a target
[22–28].

The existing research has revealed that the incomplete-
ness of demand distributional information will have sub-
stantial impact on the newsvendor’s decision. In general,
these works are based on the assumption that the demand
is a continuous random variable. Nevertheless, the actual
demand formany products is discrete.The discrete goods can
be bought and sold only in integral units, such as newspapers,
cars, and machines. When the discrete goods are high-cost
or low-profit products, their demand could not be approxi-
mately regarded as continuous demand. So far, there is only
a little research aimed at studying the newsvendor problem
with limited distributional information of discrete stochastic
demand. Yu et al. [29] presented a general framework for
considering discrete demand in robust newsvendor models.
Carrizosa et al. [30] explored the robust newsvendor problem
where demand is modeled as a time series which follows an
autoregressive process. The advantage of robust autoregres-
sive approach is that there is not much information needed,
and it can be predicted by using self-variable series. But
this method is also limited: (1) Autocorrelation coefficient is
the key. If the autocorrelation coefficient is less than 0.5, it
is inappropriate to use it; otherwise the prediction result is
extremely inaccurate. (2) Autoregression can only be used to
predict the economic phenomena related to their own earlier
period, that is, the economic phenomena which are greatly
influenced by their own historical factors, such as the amount
of mining and the production of various natural resources
and so on. In view of the limitations of the autoregressive
method, we still only use robust approach and do not assume
demand as a time series. On the basis of Yu et al. [29], we
made a more systematic, more specific, and more in-depth
study in robust newsvendor problem with discrete demand.

Specifically, the purpose of this paper is threefold. The
first is to provide the solving steps to obtain the optimal order-
ing decision for the robust newsvendor model with discrete
demand. The existing solution with continuous demand can
merely be regarded as an approximate solution with discrete
demand. The second is to compare the performance of our
solution with discrete demand with the existing solution
with continuous demand in different situations. The third is
to study the effect of profit margin on these two kinds of
solutions.

The rest of the paper is organized as follows. In Section 2,
we review the existing results of classical/robust newsvendor
problem. In Section 3, we formulate a robust newsvendor
model with discrete demand and provide the approach to
solve it. In Section 4, we conduct numerical experiments to
calculate the optimal order quantity with discrete demand
and compare it with that with continuous demand. In
Section 5, we draw our conclusions. The proof of main result
is given in Appendix.

2. Existing Related Results

The related notation are as follows:

𝑐: the item’s unit cost

𝑝: the item’s unit selling price
𝑠: the item’s unit salvage value, if an item is left unsold
at the end of the sales period
𝑞: the item’s order quantity
𝐷: the item’s stochastic demand
𝐹: the distribution function of the item’s demand 𝐷
𝜇: the item’s expected demand over the sales period
𝜎: standard deviation of the item’s demand
Γ(𝜇, 𝜎2): the class of all distribution functions with
mean 𝜇 and variance 𝜎2
Γ+(𝜇, 𝜎2): the subclass of distribution functions 𝐹 of
nonnegative random variables, i.e., ∫+∞

0
𝑑𝐹(𝑥) = 1

and Γ+(𝜇, 𝜎2) ⊂ Γ(𝜇, 𝜎2)
2.1. Classical Newsvendor Model. The classical newsvendor
problem first proposed by Arrow et al. [31] assumes that the
stochastic demand follows a known distribution 𝐹. Its model
is

max
𝑞

E [𝜋𝐹 (𝑞)] , (1)

where 𝜋𝐹(𝑞) fl (𝑝−𝑠)min(𝑞,𝐷)−(𝑐−𝑠)𝑞 is the newsvendor’s
profit function.

Lemma 1 (continuous demand). If 𝐹 is a known continuous
distribution, then the optimal order quantity 𝑞∗𝐹 maximizing
E[𝜋𝐹(𝑞)] satisfies

𝑞∗𝐹𝑐 = 𝐹−1 (𝑝 − 𝑐𝑝 − 𝑠) . (2)

Lemma 2 (discrete demand). If 𝐹 is a known discrete dis-
tribution with points 𝑥1, 𝑥2, . . . , 𝑥𝑛 ({𝑥𝑖} is a sequence sorted
by size) and probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑛, then 𝐹 is completely
determined by 𝑝𝑖 for 𝑖 = 1, . . . , 𝑛. The optimal order quantity𝑞∗𝐹𝑑 can be found as follows: Let 1 ≤ 𝑘 ≤ 𝑛 be the smallest
integer s.t.∑𝑘𝑖=1 𝑝𝑖 ≥ (𝑝− 𝑐)/(𝑝− 𝑠). Maximum expected profit
is achieved using

𝑞∗𝐹𝑑 = 𝑥𝑘. (3)

In the degenerate case where ∑𝑘𝑖=1 𝑝𝑖 = (𝑝 − 𝑐)/(𝑝 − 𝑠), the
expected value is constant if 𝑞∗𝐹𝑑 ∈ [𝑥𝑘, 𝑥𝑘+1]. In all other cases,
the optimal order quantity is unique.

2.2. Robust Newsvendor Model with Continuous Demand.
The robust newsvendor problem assumes that the newsven-
dor only knows themean𝜇 and the variance𝜎2 of the demand
distribution 𝐹. The newsvendor model with free distribution
of continuous demand is

max
𝑞

min
𝐹∈Γ+(𝜇,𝜎

2)
E [𝜋 (𝑞,𝐷)] , (4)

where
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𝜋 (𝑞,𝐷) fl (𝑝 − 𝑠)min (𝑞, 𝐷) − (𝑐 − 𝑠) 𝑞 (5)

is the newsvendor’s profit function.
Scarf [4] solved the robust newsvendor model with con-

tinuous demand in steps. Firstly, he solved the minimization
problem

min
𝐹∈Γ+(𝜇,𝜎

2)
E [𝜋 (𝑞, 𝐷)] . (M1)

Then he solved the maximization problem

max
𝑞
𝜋 (𝑞) , (M2)

where 𝜋(𝑞) fl min𝐹∈Γ+(𝜇,𝜎2)E[𝜋(𝑞,𝐷)].
Lemma 3. If 𝐹 is an uncertain continuous distribution with𝐹 ∈ Γ+(𝜇, 𝜎2), then the worst-case expected profit satisfies

𝜋 (𝑞) =
{{{{{{{{{

(𝑝 − 𝑐) 𝜇2 − (𝑐 − 𝑠) 𝜎2
𝜇2 + 𝜎2 𝑞, 𝑖𝑓 0 ≤ 𝑞 < (𝜇2 + 𝜎2)2𝜇 ;

𝑝 − 𝑠2 [(𝜇 − 𝑞) − √(𝜇 − 𝑞)2 + 𝜎2] + (𝑝 − 𝑐) 𝑞, 𝑖𝑓 𝑞 ≥ 𝜇2 + 𝜎22𝜇 .
(6)

The optimal order quantity 𝑞∗𝑅𝑐 maximizing 𝜋(𝑞) satisfies
𝑞∗𝑅𝑐

= {{{{{{{
0, 𝑖𝑓 (𝜇𝜎)

2 < 𝑐 − 𝑠𝑝 − 𝑐 ;
𝜇 + 𝜎2 (√𝑝 − 𝑐𝑐 − 𝑠 − √ 𝑐 − 𝑠𝑝 − 𝑐) , 𝑖𝑓 (𝜇𝜎)

2 ≥ 𝑐 − 𝑠𝑝 − 𝑐 ,
(7)

which is called “Scarf ’s ordering rule”.

3. Robust Newsvendor Model with
Discrete Demand

In this section, we are interested in solving the robust
newsvendor model with discrete demand. Assume that 𝐹 ∈Γ+(𝜇, 𝜎2) is an uncertain discrete distribution with known
points 𝑥1, 𝑥2, . . . , 𝑥𝑛 (𝑛 ≥ 4, {𝑥𝑖} is a sequence sorted by size)
and unknown probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑛. Motivated by the
approaches adopted in Scarf [4], we also solve the model in
two steps.

Firstly, we use duality theory to analyze the minimization
problem (M1), which is equivalent to the following linear
programming problem:

min
𝑝1,...,𝑝𝑛

E [𝜋 (𝑞,𝐷)]
= (𝑝 − 𝑠)( 𝑛∑

𝑘=1

min (𝑞, 𝑥𝑘) 𝑝𝑘 − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,

s.t. 𝑛∑
𝑘=1

𝑝𝑘 = 1,
𝑛∑
𝑘=1

𝑥𝑘𝑝𝑘 = 𝜇,
𝑛∑
𝑘=1

𝑥2𝑘𝑝𝑘 = 𝜇2 + 𝜎2,
𝑝1, . . . , 𝑝𝑛 ≥ 0.

(P)

Its dual formulation is

max
𝑦1 ,𝑦2 ,𝑦3

𝑦1 + 𝜇𝑦2 + (𝜇2 + 𝜎2) 𝑦3,
s.t. 𝑦1 + 𝑥𝑘𝑦2 + 𝑥2𝑘𝑦3

≤ (𝑝 − 𝑠) (min (𝑞, 𝑥𝑘) − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,
for each 𝑘 = 1, . . . , 𝑛,

(D)

where 𝑦0, 𝑦1, and 𝑦2 are the dual variables corresponding to
the probability-mass, mean, and variance constraints.

Themain idea is to construct a pair of primal-dual feasible
solutions (𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑛 ) for (P) and (𝑦∗1 , 𝑦∗2 , 𝑦∗3 ) for (D),
and make sure they satisfy the complementary slackness
condition:

𝑝∗𝑘 [𝑦∗1 + 𝑥𝑘𝑦∗2 + 𝑥2𝑘𝑦∗3
− (𝑝 − 𝑠) (min (𝑞, 𝑥𝑘) − 𝑐 − 𝑠𝑝 − 𝑠𝑞)] = 0,

for each 𝑘 = 1, . . . , 𝑛.
(8)

In the case of linear programming, this ensures optimality.
That is to say, the point 𝑥𝑘 has nonzero probability if and

only if the dual optimal solution (𝑦∗1 , 𝑦∗2 , 𝑦∗3 ) satisfies
𝑦∗1 + 𝑥𝑘𝑦∗2 + 𝑥2𝑘𝑦∗3 = (𝑝 − 𝑠) (min (𝑞, 𝑥𝑘) − 𝑐 − 𝑠𝑝 − 𝑠𝑞) . (9)

In other words, the same points of the smooth curve𝑔(𝑥) fl 𝑦1 +𝑦2𝑥+𝑦3𝑥2 and the two-piece line 𝜋(𝑞, 𝑥) should
be the points where the primal optimal solution places all its
masses.

A fundamental result of linear programming theory
asserts that there exists an optimal solution such that the
number of nonzero variables is no more than the number
of constraints. Therefore, for (P), the number of nonzero𝑝∗𝑘 is no more than three. It indicates that the worst-
case distribution is a three-point distribution. Therefore, we
restrict ourselves to three-point distributions.
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Figure 1: The cases that satisfy the dual feasible condition.

As illustrated by Figure 1, the two functions 𝑔(𝑥) fl 𝑦1 +𝑥𝑦2 + 𝑥2𝑦3 and 𝜋(𝑞, 𝑥) will have four intersection points at
most. Based on the above analysis, we restrict ourselves to
three corresponding demandpoints. Besides, in order tomeet
the dual feasibility, at least two of the three demand points are
adjacent.

On the basis of the above analysis, we provide the close-
form expression for the worst-case expected profit 𝜋(𝑞) fl
min𝑝1,...,𝑝𝑛E[𝜋(𝑞,𝐷)], in the following theorem.

Theorem 4. For three points 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑗 in all known demand
points, assume their probabilities as

𝑝∗𝑗 = 𝜎
2 + (𝜇 − 𝑥𝑖) (𝜇 − 𝑥𝑖+1)(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖+1) ,

𝑝∗𝑖 = 𝜎
2 + (𝜇 − 𝑥𝑗) (𝜇 − 𝑥𝑖+1)
(𝑥𝑖 − 𝑥𝑗) (𝑥𝑖 − 𝑥𝑖+1) ,

𝑝∗𝑖+1 = 𝜎
2 + (𝜇 − 𝑥𝑗) (𝜇 − 𝑥𝑖)
(𝑥𝑖+1 − 𝑥𝑗) (𝑥𝑖+1 − 𝑥𝑖) ,

𝑝∗𝑘 = 0, 𝑘 = 1, . . . , 𝑛, 𝑘 ̸= 𝑗, 𝑖, 𝑖 + 1.

(10)

Case 1. For arbitrary 2 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑖 − 1 and a fixed𝑞, if the primal feasibility is satisfied,

max {(𝑥𝑖 − 𝜇) (𝜇 − 𝑥𝑗) , (𝑥𝑖+1 − 𝜇) (𝜇 − 𝑥𝑖)} ≤ 𝜎2
≤ (𝑥𝑖+1 − 𝜇) (𝜇 − 𝑥𝑗) ,

(11)

and the dual feasibility is satisfied,

𝑥𝑖𝑥𝑖+1 − 𝑥𝑗−1𝑥𝑗
(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗−1 + 𝑥𝑗) ≤ 𝑞

≤ 𝑥𝑖𝑥𝑖+1 − 𝑥𝑗𝑥𝑗+1
(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗 + 𝑥𝑗+1) , for 2 ≤ 𝑗 ≤ 𝑖 − 1;

𝑥𝑗 < 𝑞 ≤ 𝑥𝑖𝑥𝑖+1 − 𝑥𝑗𝑥𝑗+1
(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗 + 𝑥𝑗+1) , for 𝑗 = 1,

(12)

then the worst-case expected profit satisfies

𝜋 (𝑞) = (𝑝 − 𝑠) 𝑥𝑗𝑝∗𝑗 + [(𝑝 − 𝑠) (1 − 𝑝∗𝑗 ) − (𝑐 − 𝑠)] 𝑞. (13)
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Figure 2: Characterization of the primal feasibility in Theorem 4.

Case 2. For arbitrary 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 2 ≤ 𝑗 ≤ 𝑛 and a fixed𝑞, if the primal feasibility is satisfied,

max {(𝑥𝑖+1 − 𝜇) (𝜇 − 𝑥𝑖) , (𝑥𝑗 − 𝜇) (𝜇 − 𝑥𝑖+1)} ≤ 𝜎2
≤ (𝑥𝑗 − 𝜇) (𝜇 − 𝑥𝑖) , (14)

and the dual feasibility is satisfied,
𝑥𝑗−1𝑥𝑗 − 𝑥𝑖𝑥𝑖+1

(𝑥𝑗−1 + 𝑥𝑗) − (𝑥𝑖 + 𝑥𝑖+1) ≤ 𝑞

≤ 𝑥𝑗𝑥𝑗+1 − 𝑥𝑖𝑥𝑖+1
(𝑥𝑗 + 𝑥𝑗+1) − (𝑥𝑖 + 𝑥𝑖+1) ,

for 𝑖 + 2 ≤ 𝑗 ≤ 𝑛 − 1;
𝑥𝑗−1𝑥𝑗 − 𝑥𝑖𝑥𝑖+1

(𝑥𝑗−1 + 𝑥𝑗) − (𝑥𝑖 + 𝑥𝑖+1) ≤ 𝑞 < 𝑥𝑗, for 𝑗 = 𝑛,

(15)

then the worst-case expected profit satisfies

𝜋 (𝑞) = (𝑝 − 𝑠) (𝑥𝑖𝑝∗𝑖 + 𝑥𝑖+1𝑝∗𝑖+1)
+ [(𝑝 − 𝑠) 𝑝∗𝑗 − (𝑐 − 𝑠)] 𝑞. (16)

Figure 2 provides a graphical representation of the primal
feasibility inTheorem 4 in the mean-variance space. If (𝜇, 𝜎2)
is in the red striped area, then the primal feasibility is satisfied.
Table 1 provides the dual feasible intervals of 𝑞with respect to
fixed 𝑖 and different 𝑗 in a list.

To sum up, Theorem 4 tells us that we can find out the
worst-case distributions and the worst-case expected profit𝜋(𝑞) by the following steps:(1) Judge whether arbitrary three demand points 𝑥𝑖, 𝑥𝑖+1,
and 𝑥𝑗 satisfy the primal feasibility. If they satisfy it, go to step
2; or else, consider other three points.(2) Find out the dual feasible interval of 𝑞.(3) Obtain the close-form expression of 𝜋(𝑞) on the dual
feasible interval.

Theorem 4 and Table 1 reveal that 𝜋(𝑞) must be a
piecewise linear function. According to the expression for𝜋(𝑞) in Theorem 4, we can draw the graph of the worst-
case expected profit, to help decision-makers make order
decisions.

Secondly, we consider the maximization problem (M2).
We can not obtain the explicit expression of the optimal

order quantity 𝑞∗𝑅𝑑 maximizing 𝜋(𝑞), since it is completely
determined by the values of demand points. Fortunately,
we can use MATLAB to draw the graph of the worst-case
expected profit and find the optimal order quantity 𝑞∗𝑅𝑑 that
maximizes the worst-case expected profit.

4. Numerical Experiments

In contrast to the existing robust newsvendor models, the
model presented by us takes discrete demand into consider-
ation. Therefore, it is expected that our model may behave
differently from the existing robust newsvendor models. In
the following numerical experiments, we will first figure out
the concrete value of 𝑞∗𝑅𝑑 according to the solving steps in
the previous section. Second, we will compare the value and
performance of 𝑞∗𝑅𝑑 with 𝑞∗𝑅𝑐, where 𝑞∗𝑅𝑐 is obtained by “Scarf ’s
ordering rule” [4]. Third, we will study the impact of various
parameters on 𝑞∗𝑅𝑑 and 𝑞∗𝑅𝑐.
4.1. Optimal Ordering Decisions. Set the benchmark values of
parameters as 𝑝 = 50, 𝑐 = 35, 𝑠 = 25, 𝜇 = 1000, 𝜎 = 500 and
the known demand points are 𝑥1 = 100, 𝑥2 = 500, 𝑥3 = 1100,𝑥4 = 1500, 𝑥5 = 2000.

As indicated in Figure 3, the worst-case expected profit𝜋(𝑞) is a piecewise linear function, and the worst-case
demand distribution corresponding to each segment in the
piecewise linear function is a three-point distribution. For
example, the worst-case distribution corresponding to the
first segment is the three-point distribution of (𝑥1, 𝑥3, 𝑥4).
That is to say, the worst-case distribution of the demand is
a piecewise combination of several three-point cases. The
results of our numerical experiments are consistent with
Theorem 4. The decision maker can find the highest worst-
case expected profit point throughFigure 3 andmake a robust
order quantity decision.

4.2. Comparison with Existing Research Result. Our second
numerical study aims to compare the value and performance
of 𝑞∗𝑅𝑑 with 𝑞∗𝑅𝑐.

Firstly, we compare the value of 𝑞∗𝑅𝑑 with 𝑞∗𝑅𝑐 in Table 2.
Set the benchmark values of parameters as 𝑝 = 50, 𝑐 = 35,𝑠 = 25, 𝜇 = 1000, and 𝜎 = 500. From Table 2, it is clear that,
for the same information of mean and variance, 𝑞∗𝑅𝑐 is always
unchanging, but 𝑞∗𝑅𝑑 varies according to different information
of demand points.
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Table 1: The interval of fixed 𝑞 to make sure of the dual feasibility.

Fixed 𝑞 Dual feasible interval

𝑥1 ≤ 𝑞 ≤ 𝑥𝑖 < 𝑥𝑖+1 𝑞 ∈ (𝑥1, 𝑥𝑖𝑥𝑖+1 − 𝑥1𝑥2(𝑥𝑖 + 𝑥𝑖+1) − (𝑥1 + 𝑥2)]
𝑥2 ≤ 𝑞 ≤ 𝑥𝑖 < 𝑥𝑖+1 𝑞 ∈ [ 𝑥𝑖𝑥𝑖+1 − 𝑥1𝑥2(𝑥𝑖 + 𝑥𝑖+1) − (𝑥1 + 𝑥2) ,

𝑥𝑖𝑥𝑖+1 − 𝑥2𝑥3(𝑥𝑖 + 𝑥𝑖+1) − (𝑥2 + 𝑥3)]⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑥𝑖−1 ≤ 𝑞 ≤ 𝑥𝑖 < 𝑥𝑖+1 𝑞 ∈ [ 𝑥𝑖𝑥𝑖+1 − 𝑥𝑖−2𝑥𝑖−1(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑖−2 + 𝑥𝑖−1) , 𝑥𝑖]
𝑥𝑖 < 𝑥𝑖+1 ≤ 𝑞 ≤ 𝑥𝑖+2 𝑞 ∈ [𝑥𝑖+1, 𝑥𝑖+2𝑥𝑖+3 − 𝑥𝑖𝑥𝑖+1(𝑥𝑖+2 + 𝑥𝑖+3) − (𝑥𝑖 + 𝑥𝑖+1)]⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑥𝑖 < 𝑥𝑖+1 ≤ 𝑞 ≤ 𝑥𝑛−1 𝑞 ∈ [ 𝑥𝑛−2𝑥𝑛−1 − 𝑥𝑖𝑥𝑖+1(𝑥𝑛−2 + 𝑥𝑛−1) − (𝑥𝑖 + 𝑥𝑖+1) ,

𝑥𝑛−1𝑥𝑛 − 𝑥𝑖𝑥𝑖+1(𝑥𝑛−1 + 𝑥𝑛) − (𝑥𝑖 + 𝑥𝑖+1)]
𝑥𝑖 < 𝑥𝑖+1 ≤ 𝑞 ≤ 𝑥𝑛 𝑞 ∈ [ 𝑥𝑛−1𝑥𝑛 − 𝑥𝑖𝑥𝑖+1(𝑥𝑛−1 + 𝑥𝑛) − (𝑥𝑖 + 𝑥𝑖+1) , 𝑥𝑛)

Table 2: Comparison of the value of 𝑞∗𝑅𝑑 with 𝑞∗𝑅𝑐.
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑞∗𝑅𝑑 𝑞∗𝑅𝑐
100 500 1100 1500 2000 1289 1102
50 350 700 1650 1900 700 1102
100 300 500 1000 2000 1000 1102
350 550 1200 1350 1600 1251 1102
100 200 1300 1800 2000 1300 1102

9472

200 400 600 800 1000 1200 1400 1600 1800 20000
Order quantity

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

W
or

st-
ca

se
 ex

pe
ct

ed
 p

ro
fit

Ｒ1=100 Ｒ2=500 Ｒ3=1100 Ｒ4=1500 Ｒ5=2000

Ｋ∗
２＞=1289

７(Ｒ1,Ｒ3,Ｒ4)

７(Ｒ1,Ｒ2,Ｒ4)

７(Ｒ2,Ｒ4,Ｒ5)

７(Ｒ2,Ｒ3,Ｒ5)

７(Ｒ2,Ｒ3,Ｒ4)

Figure 3: A plot of the worst-case expected profit 𝜋(𝑞). PS:𝑊(𝑥𝑖, 𝑥𝑖+1, 𝑥𝑗) represents the worst-case distribution consisting of𝑥𝑖, 𝑥𝑖+1, and 𝑥𝑗.

Secondly, we compare the performance of 𝑞∗𝑅𝑑 with 𝑞∗𝑅𝑐 in
view of the expected profit in real situation. Both Scarf [4] and
Gallego and Moon [5] analyzed the performance of ordering
decisions for high-profit and low-profit products. Motivated
by their numerical experiments, we further analyze the
performance of ordering decisions for products with different
marginal profits.

We set parameters as 𝑝 = 10, 𝑐 = {1, 3, 5, 7, 9}, 𝑠 = 0,
and 𝑛 = {6, 12, 24}. We denote profit margin by 𝑚 = (𝑝−𝑐)/(𝑝 − 𝑠); then the corresponding profit margins are

𝑚 = {90%, 70%, 50%, 30%, 10%}. For each profit margin, we
randomly generate a set of 100 problems. In each instance, 𝑛
demand points are randomly taken on the interval [0, 2000],
and their corresponding probabilities are drawn from a
uniform distribution. Under each random fixed discrete
distribution, we use 𝑞∗𝑅𝑐 and 𝑞∗𝑅𝑑 instead of 𝑞∗𝐹𝑑 to obtain
the expected profits, respectively, and then compare them
in Table 3 and Figure 4, in terms of 𝜋𝐹(𝑞∗𝑅𝑐)/𝜋𝐹(𝑞∗𝐹𝑑) and𝜋𝐹(𝑞∗𝑅𝑑)/𝜋𝐹(𝑞∗𝐹𝑑).

Table 3 shows that the number of total demand points
has almost no effect on the performance of 𝑞∗𝑅𝑑 and 𝑞∗𝑅𝑐.
Furthermore, it is observed from both Table 3 and Figure 4
that, as the marginal profit decreases, the performance of𝑞∗𝑅𝑐 is getting worse and worse, but the performance of 𝑞∗𝑅𝑑
gets worse first and then becomes better. We also found that
for the super low-margin product (𝑚 = 10%) 𝑞∗𝑅𝑑 performs
significantly better than 𝑞∗𝑅𝑐; and for the products with profit
margin𝑚 = 30% and profit margin𝑚 = 90%, their perform-
ances are similar; and for the products with other profit
margins, the performance of 𝑞∗𝑅𝑐 is always better than 𝑞∗𝑅𝑑. It
is worth mentioning that both 𝑞∗𝑅𝑑 and 𝑞∗𝑅𝑐 perform fairly well
for the super high-margin product (𝑚 = 90%).

The results of the above numerical experiments conform
with the reality. If we look at the discrete demand of the super
low-margin product as continuous demand, the influence
of the decision-making errors will be enlarged. That is to
say, when the marginal profit of the product is very low,
the decision maker should take the information of demand
points into consideration; otherwise he should ignore this
information. Therefore, we recommend the use of 𝑞∗𝑅𝑑 as the
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Figure 4: Comparison of the performance of 𝑞∗𝑅𝑑 with 𝑞∗𝑅𝑐 with respect to different profit margins. PS: 𝑛 = 12.
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Table 3: Comparison of the performance of 𝑞∗𝑅𝑑 with 𝑞∗𝑅𝑐 over 100 instances.
m 90% 70% 50% 30% 10%

n=6 E[𝜋𝐹 (𝑞∗𝑅𝑐)𝜋𝐹 (𝑞∗𝐹𝑑)] 0.9853 0.9627 0.9415 0.6137 0.1875

n=6 E[𝜋𝐹 (𝑞∗𝑅𝑑)𝜋𝐹 (𝑞∗𝐹𝑑) ] 0.9573 0.7321 0.4898 0.6236 0.8902

n=12 E[𝜋𝐹 (𝑞∗𝑅𝑐)𝜋𝐹 (𝑞∗𝐹𝑑)] 0.9922 0.9757 0.9617 0.7068 0.0283

n=12 E[𝜋𝐹 (𝑞∗𝑅𝑑)𝜋𝐹 (𝑞∗𝐹𝑑) ] 0.9786 0.7833 0.6040 0.7446 0.8238

n=24 E[𝜋𝐹 (𝑞∗𝑅𝑐)𝜋𝐹 (𝑞∗𝐹𝑑)] 0.9967 0.9817 0.9797 0.7810 0.0085

n=24 E[𝜋𝐹 (𝑞∗𝑅𝑑)𝜋𝐹 (𝑞∗𝐹𝑑) ] 0.9832 0.7775 0.5309 0.7429 0.5327
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Figure 5: Sensitivity of different optimal order quantities against the
profit margin.

optimal ordering decision for the decision maker in those
circumstanceswhen the product’smarginal profit is super low
and only partial information of discrete demand is known.

4.3. Effect of the Profit Margin. To gain more insights, in our
third numerical experiment we study the effect of the profit
margin𝑚 = (𝑝 − 𝑐)/(𝑝 − 𝑠) on three different order decisions𝑞∗𝑅𝑑, 𝑞∗𝑅𝑐, and 𝑞∗𝐹𝑑. We set parameters as 𝑝 = 10 and 𝑠 = 0.
In this example, 12 demand points are randomly taken on the
interval [0, 2000], and their corresponding probabilities are
drawn from a uniform distribution.

Figure 5 demonstrates that 𝑞∗𝑅𝑑, 𝑞∗𝑅𝑐, and 𝑞∗𝐹𝑑 are all
increasing in profit margin 𝑚. That is to say, the higher the

marginal profit of the product is, the higher the optimal order
quantity is, no matter what kind of optimal order quantity
is. Specifically, in this random case, under different profit
margins, 𝑞∗𝑅𝑑 is always closer to 𝑞∗𝐹𝑑 than 𝑞∗𝑅𝑐; namely, 𝑞∗𝑅𝑑
performs better than 𝑞∗𝑅𝑐.
5. Conclusion

Most previous researches about the robust newsvendor
problem are based on continuous demand. However, in
practice, the demand of many products is discrete.This paper
integrates a distribution-free design with discrete demand,
into a robust optimization approach. The close-form of
expression for the worst-case expected profit is provided, and
solving steps to obtain the optimal decision 𝑞∗𝑅𝑑 are given.The
important findings are summarized as follows:(1) For the same information of mean and variance,𝑞∗𝑅𝑐 is constant, but 𝑞∗𝑅𝑑 adjusts according to the different
information of demand points.(2) The number of total demand points has almost no
effect on the performance of 𝑞∗𝑅𝑑 and 𝑞∗𝑅𝑐.(3)Theperformance of 𝑞∗𝑅𝑑 is significantly better than 𝑞∗𝑅𝑐
only if the product’s marginal profit is very low.

The managerial implications of these findings are as
follows: When the product’s marginal profit is super low
and only partial distributional information of the discrete
demand is known, 𝑞∗𝑅𝑑 is the most appropriate optimal order-
ing decision for the decision maker. Under this situation,
besides the information of mean and variance, the informa-
tion of demand points is also very important to the decision
maker. In addition, the number of total demand points has
no effect on the decision.

There are many questions that need to be further
explored. For example, other extensions of our research
include studying newsvendor problem with other partial
information about the discrete demand distribution, e.g.,
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range, median, symmetry, unimodality, and partial informa-
tion of demand points.

Appendix

Proof of Theorem 4. Set 𝜋1(𝐷) fl (𝑝 − 𝑠)𝐷 − (𝑐 − 𝑠)𝑞 and𝜋2(𝐷) fl (𝑝 − 𝑐)𝑞; then
𝜋 (𝑞, 𝐷) = {{{

𝜋1 (𝐷) , for 0 ≤ 𝐷 < 𝑐 − 𝑠𝑝 − 𝑠𝑞𝜋2 (𝐷) , for 𝐷 ≥ 𝑞. (A.1)

Let 𝑥𝑗 be the demand point different from the adjacent two
points 𝑥𝑖 and 𝑥𝑖+1. We divide 𝑥𝑗 < 𝑥𝑖 and 𝑥𝑗 > 𝑥𝑖+1 into Case
1 and Case 2.

Case 1. We consider a fixed 𝑞 satisfying 𝑥𝑗 < 𝑞 ≤ 𝑥𝑖, where2 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑖 − 1. If max{(𝑥𝑖 − 𝜇)(𝜇 − 𝑥𝑗), (𝑥𝑖+1 −𝜇)(𝜇 − 𝑥𝑖)} ≤ 𝜎2 ≤ (𝑥𝑖+1 − 𝜇)(𝜇 − 𝑥𝑗), then the three-point
distribution is constructed as

𝑝∗𝑗 = 𝜎
2 + (𝜇 − 𝑥𝑖) (𝜇 − 𝑥𝑖+1)(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖+1) ,

𝑝∗𝑖 = 𝜎
2 + (𝜇 − 𝑥𝑗) (𝜇 − 𝑥𝑖+1)
(𝑥𝑖 − 𝑥𝑗) (𝑥𝑖 − 𝑥𝑖+1) ,

𝑝∗𝑖+1 = 𝜎
2 + (𝜇 − 𝑥𝑗) (𝜇 − 𝑥𝑖)
(𝑥𝑖+1 − 𝑥𝑗) (𝑥𝑖+1 − 𝑥𝑖) ,

𝑝∗𝑘 = 0, 𝑘 = 1, . . . , 𝑛, 𝑘 ̸= 𝑗, 𝑖, 𝑖 + 1.

(A.2)

in order to satisfy the primal feasibility.
From the complementary slackness condition

𝑦∗1 + 𝑥𝑗𝑦∗2 + 𝑥2𝑗𝑦∗3 = (𝑝 − 𝑠) (𝑥𝑗 − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,
𝑦∗1 + 𝑥𝑖𝑦∗2 + 𝑥2𝑖 𝑦∗3 = (𝑝 − 𝑠) (𝑞 − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,

𝑦∗1 + 𝑥𝑖+1𝑦∗2 + 𝑥2𝑖+1𝑦∗3 = (𝑝 − 𝑠) (𝑞 − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,
(A.3)

we can get that

𝑦∗1 = (𝑝 − 𝑠) 𝑥𝑗 [𝑥𝑖𝑥𝑖+1 − 𝑞 (𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑗)](𝑥𝑖 − 𝑥𝑗) (𝑥𝑖+1 − 𝑥𝑗)
− (𝑐 − 𝑠) 𝑞,

𝑦∗2 = (𝑝 − 𝑠) (𝑞 − 𝑥𝑗) (𝑥𝑖+1 + 𝑥𝑖)(𝑥𝑖 − 𝑥𝑗) (𝑥𝑖+1 − 𝑥𝑗) ,

𝑦∗3 = − (𝑝 − 𝑠) (𝑞 − 𝑥𝑗)
(𝑥𝑖 − 𝑥𝑗) (𝑥𝑖+1 − 𝑥𝑗) < 0,

(A.4)

In this case, we still need to guarantee that the solution(𝑦∗1 , 𝑦∗2 , 𝑦∗3 ) also satisfies the dual feasibility condition. It is
easy to check that

𝑔 (𝑥𝑖) > 𝜋1 (𝑥𝑖) ,
𝑔 (𝑥𝑖+1) < 𝜋1 (𝑥𝑖+1) . (A.5)

and

𝑔 (𝑥𝑗) = 𝜋1 (𝑥𝑗) ,
if 𝑥𝑗 < 𝑞 = 𝑥𝑖𝑥𝑖+1 − 𝑥2𝑗(𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗 < 𝑥𝑖;

𝑔 (𝑥𝑗) > 𝜋1 (𝑥𝑗) ,
if 𝑥𝑗 < 𝑥𝑖𝑥𝑖+1 − 𝑥2𝑗(𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗 < 𝑞 < 𝑥𝑖;

𝑔 (𝑥𝑗) < 𝜋1 (𝑥𝑗) ,
if 𝑥𝑗 < 𝑞 < 𝑥𝑖𝑥𝑖+1 − 𝑥2𝑗(𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗 < 𝑥𝑖.

(A.6)

Case 1a. In this case, we see 𝑔(𝑥𝑗) = 𝜋1(𝑥𝑗), i.e., 𝑞 = (𝑥𝑖𝑥𝑖+1 −𝑥2𝑗)/((𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗). The dual feasibility is satisfied.

Case 1b. In this case, we see 𝑔(𝑥𝑗) > 𝜋1(𝑥𝑗), i.e., (𝑥𝑖𝑥𝑖+1 −𝑥2𝑗)/((𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗) < 𝑞 ≤ 𝑥𝑖. The other intersection point
of 𝑔(𝑥) and ℎ(𝑥) is 𝑥, which satisfies

𝑥 = −𝑦∗2 − (𝑝 − 𝑠)𝑦∗3 − 𝑥𝑗
= (𝑥𝑖+1 + 𝑥𝑖 − 𝑥𝑗) − (𝑥𝑖 − 𝑥𝑗) (𝑥𝑖+1 − 𝑥𝑗)𝑞 − 𝑥𝑗 .

(A.7)

Then the dual feasibility is satisfied, if 𝑥 ≤ 𝑥𝑗+1; i.e.,
𝑥𝑖𝑥𝑖+1 − 𝑥2𝑗(𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗 < 𝑞 ≤

𝑥𝑖𝑥𝑖+1 − 𝑥𝑗𝑥𝑗+1
(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗 + 𝑥𝑗+1) . (A.8)

Case 1c. In this case, we see 𝑔(𝑥𝑗) < 𝜋1(𝑥𝑗); i.e., 𝑥𝑗 < 𝑞 <(𝑥𝑖𝑥𝑖+1 −𝑥2𝑗)/((𝑥𝑖 +𝑥𝑖+1) − 2𝑥𝑗). For 𝑗 = 1, the dual feasibility
is already satisfied. For 2 ≤ 𝑗 ≤ 𝑖 − 1, the dual feasibility is
satisfied, if 𝑔(0) ≤ 𝜋1(0); i.e.,

𝑥𝑖𝑥𝑖+1𝑥𝑖 + 𝑥𝑖+1 − 𝑥𝑗 ≤ 𝑞 <
𝑥𝑖𝑥𝑖+1 − 𝑥2𝑗(𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗 , (A.9)

and furthermore 𝑥 ≥ 𝑥𝑗−1, and
𝑥𝑖𝑥𝑖+1 − 𝑥𝑗−1𝑥𝑗

(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗−1 + 𝑥𝑗) ≤ 𝑞 <
𝑥𝑖𝑥𝑖+1 − 𝑥2𝑗(𝑥𝑖 + 𝑥𝑖+1) − 2𝑥𝑗 , (A.10)
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where

𝑥 = −𝑦∗2 − (𝑝 − 𝑠)𝑦∗3 − 𝑥𝑗
= (𝑥𝑖+1 + 𝑥𝑖 − 𝑥𝑗) − (𝑥𝑖 − 𝑥𝑗) (𝑥𝑖+1 − 𝑥𝑗)𝑞 − 𝑥𝑗

(A.11)

is the other intersection point of 𝑔(𝑥) and 𝜋(𝑞, 𝑥).
Therefore if
𝑥𝑖𝑥𝑖+1 − 𝑥𝑗−1𝑥𝑗

(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗−1 + 𝑥𝑗) ≤ 𝑞

≤ 𝑥𝑖𝑥𝑖+1 − 𝑥𝑗𝑥𝑗+1
(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗 + 𝑥𝑗+1) , for 2 ≤ 𝑗 ≤ 𝑖 − 1;

𝑥𝑗 < 𝑞 ≤ 𝑥𝑖𝑥𝑖+1 − 𝑥𝑗𝑥𝑗+1
(𝑥𝑖 + 𝑥𝑖+1) − (𝑥𝑗 + 𝑥𝑗+1) , for 𝑗 = 1,

(A.12)

then the strong duality of (P) and (D) holds by this comple-
mentarity duality pair. The primal and dual optimal objec-
tives are equal to

𝜋 (𝑞) = 𝑛∑
𝑘=1

𝜋 (𝑞, 𝑥𝑘) 𝑝∗𝑘 = 𝑦∗1 + 𝜇𝑦∗2 + (𝜇2 + 𝜎2) 𝑦∗3
= (𝑝 − 𝑠) 𝑥𝑗𝑝∗𝑗
+ [(𝑝 − 𝑠) (1 − 𝑝∗𝑗 ) − (𝑐 − 𝑠)] 𝑞.

(A.13)

Case 2. We consider a fixed 𝑞 satisfying 𝑥𝑖+1 ≤ 𝑞 < 𝑥𝑗, where1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 2 ≤ 𝑗 ≤ 𝑛. If max{(𝑥𝑖+1 − 𝜇)(𝜇 − 𝑥𝑖), (𝑥𝑗 −𝜇)(𝜇 − 𝑥𝑖+1)} ≤ 𝜎2 ≤ (𝑥𝑗 − 𝜇)(𝜇 − 𝑥𝑖), then the three-point
distribution is constructed as

𝑝∗𝑖 = 𝜎
2 + (𝜇 − 𝑥𝑖+1) (𝜇 − 𝑥𝑗)
(𝑥𝑖 − 𝑥𝑖+1) (𝑥𝑖 − 𝑥𝑗) ≥ 0,

𝑝∗𝑖+1 = 𝜎
2 + (𝜇 − 𝑥𝑖) (𝜇 − 𝑥𝑗)
(𝑥𝑖+1 − 𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑗) ≥ 0,

𝑝∗𝑗 = 𝜎
2 + (𝜇 − 𝑥𝑖) (𝜇 − 𝑥𝑖+1)(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖+1) ≥ 0,

𝑝∗𝑘 = 0, 𝑘 = 1, . . . , 𝑛, 𝑘 ̸= 𝑖, 𝑖 + 1, 𝑗,

(A.14)

in order to satisfy the primal feasibility.
From the complementary slackness condition

𝑦∗1 + 𝑥𝑖𝑦∗2 + 𝑥2𝑖 𝑦∗3 = (𝑝 − 𝑠) (𝑥𝑖 − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,
𝑦∗1 + 𝑥𝑖+1𝑦∗2 + 𝑥2𝑖+1𝑦∗3 = (𝑝 − 𝑠) (𝑥𝑖+1 − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,
𝑦∗1 + 𝑥𝑗𝑦∗2 + 𝑥2𝑗𝑦∗3 = (𝑝 − 𝑠) (𝑞 − 𝑐 − 𝑠𝑝 − 𝑠𝑞) ,

(A.15)

we can get that

𝑦∗1 = (𝑝 − 𝑠) [ 𝑥𝑖𝑥𝑖+1𝑥𝑗
(𝑥𝑖 − 𝑥𝑖+1) (𝑥𝑖 − 𝑥𝑗)

+ 𝑥𝑖+1𝑥𝑖𝑥𝑗
(𝑥𝑖+1 − 𝑥𝑖) (𝑥𝑖+1 − 𝑥𝑗)

+ 𝑞𝑥𝑖𝑥𝑖+1(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖+1)] − (𝑐 − 𝑠) 𝑞,

𝑦∗2 = (𝑝 − 𝑠) [𝑥
2
𝑗 + 𝑥𝑖𝑥𝑖+1 − (𝑥𝑖 + 𝑥𝑖+1) 𝑞]

(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖+1) ,

𝑦∗3 = − (𝑝 − 𝑠) (𝑥𝑗 − 𝑞)
(𝑥𝑗 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑖+1) < 0.

(A.16)

In this case, we still need to guarantee that the solution(𝑦∗1 , 𝑦∗2 , 𝑦∗3 ) also satisfies the dual feasibility condition. It is
easy to check that

𝑔 (𝑥𝑖) > 𝜋2 (𝑥𝑖) ,
𝑔 (𝑥𝑖+1) < 𝜋2 (𝑥𝑖+1) , (A.17)

and
𝑔 (𝑥𝑗) = 𝜋2 (𝑥𝑗) ,

if 𝑥𝑖+1 < 𝑞 = 𝑥2𝑗 − 𝑥𝑖𝑥𝑖+12𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1) < 𝑥𝑗;
(A.18)

𝑔 (𝑥𝑗) > 𝜋2 (𝑥𝑗) ,
if 𝑥𝑖+1 < 𝑥2𝑗 − 𝑥𝑖𝑥𝑖+12𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1) < 𝑞 < 𝑥𝑗;

(A.19)

𝑔 (𝑥𝑗) < 𝜋2 (𝑥𝑗) ,
if 𝑥𝑖+1 < 𝑞 < 𝑥2𝑗 − 𝑥𝑖𝑥𝑖+12𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1) < 𝑥𝑗.

(A.20)

Case 2a. In this case, we see 𝑔(𝑥𝑗) = 𝜋2(𝑥𝑗), i.e., 𝑞 = (𝑥2𝑗 −𝑥𝑖𝑥𝑖+1)/(2𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1)). The dual feasibility is satisfied.

Case 2b. In this case, we see 𝑔(𝑥𝑗) > 𝜋2(𝑥𝑗); i.e., (𝑥2𝑗 −𝑥𝑖𝑥𝑖+1)/(2𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1)) < 𝑞 < 𝑥𝑗. For 𝑗 = 𝑛, the dual
feasibility is already satisfied. For 𝑖 + 2 ≤ 𝑗 ≤ 𝑛 − 1, the dual
feasibility is satisfied, if 𝑥 ≤ 𝑥𝑗+1; i.e.,

𝑥2𝑗 − 𝑥𝑖𝑥𝑖+12𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1) ≤ 𝑞 ≤
𝑥𝑗𝑥𝑗+1 − 𝑥𝑖𝑥𝑖+1

(𝑥𝑗 + 𝑥𝑗+1) − (𝑥𝑖 + 𝑥𝑖+1) , (A.21)

where

𝑥 = −𝑦∗2𝑦∗3 − 𝑥𝑗 =
𝑥2𝑗 + 𝑥𝑖𝑥𝑖+1 − (𝑥𝑖 + 𝑥𝑖+1) 𝑞𝑥𝑗 − 𝑞 − 𝑥𝑗 (A.22)

is the other intersection point of 𝑔(𝑥) and 𝜋(𝑞, 𝑥).
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Case 2c. In this case, we see 𝑔(𝑥𝑗) < 𝜋2(𝑥𝑗); i.e., 𝑥𝑖+1 < 𝑞 <(𝑥2𝑗 − 𝑥𝑖𝑥𝑖+1)/(2𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1)). Then the dual feasibility is
satisfied, if 𝑥 ≥ 𝑥𝑗−1; i.e.,

𝑥𝑗−1𝑥𝑗 − 𝑥𝑖𝑥𝑖+1
(𝑥𝑗−1 + 𝑥𝑗) − (𝑥𝑖 + 𝑥𝑖+1) ≤ 𝑞 <

𝑥2𝑗 − 𝑥𝑖𝑥𝑖+12𝑥𝑗 − (𝑥𝑖 + 𝑥𝑖+1) , (A.23)

where

𝑥 = −𝑦∗2𝑦∗3 − 𝑥𝑗 =
𝑥2𝑗 + 𝑥𝑖𝑥𝑖+1 − (𝑥𝑖 + 𝑥𝑖+1) 𝑞𝑥𝑗 − 𝑞 − 𝑥𝑗 (A.24)

is the other intersection point of 𝑔(𝑥) and 𝜋2(𝑥).
Therefore if𝑥𝑗−1𝑥𝑗 − 𝑥𝑖𝑥𝑖+1
(𝑥𝑗−1 + 𝑥𝑗) − (𝑥𝑖 + 𝑥𝑖+1) ≤ 𝑞

≤ 𝑥𝑗𝑥𝑗+1 − 𝑥𝑖𝑥𝑖+1
(𝑥𝑗 + 𝑥𝑗+1) − (𝑥𝑖 + 𝑥𝑖+1) ,

for 𝑖 + 2 ≤ 𝑗 ≤ 𝑛 − 1;
𝑥𝑗−1𝑥𝑗 − 𝑥𝑖𝑥𝑖+1

(𝑥𝑗−1 + 𝑥𝑗) − (𝑥𝑖 + 𝑥𝑖+1) ≤ 𝑞 < 𝑥𝑗, for 𝑗 = 𝑛,

(A.25)

then the strong duality of (P) and (D) holds by this
complementarity duality pair. The primal and dual optimal
objectives are equal to

𝜋 (𝑞) = 𝑛∑
𝑘=1

𝜋 (𝑞, 𝑥𝑘) 𝑝∗𝑘 = 𝑦∗1 + 𝜇𝑦∗2 + (𝜇2 + 𝜎2) 𝑦∗3
= (𝑝 − 𝑠) (𝑥𝑖𝑝∗𝑖 + 𝑥𝑖+1𝑝∗𝑖+1)
+ [(𝑝 − 𝑠) 𝑝∗𝑗 − (𝑐 − 𝑠)] 𝑞.

(A.26)
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