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Evolutionary algorithms (EAs) are an important instrument for solving the multiobjective optimization problems (MOPs). It has
been observed that the combined ant colony (MOEA/D-ACO) based on decomposition is very promising for MOPs. However, as
the number of optimization objectives increases, the selection pressure will be released, leading to a significant reduction in the
performance of the algorithm. It is a significant problem and challenge in the MOEA/D-ACO to maintain the balance between
convergence and diversity in many-objective optimization problems (MaOPs). In the proposed algorithm, an MOEA/D-ACO
with the penalty based boundary intersection distance (PBI) method (MOEA/D-ACO-PBI) is intended to solve the MaOPs. PBI
decomposes the problems with many single-objective problems, a weighted vector adjustment method based on clustering, and
uses different pheromonematrices to solve different single objectives proposed.Then the solutions are constructed and pheromone
was updated. Experimental results on both CF1-CF4 and suits of C-DTLZ benchmarks problems demonstrate the superiority of
the proposed algorithm in comparison with three state-of-the-art algorithms in terms of both convergence and diversity.

1. Introduction

Over the past few decades, EAs have been successfully
implemented to various real-world optimization problems
with two or three objectives. However, EAs face many
challenges when dealing with MOPs, which have more than
three objectives and are commonly referred to as MaOPs
[1]. The foremost reason is the case that the proportion
of nondominated solutions in the population rises sharply
with an increase in the number of objectives [2]. The Pareto
dominate relation cannot provide sufficient selection pressure
to ensure that the population evolve [3]. In recent years,
more and more multiobjective evolutionary optimization
algorithms (MOEAs) have been improved for solvingMaOPs
[4].

In recent years, as system functions become more and
more complex. MaOPs have become a hot topic in the
field of evolutionary multiobjective optimization community
[5]. It has been found that EAs have succeeded in solving
various optimization problems. However, as the number of
optimization objectives increases, sufficient selection pres-
sure will be released, resulting in a significant reduction in

the performance of the algorithm. It is a challenging major
problem and challenge in the EAs to maintain the balance
between convergence and diversity in MaOPs.

At present, more and more MOEAs have made extraor-
dinary improvement in solving MaOPs. The most popu-
lar method is the Pareto-dominance and modified Pareto-
dominance that relaxes the form of Pareto-dominance to
increase the selection pressure towards the Pareto front, for
example, H Jain and Deb based on the NSGAIII framework
to solve generic MaOPs [6] and fuzzy Pareto-dominance [7].
The disadvantage of the above methods is introduced in one
or more parameters and needs to be adjusted heuristically.
The indicator-based algorithm is promising method for
MaOPs. It uses a single indicator value to guide the evolution
of the population, such as R2 indicator [8] and hypervolume
indicator [9]. The last method is based on decomposition.
Decomposition strategy and neighbourhood concept are
introduced in this method. As one of the popular algorithms,
MOPs based ondecomposition (MOEA/D)were proposed by
Zhang andLi [10].TheMOEA/Duses aggregation function to
compare the solution with the uniformly distributed weight
vector to retain solution convergence and diversity [4, 11].
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MOEA/D gets a real good convergence and diversity and low
computational complexity and thus has an effective method.

ACO originally proposed dealing with single-objective
combination optimization problems [12]. The successful
application of ACO in single-objective optimization has
led some researchers to develop ACO algorithms for mul-
tiobjective optimization problems. Recently, a multiobjec-
tive evolutionary algorithm for multiobjective combinato-
rial optimization problem based on decomposition and ant
colony algorithm (MOEA/D-ACO) was proposed. Ke et
al. combined ACO and decomposition-based multiobjective
evolutionary algorithm (MOEAD/ACO) to solve biobjective
TSP [13]. Despite the advance in adapting MOEAs for
leading with MaOPs, the MOEA/D-ACO performed much
better than the BicriterionAnt in all the test instances. The
MOEA/D-ACO algorithm successfully solves the biobjective
TSP problem.However, its performance in cases with three or
more objectives requires further study. Murilo Zangari Souza
et al. proposed a parallel implementation of MOEA/D-ACO
on a graphics processing unit (GPU) using NVIDIA CUDA
to improve efficiency and achieve high-quality results within
a reasonable execution time [14].

At present, the MOEA/D-ACO optimization algorithm
has been introduced to solve MaOPs in numerous stud-
ies. However, there are few studies on the further use
of MOEA/D-ACO to solve the MaOPs. In this paper, we
introduce the PBI method for MOEA/D-ACO to solve the
MaOPs. Andmany-objective optimization techniques can be
incorporated into our method to maintain convergence and
diversity of algorithm.

From the discussion above, we propose a new algorithm
with MOEA/D-ACO-PBI designed to solve the MaOPs. This
paper mainly focuses on the algorithm that promotes the
performance of convergence and diversity in many-objective
optimization.

This remainder of this paper is organized as follows. In
Section 2, the related work and background were discussed.
TheMOEA/D-ACO-PBI algorithm is described in Section 3.
In Section 5, the experimental studies are provided to
demonstrate the efficiency of the proposed method as well
as some discussions on this paper. Finally, Section 6 makes a
conclusion and points out some future research directions.

2. Related Background

2.1. Basic Definitions. General MaOPs can be define as
follows:

minimize 𝐹 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) , . . . , (𝑓𝑚 (𝑥)𝑇))
subject to x ∈ Ω ⊆ Rn

(1)

where x = (x1, . . . , xn)T is the n-dimensional decision
variable vector, Ω is the decision space, and F : Ω → Rm

consists of m objective functions, fi(x) (i = 1, 2, . . ., m), m ⩾
4.Rm is called the objective space.

Given two decision vectors x,y ∈ Ω, x is said to Pareto
dominate y (x≺y), if

∀𝑖 ∈ {1, 2, . . . , 𝑚} : 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑦)
∃𝑖 ∈ {1, 2, . . . , 𝑚} : 𝑓𝑖 (𝑥) < 𝑓𝑖 (𝑦) (2)

A solution x∗∈Ω is Pareto optimal if there is no x≺x∗. f(x∗) is
called a Pareto optimal objective vector. The set of all Pareto
optimal objective vectors is called the Pareto front (PF) and
the set of all Pareto optimal solutions is called the Pareto
optimal set (PS).

2.2. MOEA/D. MOEA/D: it is the most popular multiobjec-
tive evolutionary algorithm in recent years. It first initializes
N uniform and widely distributed vectors for each individual
evolving in the direction of each vector, which is equivalent to
dividing multiobjective optimization problems. The solution
to the N scalar optimization subproblems is through the
constant. Evolution can simultaneously obtain the optimal
solution of these N subproblems. The algorithm proposes 3
weighted methods that can be used: weighted sum aggrega-
tion, Tchebycheff approach, and PBI approach.

The traditional weighted sum aggregation is the most
direct method to deal withmultiobjective optimization prob-
lems, and it is also a method used earlier. This method
combines or aggregates all the optimized subobjectives
into a single-objective, and the multiobjective optimization
problem is converted into a single-objective optimization
problem.

The expression of weighted sum aggregation is

min𝑔𝑤𝑠 (𝑥 | 𝜆) = 𝑚∑
𝑖=1

𝜆𝑖𝑓𝑖 (𝑥) (3)

The weighted sum aggregation method generates a set
of different Pareto optimal solutions by generating different
weight vectors in the above scalar optimization problem.
However, in the case that the shape of the optimal Pareto
surface is nonconvex, thismethod cannot obtain every Pareto
optimal vector.

The expression of Tchebycheff approach is

min𝑔𝑡𝑒 (𝑥 | 𝜆, 𝑧∗) = max
1≤𝑖≤𝑚

{𝜆𝑖 | 𝑓𝑖 (𝑥) − 𝑧∗𝑖 } (4)

For each Pareto optimality x there is always a weight
vector y such that the solution of (4) is a Pareto optimal
solution, which corresponds to the Pareto optimal solution
of the original multiobjective problem. And by modifying
the weight vector, different solutions on the Pareto optimal
surface can be obtained. One disadvantage of this approach
is that the aggregate method curves are not smooth when
dealing with continuous multiobjective problems.

The PBI method aims to find the intersection of the
uppermost boundary and a set of lines. In a sense, if the
lines are evenly distributed, the resulting intersections can be
seen as providing a good approximation to the overall Pareto
optimal boundary. These methods can deal with the Pareto
optimal boundary nonconvex problem.The PBI method will
be described in detail later.

2.3.MOEA/D-ACO. Thebasic framework ofMOEA/D-ACO
first decomposes the MOPs into Ns single-objective sub-
problems by N weight vectors 𝜆1, . . . , 𝜆N. Then, MOEA/D-
ACO utilizes N ants to solve these single-objective sub-
problems. Ant ia is responsible for subproblems is. Finally,
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(1) Initialization: generate Nini Solutions by weight vectors 𝜆(2) Decomposition by some aggregation approach(3) Solution construction(4) Update of EP(5) Update of pheromone(6) Check the solutions in the neighbourhood and update the solutions(7) Termination: judgment and output EP (a set of high-quality solutions: XS)

Algorithm 1: MOEA/D-ACO.
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Figure 1: MOEA/D-ACO.

MOEA/D-ACO uses the concept of neighbourhood and
group for decomposing the MaOPs. Figure 1 illustrates the
method of above.

Firstly, MOEA/D-ACO decomposes the MOP into Ns
single-objective subproblems by choosing Nw weight vectors
(𝜆1 . . . 𝜆Nw). Then the subproblem is was associated with
weight vector 𝜆is, and its objective function is denoted as𝑔 (x | 𝜆is). MOEA/D-ACO utilizes Na ants for solving
these single-objective subproblems, while ant ia is responsible
for subproblem is. Both the weighted sum and Tchebycheff
approaches are used inMOEA/D-ACO and are recognized as
MOEA/D-ACOW and MOEA/D-ACOT, respectively. How-
ever, recently, Deb et al. proposed that PBI decomposition
method is more suitable for solving MOPs.

The MOEA/D-ACO is shown in Algorithm 1. In Algo-
rithm 1, for each generation, each ant constructs a solution
in Step (3). In Step (4), the newly constructed solution is
updated in the external archive, and an ant updates the
pheromone matrix of its group in Step (5), if it has found a
new nondominated solution. In Step (6), each ant updates its
current solution if there is a solution that (1) is better than its

p
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Figure 2: Illustration of PBI approach.

current solutions; and (2) has not been used for updating any
other old solution. The algorithm is terminated in Step (7).
2.4. PBI Method. In our paper, we use the PBI approach,
because of its promising performance for many-objective
optimization problems.The optimization problem of the PBI
approach is defined as

minimize 𝑔pbi (x | w, z∗) = d1 + 𝜃d2
subject to x ∈ Ω (5)

where

𝑑1 =
(𝐹 (𝑥) − 𝑧∗) 𝑇𝑤|𝑊|

𝑑2 =
𝐹 (𝑥) − (𝑧 ∗ + 𝑑1𝑊)|𝑊|

(6)

Z∗= (z1 . . . z∗m)T is the ideal objective vector with zi∗ <
min fi(x), x ∈ Ω, i ∈ {1 . . .m}, a penalty parameter 𝜃
predefined by the user. Figure 2 presents an example to
illustrate d1 and d2 of a solution xi. In the PBI approach, d1
is used to measure the convergence of xi towards the EF; d2
is a kind of measure for the population diversity. 𝑔pbi (x |
w, z∗) is a composite measure of x for both diversity and
convergence.The distance between d1 and d2 is controlled by
the parameter 𝜃. In our paper, we set 𝜃 = 5.0 for empirical
studies.
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Figure 3: Cluster-based weight vector adjustment.

2.5. Cluster-BasedWeight Vector Adjustment. For theMaOPs
problem, this paper proposes a weighted vector adjustment
method based on clustering and uses different pheromone
matrices to solve different single objectives. This scalable
approach can help the ant colony algorithm to better solve
the MaOPs problem.

After the multiobjective problem is decomposed into
N single-target subproblems by the PBI method, N ants
are selected to solve these single-target subproblems. Ant
i solves the subproblem i. The subproblem i is associated
with 𝜆i. The corresponding objective function is 𝑔(x |𝜆i). N ants are divided into K groups according to their
corresponding weight distances. Each group approaches a
small area of the Pareto frontier. The same group of ants
share a pheromone matrix that accommodates the location
information of the learned Pareto frontier subregions. Each
ant looks for a special point on the Pareto frontier for a single-
target subproblem. Each ant has its ownheuristic information
matrix to store a priori knowledge of its subproblems.The ant
i’s neighbour B (i) contains T ants whose weights are closest
to 𝜆i in N weights, and i ∈ B (i), and ant i is its own neigh-
bour.

In each iteration of the algorithm, if the solution set in the
dominating set remains unchanged for the first time, it means
that the current weight vector can no longer meet the need
of guiding population evolution, and weight adjustment is
needed. In this case, nondominated populations are classified
based on the clustering method, assuming that there are 7
individuals in the objective space (x1, x2 . . . x7). They had
three clusters, {x3, x5}, {x2, x6}, and {x1, x7, x4}. Among them,
x3, x6, and x7 are cluster centres, as shown in Figure 3.

3. Algorithm Description

3.1. MOEA/D-ACO-PBI. In this paper, we propose an algo-
rithm called MOEA/D-ACO-PBI. The original MOEA/D-
ACO used a weighted sum and Tchebycheff method to solve
the problem.However, this is difficult; because the correlation
between the algebraic and geometrical interpretation of the
weight sets is not valid [15]. Recent studies conducted by
[16] have shown that MOEA/D-PBI is the better method
for many-objective optimization problems. Therefore, we
introduce the PBI approach to MOEA/D-ACO, known as
MOEA/D-ACO-PBI. The MOEA/D-ACO-PBI algorithm is
presented in Algorithm 2.

(1) Initialization(2) Decomposition by PBI approach(3) Solution construction(4) Update of EP(5) Update of pheromone(6) Update the solutions(7) Termination

Algorithm 2: MOEA/D-ACO-PBI.

3.2. Initialization Procedure. Each ant ia has a heuristic
information value 𝜂𝑖𝑎𝑘,𝑙, each group j has pheromone trail 𝜏𝑘𝑖𝑎,𝑗,
and each individual solution xia is a tour represented by
permutation.

The initialization procedure of MOEA/D-ACO-PBI con-
tains six main steps.(1) Setting of Nw and 𝜆Nw: the sets of weight vectors𝜆Nw = {𝜆1 . . . 𝜆Nw} are generated by a systematic approach,
developed from Das and Dennis’s method [17]. Here, the size
of 𝜆 is Nw.

𝑁𝑤 = 𝐶𝑚−1𝐻+𝑚−1 (7)

where H > 0 is the quantity of divisions considered along
each objective coordinate. Therefore, a subproblem is has a
weight vector 𝜆is that satisfies∑𝑚𝑙=1 𝜆𝑖𝑠𝑙 = 1 and 𝜆𝑖𝑠𝑘 ≥ 0, where
m is the number of objectives.(2) Initialize the solution xi to the subproblem is and set
Fi= F (xi), for i = 1. . .n.(3) Set group: the number of groups is J, which is a
value parameter that requires to be selected. The number of
subproblems of each group is equally distributed by clustering
the weights in terms of the Euclidean distance.(4) Initialize the pheromone information matrix 𝜏𝑘𝑖,𝑗 = 1,
for all j = 1. . .k and k = 1. . .n. The motivation is to encourage
the search to focus on exploration in its early stage.(5) Initialize 𝜂𝑖𝑘,𝑙 = 1/∑𝑚𝑗=1 𝜆𝑖𝑗𝑐𝑗𝑘,𝑙, which is the heuristic
information matrix to the subproblem is, for j = 1. . .k.(6) Initialize EP as the set of the entire high-quality
solutions in {F1 . . . FN}; EP is initialized to be empty.

3.3. Solution Construction. Assume that ant ia is in group j
and its current solution xi = (x1

i . . . xni). Ant ia constructs its
new solution through the following steps.(1)The probability of choice of the link is set. For k, l =
1. . .n, set

Φ𝑘,𝑙 = [Γ𝑖𝑎𝑘,𝑙 + Δ ∗ ln (𝑥𝑖𝑎, (𝑘, 𝑙))]𝑎 (𝜂𝑖𝑎𝑘,𝑙)𝛽 (8)

Φk,l is representing the attractiveness of the link between
the k and l to ant ia. The indicator function in (xia, (k. l)) is
equal to 1 if the link (k, l) is in tour xia or 0 if otherwise. 𝛼, 𝛽,
and Δ are the three control parameters.(2) First, ant ia chooses an ant randomly as its starting
point and builds its tour. Suppose that its current position is l
and it has not completed its tour. From S (not visited so far),
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Table 1: Test functions utilized in this experiment.

function Formulation

CF1 𝑓1(𝑥) = 𝑥1 + 2|𝐽1| ∑𝑗∈𝐽1(𝑥𝑗 − 𝑥1
0.5(1.0+3(𝑗−2)/(𝑛−2)))2

𝑓2(𝑥) = 1 − 𝑥1 + 2𝐽2 ∑𝑗∈𝐽2 (𝑥𝑗 − 𝑥1
0.5(1.0+3(𝑗−2)/(𝑛−2)))2

CF2 𝑓1(𝑥) = 𝑥1 + 2|𝐽1| ∑𝑗∈𝐽1(𝑥𝑗 − sin(6𝜋𝑥1 + 𝑗𝜋𝑛 ))2
𝑓2(𝑥) = 1 − √𝑥1 + 2𝐽2 ∑𝑗∈𝐽2 (𝑥𝑗 − cos(6𝜋𝑥1 + 𝑗𝜋𝑛 ))

2

CF3 𝑓1(𝑥) = 𝑥1 + 2𝐽1 (4∑𝑗∈𝐽1𝑦
2
𝑗 − 2∏
𝑗∈𝐽1

cos(20𝑦𝑗𝜋√𝑗 ) + 2)

CF4
𝑓2(𝑥) = 1 − 𝑥21 + 2𝐽2 (4∑𝑗∈𝐽2𝑦

2
𝑗 − 2∏
𝑗∈𝐽2

cos(20𝑦𝑗𝜋√𝑗 ) + 2)
𝑓1 = 𝑥1 + ∑

𝑗∈𝐽1

ℎ𝑗(𝑦𝑗)
𝑓1 = 1 − 𝑥1 + ∑

𝑗∈𝐽2

ℎ𝑗(𝑦𝑗)

it selects the ant k to visit next, according to the following
probability by the roulette wheel selection:

Φ𝑘,𝑙∑𝑠∈𝐶Φ𝑠,𝑙 (9)

(3) If the ant has visited all the points, it returns its tour.

3.4. Update of Pheromone. The pheromone trail value of the
link (k, l) for group j is updated as follows:

𝜏𝑖𝑎𝑘,𝑙 fl 𝜌𝜏𝑗
𝑘,𝑙
+ ∑
𝑥∈Π

1𝑔 (𝑥 | 𝜆𝑖𝑎) (10)

𝜌 is the persistence rate of the pheromone trail. Π is the
set of all the new solutions; it was constructed by the ants in
group j in the current iteration and was just added to EP. It
contains the link between the ants’ k and l. 𝜏min and 𝜏max are
used to limit the range of the pheromone. 𝜏min is given by

𝜏min = 𝜀𝜏max (11)

where 0 < 𝜀 < 1 is a control parameter.Then, if 𝜏𝑖𝑎𝑘,𝑙 < 𝜏min
set 𝜏𝑖𝑎𝑘,𝑙 = 𝜏min and if 𝜏𝑖𝑎𝑘,𝑙 > 𝜏max set 𝜏𝑖𝑎𝑘,𝑙 = 𝜏max. 𝜏max is set

𝜏max = 𝐵 + 1(1 − 𝜌) 𝑔min
(12)

where B is the number of nondominated solutions found
in the current iteration and𝑔min is the smallest value obtained
for the objective functions of all the Ns subproblems.

4. Simulation Results

In this section, we compare the MOEA/D-ACO-PBI
algorithm with three state-of-the-art algorithms including
MOEA/D-ACOW[13], MOEA/D [10], and Multiple Ant

Colony System (MACS) [18]. The test problems are
introduced in Section 4.1. Section 4.2 describes the quality
indicators. Three state-of-the-art algorithms used for
comparison and the corresponding parameter settings are
briefly introduced in Section 4.3.

4.1. Test Problems. The well-known MaOPs test function
definitions of CF1–CF4 [19] are used to test the proposed
algorithm. Table 1 shows the CF1–CF4 problems with the
CF test suites. CF1-CF4 are test functions with biobjective
problem. CF test suites are used to test the low dimensional
objective function. To verify the ability of algorithms to deal
with more objectives, we select C1-DTLZ1, C2-DTLZ2, and
C3-DTLZ4 [20] used to test the high dimensional objective
function. CF suites are popular test problem for MaOPs.

C1-DTLZ1 is a MaOPs problem; the problem is formu-
lated as

𝐶 (𝑥) = 1 − 𝑓𝑚 (𝑥)0.6 − 𝑚−1∑
𝑖=1

𝑓𝑖 (𝑥)0.5 ≥ 0 (13)

C2-DTLZ2 is a MaOPs problem; the problem is formu-
lated as

𝐶 (𝑥) = −min
{{{
min𝑚𝑖=1 [[

(𝑓𝑖 (𝑥) − 1)2 + 𝑚∑
𝑗=1,𝑗 ̸=𝑖

𝑓 2(𝑥)
𝑗

− 𝑟2]
]
, ×[ 𝑚∑
𝑖=1

(𝑓𝑖 (𝑥) − 1√𝑚)
2 − 𝑟2]}}}

≥ 0
(14)

C3-DTLZ4 is a MaOPs problem; the problem is formu-
lated as

𝐶𝑖 (𝑥) = 𝑓2𝑖 (𝑥)4 + 𝑚∑
𝑗=1,𝑗 ̸=𝑖

𝑓2𝑖 (𝑥) − 1 ≥ 0 (15)
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Table 2:The average and standard deviation ofGDvalues obtained forCF1–CF4,C1 DTLZ1, C2 DTLZ2, andC3 DTLZ4with four algorithms
and different number of objectives. Best performance is in bold face.

M MOEA/D-ACO-PBI MOEA/D-ACOW MOEA/D MACS
CF1 2 1.0013e-4 (1.14e-4) 1.1945e-4 (2.08e-4) 1.2524e-4 (2.12e-2) 3.4214e-2 (2.92e-2)
CF2 2 2.3325e-2 (1.05e-2) 2.0382e-2 (2.59e-2) 2.9194e-2 (1.24e-2) 4.5986e-2 (4.28e-2)
CF3 2 2.2667e-1 (1.68e-1) 3.7510e-1 (2.41e-1) 3.3477e-1 (3.19e-1) 4.2804e-1 (1.32e-1)
CF4 2 4.4754e-2 (1.29e-1) 5.4257e-2 (1.38e-1) 4.2232e-2 (7.19e-2) 2.1410e-1 (2.78e-1)

3 3.0152e-3 (2.13e-4) 3.2859e-3 (2.36e-4) 3.4831e-3 (3.32e-4) 4.4339e-3 (1.33e-4)

C1 DTLZ1 4 3.0221-3 (2.23e-4) 2.5532e-2 (2.23e-3) 2.1234e-2 (1.34e-3) 2.4452e-2 (2.12e-2)
5 4.4264e-3 (3.25e-4) 3.3354e-2 (2.23e-2) 5.4261e-2 (2.34e-3) 5.3634e-2 (2.84e-2)

C2 DTLZ2
3 7.4664e-4 (5.31e-5) 2.2772e-3 (4.29e-4) 9.5259e-3 (1.67e-3) 7.9976e-3 (5.29e-3)
4 2.7056e-3 (1.15e-4) 1.1709e-2 (4.81e-3) 1.1867e-2 (1.28e-3) 2.7389e-2 (1.08e-2)
5 5.2944e-3 (2.99e-4) 2.5550e-2 (1.10e-2) 2.7631e-2 (6.95e-3) 5.9090e-2(2.84e-4)

C3 DTLZ4
3 4.0236e-4 (2.23e-4) 6.9914e-4 (3.28e-4) 4.5365e-4 (2.65e-4) 3.514e-3 (3.26e-3)
4 3.0885e-3 (2.32e-3) 2.2035e-2 (3.82e-2) 1.3564e-2 (1.36e-2) 2.5658e-2 (1.25e-4)
5 3.0624e-3 (3.25e-4) 3.6412e-2 (2.21e-2) 3.7225e-2 (5.62e-3) 5.3361e-2 (3.26e-4)

4.2. Quality Indicators. In our empirical study, the following
two widely used quality indicators were considered. The first
one reflects the convergence of an algorithm,while the second
one reflects the convergence and diversity of the solutions
simultaneously.

4.2.1. Generational Distance (GD) Indicator. For any kind
of algorithm, let P be the set of final nondominated points
obtained from the objective space. Let P∗ be a set of points
uniformly spread over the true PF. The GD can indicate only
the convergence of an algorithm [21], and a smaller value
indicates better quality. The GD is computed as

𝐺𝐷 (𝑃, 𝑃∗) = √∑𝑢∈𝑃 𝑑 (𝑢, 𝑃∗)
|𝑃| (16)

4.2.2. Inverted Generational Distance (IGD) Indicator. For
any kind of algorithm, let P be the set of final nondominated
points obtained from the objective space and P∗ be a set
of points uniformly spread over the true PF. The IGD can
indicate both the convergence and diversity [21], and a
smaller value indicates better quality. The IGD is computed
as

𝐼𝐺𝐷 (𝑃, 𝑃∗) = ∑V∈𝑃∗ 𝑑 (V, 𝑃)|𝑃∗| (17)

4.3. Parameter Settings. The parameters for the four MOEAs
considered in this paper are listed as follows.(1) Some parameter settings in MOEA/D-ACO-PBI: set
T=8, 𝛼=1, 𝛽=8, 𝜌=0.95, r=0.8, and 𝜃=5.0.(2) Some parameter settings in MOEA/D-ACOW and
MOEA/D: T=8, 𝛼=1, 𝛽=8, 𝜌=0.95, and r=0.8. The other
parameters can be obtained from [15].(3) Some parameter settings in MACS: 𝛼=1, 𝛽=2, 𝜌=0.9,
maxFcctor=5, and AntNum=10.(4) Number of runs and termination condition: all
algorithms were programmed in PlatEMO [22], and each

algorithm was independently run 30 times for each test
instance and stopped after 300 generations. All the algorithms
were executed on a desktop PC with a 2.1-GHz CPU, 8-GB
RAM, and Windows 10.

5. Results and Discussion

The GD indicator was utilized to compare the conver-
gence capacity between the proposed MOEA/D-ACO-PBI
algorithm and three other algorithms (Figure 4). Table 2
shows the average and standard deviation of the GD values
obtained by the four algorithms for test suits with different
number of objectives. Table 2 shows that the MOEA/D-
ACO-PBI algorithm could perform well on all the test
functions, especially on CF1 and CF3 problems. When the
number of objective test functions is higher, the performance
of MOEA/D-ACO-PBI algorithm is better. The results of
comparison of the MOEA/D-ACO-PBI algorithm with the
other three MOEAs in terms of IGD values, using the test
suite, are provided in Table 3. It shows the average IGD
values for the four MOEAs over 30 independent runs and
the best average and standard deviation values. From the
experimental results of the test problem, theMOEA/D-ACO-
PBI algorithmperforms onCF2, CF4, C1-DTLZ1, C2-DTLZ2,
and C3-DTLZ4 test problems. It is shown that theMOEA/D-
ACO-PBI algorithm has better performance of convergence
and diversity. In addition, performance of MOEA/D-ACOW

algorithm is also better, andMACS performance is the worst.
The conclusions are given below.(1)MOEA/D-ACO-PBI has the best convergence perfor-

mance, as its approximate fronts covermost of those returned
by the other algorithms. MOEA/D-ACOW can obtain well-
spread approximately fronts; however, some of its solutions
were dominated by MOEA/D-ACO-PBI.(2) It can be observed in Figure 3 that MOEA/D-ACO-
PBI dominates in most solutions and that the advantage of
MOEA/D-ACO-PBI is more pronounced as the number of
objectives increases.
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Figure 4: Parallel coordinates figure by four algorithms on the four-objective CF1, CF2, and CF3. (1) MOEA/D-ACO-PBI, (2) MOEA/D-
ACOW, and (3)MOEA/D (4)MACS.



8 Mathematical Problems in Engineering

Table 3: The average and standard deviation of IGD values obtained for CF1–CF4, C1 DTLZ1, C2 DTLZ2, and C3 DTLZ4 with four
algorithms and different number of objectives. Best performance is in bold face.

M MOEA/D-ACO-PBI MOEA/D-ACOW MOEA/D MACS
CF1 2 6.4371e-1 (1.36e-1) 5.1532e-1 (1.27e-1) 6.5734e-1 (1.08e-1) 7.8365e-1 (1.89e-1)
CF2 2 4.5894e-2 (1.28e-2) 4.8905e-2 (2.52e-2) 6.2428e2 (6.10e-2) 2.4116e-1 (3.61e-1)
CF3 2 3.7740e-1 (7.78e-2) 3.1772e-1 (9.32e-2) 3.7877e-1 (1.77e-1) 3.7581e-1 (2.54e-1)
CF4 2 1.6256e-1 (6.34e-2) 2.4364e-1 (1.18e-1) 1.9728e-1 (7.17e-2) 2.4654e-1 (1.32e-1)

C1 DTLZ1 4 2.2653e-1 (3.25e-4) 3.4629e-1 (2.36e-2) 2.5698e-1 3.26e-3) 3.7241e-1 (3.21e-4)
5 3.1651e-1 (4.13e-4) 3.6234e-1 (1.12e-1) 3.7511e-1 (1.69e-1) 5.9283e-1 (3.87e-4)

C2 DTLZ2
3 5.1902e-2 (5.09e-4) 6.5049e-2 (1.46e-3) 5.9751e-2 (4.85e-3) 9.3947e-2 (4.89e-4)
4 1.5255e-1 (8.49e-4) 2.3852e-1 (2.01e-2) 1.9833e-1 (5.52e-3) 4.7290e-1 (8.94e-4)
5 2.3283e-1 (4.29e-4) 2.9947e-1 (1.28e-1) 2.9391e-1 (1.04e-1) 5.5282e-1 (4.94e-4)

C3 DTLZ4
3 5.1141e-2 (4.32e-4) 7.3349e-2 (2.32e-3) 5.3365e-2 (3.32e-3) 6.5254e-2 (2.35e-4)
4 1.1347e-1 (1.32e-4) 2.5983e-1 (3.25e-2) 1.4651e-1 (2.22e-3) 2.4014e-1 (7.52e-4)
5 2.1698e-1 (3.24e-4) 2.7321e-1 (2.36e-1) 2.6651e-1 (1.52e-1) 4.4652e-1 (5.32e-4)

6. Conclusions

The major contribution of this paper is the proposal of a
MOEA/D-ACO-PBI algorithm for MaOPs. Due to the fact
that the number of model optimization objectives increases,
the PBI aggregate function was selected to decompose the
objectives. MOEA/D-ACO-PBI algorithm can better ensure
the convergence of algorithms and the balance of diversity, so
as to obtain a better Pareto solution based on the simulation
experiment; it could be seen that the results of the MOEA/D-
ACO-PBI algorithm are significantly better than those of
the other algorithms. Our future work aims at analysing
further how to cope with constraint and dynamic constraint
processing, and to optimize the number of objectives more
effectively.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research work was supported by the national science and
technology major projects (NO 2009ZX04001-111), subpro-
ject of national science and technologymajor (2013ZX04002-
031), key laboratory of automotive power train and elec-
tronics (Hubei University of Automotive Technology, (No.
ZDK1201703), and Hubei Provincial Education Department
Youth Fund (No. Q20181801).

References

[1] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: a survey,” ACM Computing Surveys, vol. 48, no. 1,
article 13, 2015.

[2] A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, and Q.
Zhang, “Multiobjective evolutionary algorithms: a survey of the

state of the art,” Swarm Evolutionary Computation, vol. 1, no. 1,
pp. 32–49, 2011.

[3] C. Wang, Y. Wang, K. Wang, Y. Dong, and Y. Yang, “An
Improved Hybrid Algorithm Based on Biogeography/Complex
and Metropolis for Many-Objective Optimization,”Mathemat-
ical Problems in Engineering, vol. 2017, 2017.

[4] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey
of multiobjective evolutionary algorithms based on decompo-
sition,” IEEE Transactions on Evolutionary Computation, vol. 21,
no. 3, pp. 440–462, 2017.

[5] C. Von Lücken, B. Barán, and C. Brizuela, “A survey on
multi-objective evolutionary algorithms for many-objective
problems,” Computational Optimization and Applications, vol.
58, no. 3, pp. 707–756, 2014.

[6] H. Jain and K. Deb, “An evolutionary many-objective opti-
mization algorithm using reference-point based nondominated
sorting approach, Part II: Handling constraints and extending
to an adaptive approach,” IEEE Transactions on Evolutionary
Computation, vol. 18, no. 4, pp. 602–622, 2014.

[7] Z. He, G. G. Yen, and J. Zhang, “Fuzzy-based pareto optimality
formany-objective evolutionary algorithms,” IEEETransactions
on Evolutionary Computation, vol. 18, no. 2, pp. 269–285, 2014.

[8] D. H. Phan and J. Suzuki, “R2 indicator based multiobjective
memetic optimization for the pickup and delivery problemwith
time windows and demands (PDP-TW-D,” in Proceedings of
the Conference on Bioinspired Information and Communications
Technologies, vol. 22, pp. 43–50, 2014.

[9] J. Bader and E. Zitzler, “HypE: an algorithm for fast hypervol-
ume-based many-objective optimization,” Evolutionary Com-
putation, vol. 19, no. 1, pp. 45–76, 2011.

[10] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[11] H. Zhu, Z. He, and Y. Jia, “An improved reference point based
multi-objective optimization by decomposition,” International
Journal of Machine Learning and Cybernetics, vol. 7, no. 4, pp.
581–595, 2016.

[12] I. Alaya, C. Solnon, and K. Ghedira, “Ant Colony Optimization
for Multi-Objective Optimization,” in Proceedings of the Prob-
lems, vol. 1, pp. 450–457, 2017.

[13] L. Ke, Q. Zhang, and R. Battiti, “MOEA/D-ACO: a mul-
tiobjective evolutionary algorithm using decomposition and



Mathematical Problems in Engineering 9

AntColony,” IEEE Transactions on Cybernetics, vol. 43, no. 6, pp.
1845–1859, 2013.

[14] M. Z. De Souza and A. T. R. Pozo, “A GPU implementation
of MOEA/D-ACO for the multiobjective traveling salesman
problem,” in Proceedings of the 3rd Brazilian Conference on
Intelligent Systems, BRACIS 2014, pp. 324–329, Brazil, October
2014.

[15] T. Lust and J. Teghem, “Two-phase pareto local search for the
biobjective traveling salesman problem,” Journal of Heuristics,
vol. 16, no. 3, pp. 475–510, 2010.

[16] K. Deb and H. Jain, “An evolutionary many-objective opti-
mization algorithmusing reference-point-based nondominated
sorting approach, part I: solving problemswith box constraints,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4,
pp. 577–601, 2014.

[17] I. Das and J. E. Dennis, “Normal-boundary intersection: a new
method for generating the Pareto surface in nonlinear multi-
criteria optimization problems,” SIAM Journal on Optimization,
vol. 8, no. 3, pp. 631–657, 1998.

[18] B. Barán and M. Schaerer, “A multiobjective ant colony system
for vehicle routing problem with time windows,” in Proceedings
of the 21st IASTED International Multi-Conference on Applied
Informatics, pp. 97–102, Austria, February 2003.

[19] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S.
Tiwari, “Multiobjective optimization test instances for the CEC
2009 special session and competition,” Tech. Rep., University of
Essex, Colchester, UK and Nanyang technological University,
2008.

[20] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition-based
evolutionary algorithm for many objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 3, pp.
445–460, 2015.

[21] C.Wang, Y.Wang, K.Wang, Y. Yang, and Y. Tian, “An improved
biogeography/complex algorithm based on decomposition for
many-objective optimization,” in Proceedings of the Interna-
tional Journal of Machine Learning Cybernetics (2, vol. 2, p. 17,
2017.

[22] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, Platemo, a matlab
platform for evolutionary multi-objective optimization. arXiv
preprint, arXiv, 1701.00879, 2017.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

