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This paper proposes an implementable SAA (sample average approximation) nonlinear Lagrange algorithm for the constrained
minimax stochastic optimization problem based on the sample average approximation method. A computable nonlinear Lagrange
function with sample average approximation functions of original functions is minimized and the Lagrange multiplier is updated
based on the sample average approximation functions of original functions in the algorithm. And it is shown that the solution
sequences obtained by the novel algorithm for solving subproblem converge to their true counterparts with probability one as the
sample size approximates infinity under some moderate assumptions. Finally, numerical experiments are carried out for solving
some typical test problems and the obtained numerical results preliminarily demonstrate that the proposed algorithm is promising.

1. Introduction

Minimax stochastic optimization is a kind of important
problem in stochastic optimization. Minimax stochastic opti-
mization has drawn much attention in recent years, which
has been widely applied in subjects such as inventory theory,
finance optimization, control science, and engineering field
(see [1–7]).

This paper considers the constrained minimax stochastic
optimization problems as follows:

min 𝑇 (𝑥)
s.t. E [𝑔𝑗 (𝑥, 𝜉)] ≤ 0, 𝑗 = 1, . . . , 𝑝,

E [ℎ𝑙 (𝑥, 𝜉)] = 0, 𝑙 = 1, . . . , 𝑞,
(1)

where 𝑇(𝑥) = max𝑖∈{1,2,...,𝑚}E[𝑓𝑖(𝑥, 𝜉)], 𝜉 : Ω 󳨀→ Ξ ⊆ R𝑘

is a random vector that is defined on the probability space(Ω,F,P), E denotes mathematical expectation with respect
to the distribution of 𝜉 ∈ Ξ, and 𝑓𝑖 : R𝑛 × Ξ 󳨀→ R (𝑖 =1, . . . , 𝑚),𝑔𝑗 : R𝑛×Ξ 󳨀→ R (𝑗 = 1, . . . , 𝑝) and ℎ𝑙 : R𝑛×Ξ 󳨀→
R (𝑙 = 1, . . . , 𝑞) are well-defined. Since the objective function𝑇(𝑥) is not differentiable, the efficient smooth optimization

methods cannot be used to solve the problem (1) directly.
Moreover, either distribution of random vector 𝜉 is unknown
or it is too complex to compute themultidimensional integral,
so the exact numerical evaluation of the expected value
functions in problem (1) is very difficult, which results in that
problem (1) cannot be solved directly by the traditional deter-
ministic optimization methods even though problem (1) is
smooth.

On the one hand, as one of the famous smoothing
techniques aiming to overcome the nonsmoothness of 𝑇(𝑥)
(see [1, 8–16]), the nonlinear Lagrange method has many
interesting merits, such as no restrictions on the feasibility
of variables 𝑥, improvement on the convergence rate and
the numerical robustness compared with penalty method by
introducing the Lagrangian multipliers as the main driving
force. On the other hand, the sample average approximation
method is one of the well-behaved approaches for solving
stochastic programming problems, the basic idea of which is
to generate an independent and identically distributed (i.i.d.)
sample 𝜉1, ⋅ ⋅ ⋅ , 𝜉𝑁 of the random variable 𝜉 ∈ Ξ with sample
size 𝑁 by Monte Carlo sampling method and approximate
the involved expected value functions in problem (1) by their
corresponding sample average functions. The SAA method
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has drawn much attention from many authors, see the
comprehensive work by Shapiro [17] and the other works in
[18–30].

Motivated by the effectiveness of the nonlinear Lagrange
method, this paper presents a nonlinear Lagrange function
for problem (1) based on the work in [13] as follows:

𝐿 (𝑥, 𝑢, V, 𝑦, 𝑧, 𝑡) = 𝑡 ln{{{
∑
𝑖∈𝑀

𝑢𝑖𝑒(𝐹𝑖(𝑥)−𝑧)/𝑡

+ ∑
𝑗∈𝑃

V𝑗 (𝑒𝐺𝑗(𝑥)/𝑡 − 1)

+ 1𝑡 ∑
𝑙∈𝑄

(𝑦𝑙 + 12𝑡𝐻𝑙 (𝑥))𝐻𝑙 (𝑥)}}}
,

(2)

where 𝐹𝑖(𝑥) = E[𝑓𝑖(𝑥, 𝜉)], 𝐺𝑗(𝑥) = E[𝑔𝑗(𝑥, 𝜉)], 𝐻𝑙(𝑥) =
E[ℎ𝑙(𝑥, 𝜉)], 𝑢 = (𝑢1, . . . , 𝑢𝑚)𝑇 ∈ 𝑈(𝑚) (𝑈(𝑚) fl {𝑢 ∈ R𝑚 |∑𝑚

𝑖=1 𝑢𝑖 = 1, 𝑢𝑖 ≥ 0, 𝑖 ∈ 𝑀 = {1, . . . , 𝑚}}), V = (V1, . . . , V𝑝)𝑇 ∈
R

𝑝
+ (R𝑝

+ fl {V ∈ R𝑝 | V𝑗 ≥ 0, 𝑗 ∈ 𝑃 = {1, . . . , 𝑝}},
𝑦 = (𝑦1, . . . , 𝑦𝑞)𝑇 ∈ R𝑞, (𝑢, V, 𝑦) is Lagrange multiplier,𝑄 = {1, . . . , 𝑞}, 𝑡 > 0 is a penalty parameter, and 𝑧 ∈ R is an
estimate of the objective function 𝑇(𝑥). 𝐿(𝑥, 𝑢, V, 𝑦, 𝑧, 𝑡) has
good properties and the corresponding nonlinear Lagrangian
algorithm is recalled below (see [13]).

Algorithm 1.

Step 1. Choose 𝑡 ∈ (0, 𝑡̂), where 𝑡̂ ∈ (0, 1), 𝑢(0) ∈ 𝑈(𝑚), V
(0) ∈

R
𝑝
++(R𝑝

++ fl {V ∈ R𝑝|V𝑗 > 0, 𝑗 ∈ 𝑃}), 𝑦(0) ∈ R𝑞, 𝑧(0) ∈
R++(R++ fl {𝑧 ∈ R|𝑧 > 0}), and 𝜀 ∈ (0, 1) being small
enough and set 𝑘 = 0.
Step 2. Solve

min
𝑥∈R𝑛

𝐿 (𝑥, 𝑢(𝑘), V(𝑘), 𝑦(𝑘), 𝑧(𝑘), 𝑡) (3)

and obtain the optimal solution 𝑥(𝑘).

Step 3. If | ∑𝑖∈𝑀 𝑢(𝑘)
𝑖 (𝐹𝑖(𝑥(𝑘))−𝑇(𝑥(𝑘)))| + |∑𝑗∈𝑃 V

(𝑘)
𝑗 𝐺𝑗(𝑥(𝑘))| +

‖𝐻𝑙(𝑥(𝑘))‖ ≤ 𝜀, then stop; otherwise go to Step 4.

Step 4. Update the Lagrange multiplier 𝑢(𝑘)
𝑖 , V(𝑘)𝑗 , 𝑦(𝑘)

𝑙 , and 𝑧(𝑘)

by

𝑢(𝑘+1)
𝑖 = 𝑢(𝑘)

𝑖 𝑒𝐹𝑖(𝑥(𝑘))/𝑡
∑𝑚

𝑖=1 𝑢(𝑘)
𝑖 𝑒𝐹𝑖(𝑥(𝑘))/𝑡 , 𝑖 ∈ 𝑀,

V(𝑘+1)𝑗 = V(𝑘)𝑗 𝑒𝐺𝑗(𝑥(𝑘))/𝑡, 𝑗 ∈ 𝑃,
𝑦(𝑘+1)
𝑙 = 𝑦(𝑘)

𝑙 + 1𝑡 𝐻𝑙 (𝑥(𝑘)) , 𝑙 ∈ 𝑄,
𝑧(𝑘+1) = 𝑡 ln( 𝑚∑

𝑖=1

𝑢(𝑘)
𝑖 𝑒𝐹𝑖(𝑥(𝑘))/𝑡) .

(4)

Step 5. Set 𝑘 = 𝑘 + 1 and return to Step 2.

In view of the difficulty in the numerical computation
of the expected value function in Algorithm 1 and the
inspiration from the SAA method, this paper will pro-
pose an implementable SAA nonlinear Lagrange algorithm
in Section 3. And under some suitable assumptions, the
convergence of the proposed algorithm will be analyzed
in Section 3. In Section 2, some useful preliminaries will
be presented. Furthermore, the numerical results for some
typical test problems are reported to verify the feasibility and
effectiveness of the proposed algorithm in Section 4. In the
last section, the conclusion is drawn.

2. Preliminaries

This section serves as a preparation for the theoretical analysis
in the subsequent section. Firstly, this section provides some
assumptions on problem (1), and then recalls some related
definitions and conclusions.

The Lagrange function for problem (1) is defined by𝐿(𝑥, 𝑢, V, 𝑦) = ∑𝑖∈𝑀 𝑢𝑖𝐹𝑖(𝑥) + ∑𝑗∈𝑃 V𝑗𝐺𝑗(𝑥) + ∑𝑙∈𝑄 𝑦𝑙𝐻𝑙(𝑥).
Let (𝑥∗, 𝑢∗, V∗, 𝑦∗) denote the Karush-Kuhn-Tucker (KKT)
solution of problem (1) and 𝑧∗ = 𝑇(𝑥∗) (see [13]). Let 𝛿 > 0
be small enough. Define 𝑆(𝑥∗, 𝛿) = {𝑥 ∈ R𝑛 | ‖𝑥 − 𝑥∗‖ ≤ 𝛿},𝑆(𝑢∗, 𝛿) = {𝑢 ∈ R𝑚 | ‖𝑢 − 𝑢∗‖ ≤ 𝛿}, 𝑆(V∗, 𝛿) = {V ∈ R𝑝 | ‖V −
V∗‖ ≤ 𝛿}, 𝑆(𝑦∗, 𝛿) = {𝑦 ∈ R𝑞 | ‖𝑦 − 𝑦∗‖ ≤ 𝛿}, and 𝑆(𝑧∗, 𝛿) ={𝑧 ∈ R | |𝑧 − 𝑧∗| ≤ 𝛿}. Define 𝐵𝛿(𝑥∗, 𝑢∗, V∗, 𝑦∗, 𝑧∗) ={(𝑥, 𝑢, V, 𝑦, 𝑧) ∈ R𝑛 × R𝑚 × R𝑝 × R𝑞 × R | 𝑥 ∈ 𝑆(𝑥∗, 𝛿), 𝑢 ∈𝑆(𝑢∗, 𝛿), V ∈ 𝑆(V∗, 𝛿), 𝑦 ∈ 𝑆(𝑦∗, 𝛿), 𝑧 ∈ 𝑆(𝑧∗, 𝛿)}. Some
assumptions on problem (1) are made as follows:

(a) For any 𝜉 ∈ Ξ, 𝑓(𝑥, 𝜉), 𝑔(𝑥, 𝜉), ℎ(𝑥, 𝜉) are twice
continuously differentiable with respect to 𝑥 on𝑆(𝑥∗, 𝛿), and the function values are finite, where𝑓(𝑥, 𝜉) = (𝑓1(𝑥, 𝜉), ⋅ ⋅ ⋅ , 𝑓𝑚(𝑥, 𝜉))𝑇, 𝑔(𝑥, 𝜉) = (𝑔1(𝑥,𝜉), ⋅ ⋅ ⋅ , 𝑔𝑝(𝑥, 𝜉))𝑇, and ℎ(𝑥, 𝜉) = (ℎ1(𝑥, 𝜉), ⋅ ⋅ ⋅ , ℎ𝑞(𝑥,
𝜉))𝑇.

(b) There exist nonnegative measurable functions𝑝𝑖(𝜉) (𝑖 = 1, 2, 3) such that E[𝑝𝑖(𝜉)] (𝑖 = 1, 2, 3)
being finite and for every 𝑥 ∈ 𝑆(𝑥∗, 𝛿) the following
inequalities are true with probability one:

sup
𝑥∈𝑆(𝑥∗,𝛿)

󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝜉)󵄩󵄩󵄩󵄩 < 𝑝1 (𝜉) ,
sup

𝑥∈𝑆(𝑥∗,𝛿)

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝜉)󵄩󵄩󵄩󵄩 < 𝑝2 (𝜉) ,
sup

𝑥∈𝑆(𝑥∗,𝛿)

󵄩󵄩󵄩󵄩ℎ (𝑥, 𝜉)󵄩󵄩󵄩󵄩 < 𝑝3 (𝜉) .
(5)

(c) The random sample 𝜉1, . . . , 𝜉𝑁 is independent and
identically distributed, and obeys the law of large
numbers.

(d) For ease of presentation, assume

𝐼1 (𝑥∗) = {𝑖 | 𝐹𝑖 (𝑥∗) = 𝑇𝑖 (𝑥∗) , 𝑖 ∈ 𝑀} = {1, . . . , 𝑟1} ,
𝐼2 (𝑥∗) = {𝑗 | 𝐺𝑗 (𝑥∗) = 0, 𝑗 ∈ 𝑃} = {1, . . . , 𝑟2} . (6)
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(e) KKT condition holds. That is,
∇𝑥𝐿 (𝑥∗, 𝑢∗, V∗, 𝑦∗) = 0,

𝑢∗ ∈ 𝑈(𝑚), V∗ ∈ R
𝑝
+, 𝑦∗ ∈ R

𝑞,
𝑢∗
𝑖 (𝑇 (𝑥∗) − 𝐹𝑖 (𝑥∗)) = 0, 𝑖 ∈ 𝑀,

V∗𝑗 𝐺𝑗 (𝑥∗) = 0, 𝐺𝑗 (𝑥∗) ≤ 0, 𝑗 ∈ 𝑃,
𝐻𝑙 (𝑥∗) = 0, 𝑙 ∈ 𝑄.

(7)

(f) Strict complementarity condition holds, i.e., V∗𝑗 > 0
for 𝑖 ∈ 𝐼1(𝑥∗) and 𝑢∗

𝑖 > 0 for 𝑗 ∈ 𝐼2(𝑥∗).
(g) The vectors of {∇𝐹𝑖(𝑥∗) | 𝑖 ∈ 𝐼1(𝑥∗)} ∪ {∇𝐺𝑗(𝑥∗) | 𝑖 ∈𝐼2(𝑥∗)} ∪ {∇𝐻𝑙(𝑥∗) | 𝑙 ∈ 𝑄} are linearly independent.
(h) There exists a constant 𝜆 > 0 such that, for all 𝑦 inR𝑛

satisfying ∇𝐹𝑖(𝑥∗)𝑇𝑦 = 0, 𝑖 ∈ 𝐼1(𝑥∗), ∇𝐺𝑗(𝑥∗)𝑇𝑦 = 0,
𝑗 ∈ 𝐼2(𝑥∗), and ∇𝐻𝑙(𝑥∗)𝑇𝑦 = 0, 𝑙 ∈ 𝑄, it holds that

𝑦𝑇∇2
𝑥𝐿 (𝑥∗, 𝑢∗, V∗, 𝑦∗) 𝑦 ≥ 𝜆 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2 . (8)

The following definition (see [17]) is recalled.

Definition 2. For nonempty sets𝐴 and 𝐵 inR𝑛, we denote by𝑑𝑖𝑠𝑡(𝑥, 𝐴) = inf𝑥󸀠∈𝐴‖𝑥 − 𝑥󸀠‖ the distance from 𝑥 ∈ R𝑛 to 𝐴,
and by D(𝐴, 𝐵) = sup𝑥∈𝐴𝑑𝑖𝑠𝑡(𝑥, 𝐵) the deviation of the set 𝐴
from the set 𝐵.

To present the basic lemma, we now consider the follow-
ing stochastic optimization problem:

min
𝑥∈𝐶

{𝑑 (𝑥) fl E [𝐷 (𝑥, 𝜉)]} , (9)

where 𝐶 is a nonempty and compact subset on R𝑛, 𝜉 is a
random vector on Ξ, 𝐷 : 𝐶 × Ξ 󳨀→ R. For any 𝜉 ∈ Ξ, 𝐷(𝑥, 𝜉)
is finite and continuous for all 𝑥 ∈ 𝐶. The sample average
approximation problem of (9) can be expressed as

min
𝑥∈𝐶

{{{
𝑑𝑁 (𝑥) fl 1𝑁

𝑁∑
𝑗=1

𝐷 (𝑥, 𝜉𝑗)}}}
, (10)

where 𝜉1, . . ., and 𝜉𝑁 are 𝑁 independent sample observations
and obey the law of large numbers. Let 𝜐∗ and 𝑆 denote the
optimal value and the optimal solution set of problem (9), 𝜐𝑁
and 𝑆𝑁 indicate the optimal value and the optimal solution
set of problem (10). Then the resulted essential conclusion is
obtained in Lemma 3.

Lemma 3 (see [17]). Suppose that there exists a nonnegative
measurable function 𝑝(𝜉) independent of 𝑥 for 𝐷(𝑥, 𝜉) such
that sup𝑥∈𝐶‖𝐷(𝑥, 𝜉)‖ ≤ 𝑝(𝜉) with probability one. 
en the
following conclusions are true:

(i) 𝑑(𝑥) is continuous and finite on 𝐶;
(ii) 𝑑𝑁(𝑥) converges to 𝑑(𝑥)with probability one uniformly

on 𝐶 as 𝑁 󳨀→ ∞;
(iii) 𝜐𝑁 converges to 𝜐∗ with probability one as 𝑁 󳨀→ ∞;
(iv) 𝐷(𝑆𝑁, 𝑆) converges to 0 with probability one as 𝑁 󳨀→∞.

3. The SAA Nonlinear Lagrange Algorithm and
Its Convergence

This section presents an implementable SAA nonlinear
Lagrange algorithm based on the SAA nonlinear Lagrange
function of nonlinear Lagrange function (2) and then ana-
lyzes its convergence by means of the preliminaries in
Section 2.

Firstly, we construct a SAA nonlinear Lagrange function
of nonlinear Lagrange function (2) below:

𝐿𝑁 (.) = 𝑡 ln{{{
∑
𝑖∈𝑀

𝑢𝑖𝑒(𝐹𝑁,𝑖(𝑥)−𝑧)/𝑡 + ∑
𝑗∈𝑃

V𝑗 (𝑒𝐺𝑁,𝑗(𝑥)/𝑡 − 1)

+ 1𝑡 ∑
𝑙∈𝑄

(𝑦𝑙 + 12𝑡𝐻̂𝑁,𝑙 (𝑥)) 𝐻̂𝑁,𝑙 (𝑥)}}}
,

(11)

where (.) denotes (𝑥, 𝑢, V, 𝑦, 𝑧, 𝑡), 𝐹𝑁,𝑖(𝑥) = (1/𝑁) ∑𝑁
𝑘=1 𝑓𝑖(𝑥,𝜉𝑘), 𝐺𝑁,𝑗(𝑥) = (1/𝑁)∑𝑁

𝑘=1 𝑔𝑗(𝑥, 𝜉𝑘), 𝐻̂𝑁,𝑙(𝑥) = (1/
𝑁)∑𝑁

𝑘=1 ℎ𝑙(𝑥, 𝜉𝑘), and 𝜉1, . . . , 𝜉𝑁 is a random sample.
Based on the SAA nonlinear Lagrange function (11) and

Algorithm 1, an implementable SAA nonlinear Lagrange
algorithm is presented as follows.

Algorithm 4.

Step 1. Choose 𝑡 ∈ (0, 𝑡̂), where 𝑡̂ ∈ (0, 1), 𝜖 ∈ (0, 1) being
small enough, 𝑢̂(0)

𝑁 ∈ 𝑈(𝑚), V̂
(0)
𝑁 ∈ R

𝑝
++, 𝑦(0)

𝑁 ∈ R𝑞, 𝑧̂(0)
𝑁 ∈ R++,

and 𝑁 is large enough. Set 𝑘 = 0.
Step 2. Solve

min
𝑥∈R𝑛

𝐿𝑁 (𝑥, 𝑢̂(𝑘)
𝑁 , V̂(𝑘)𝑁 , 𝑦(𝑘)

𝑁 , 𝑧̂(𝑘)
𝑁 , 𝑡) (12)

and obtain the optimal solution 𝑥(𝑘)
𝑁 .

Step 3. If | ∑𝑖∈𝑀 𝑢̂(𝑘)
𝑁,𝑖(𝐹𝑁,𝑖(𝑥(𝑘)

𝑁 ) − 𝑇(𝑥(𝑘)
𝑁 ))| +

|∑𝑗∈𝑃 V̂
(𝑘)
𝑁,𝑗𝐺𝑁,𝑗(𝑥(𝑘)

𝑁 )| + ‖𝐻̂𝑁(𝑥(𝑘)
𝑁 )‖ ≤ 𝜀, then stop; otherwise

go to.

Step 4. Update the Lagrangemultiplier 𝑢̂(𝑘)
𝑁,𝑖, V̂(𝑘)𝑁,𝑗, 𝑦(𝑘)

𝑁,𝑙
, and 𝑧̂(𝑘)

𝑁

by

𝑢̂(𝑘+1)
𝑁,𝑖 = 𝑢̂(𝑘)

𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(𝑘)𝑁 )/𝑡

∑𝑚
𝑖=1 𝑢̂(𝑘)

𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(𝑘)𝑁 )/𝑡
, 𝑖 ∈ 𝑀,

V̂(𝑘+1)𝑁,𝑗 = V̂(𝑘)𝑁,𝑗𝑒𝐺𝑁,𝑗(𝑥(𝑘)𝑁 )/𝑡, 𝑗 ∈ 𝑃,
𝑦(𝑘+1)
𝑁,𝑙 = 𝑦(𝑘)

𝑁,𝑙 + 1𝑡 𝐻̂𝑁,𝑙 (𝑥(𝑘)
𝑁 ) , 𝑙 ∈ 𝑄,

𝑧̂(𝑘+1)
𝑁 = 𝑡 ln( 𝑚∑

𝑖=1

𝑢̂(𝑘)
𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(𝑘)𝑁 )/𝑡) .

(13)

Step 5. Set 𝑘 = 𝑘 + 1 and return to Step 2.
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Next, we study the convergence of Algorithm 4 on𝐵𝛿(𝑥∗, 𝑢∗, V∗, 𝑦∗, 𝑧∗) based on the assumptions (a)-(h) and
Lemma 3 in Section 2. Let 𝜐(𝑘)

𝑁 and 𝑆(𝑘)
𝑁 denote the optimal

value and optimal solution set of problem (12), 𝜐(𝑘) and 𝑆(𝑘)

denote the optimal value and optimal solution set of problem
(3).

Theorem 5. If assumptions (a)-(c) hold and for 𝑘 (𝑘 =0, 1, . . .), 𝑢̂(𝑘)
𝑁,𝑖 converges to 𝑢(𝑘)

𝑖 (𝑖 = 1, . . . , 𝑚) with probability
one, V̂(𝑘)𝑁,𝑗 converges to V

(𝑘)
𝑗 (𝑗 = 1, . . . , 𝑝) with probability one,

𝑦(𝑘)
𝑁,𝑙

converges to 𝑦(𝑘)
𝑙

(𝑙 = 1, . . . , 𝑞) with probability one, and
𝑧̂(𝑘)
𝑁 converges to 𝑧(𝑘) with probability one as 𝑁 󳨀→ ∞, then
the following statements are true.

(i) 𝐿𝑁(𝑥, 𝑢̂(𝑘)
𝑁 , V̂(𝑘)𝑁 , 𝑦(𝑘)

𝑁 , 𝑧̂(𝑘)
𝑁 , 𝑡) converges to 𝐿(𝑥, 𝑢(𝑘), V(𝑘),𝑦(𝑘), 𝑧(𝑘), 𝑡) with probability one uniformly as 𝑁 󳨀→∞ on 𝑆(𝑥∗, 𝛿);

(ii) 𝜐(𝑘)
𝑁 converges to 𝜐(𝑘) with probability one and𝐷(𝑆(𝑘)

𝑁 , 𝑆(𝑘)) converges to 0 with probability one as𝑁 󳨀→ ∞.

Proof. (i) Define 𝜑(1)(𝑎, 𝑏, 𝑧, 𝑡) = 𝑎𝑒(𝑏−𝑧)/𝑡, 𝜑(2)(𝑐, 𝑑, 𝑡) =𝑑(𝑒𝑐/𝑡 − 1), and 𝜑(3)(𝑒, 𝑓, 𝑡) = (1/𝑡)(𝑒 + (1/2𝑡)𝑓)𝑓, where𝑎, 𝑏, 𝑧, 𝑐, 𝑑, 𝑒, 𝑓 ∈ R and 𝑡 is defined as in (2). And set

𝜙 (𝑥, 𝑡) = ∑
𝑖∈𝑀

𝜑(1) (𝑢(𝑘)
𝑖 , 𝐹𝑖 (𝑥) , 𝑧(𝑘), 𝑡)

+ ∑
𝑗∈𝑃

𝜑(2) (V(𝑘)𝑗 , 𝐺𝑗 (𝑥) , 𝑡)
+ ∑

𝑙∈𝑄

𝜑(3) (𝑦(𝑘)
𝑙 , 𝐻𝑙 (𝑥) , 𝑡) ,

𝜙𝑁 (𝑥, 𝑡) = ∑
𝑖∈𝑀

𝜑(1) (𝑢̂(𝑘)
𝑁,𝑖, 𝐹𝑁,𝑖 (𝑥) , 𝑧̂(𝑘)

𝑁 , 𝑡)
+ ∑

𝑗∈𝑃

𝜑(2) (V̂(𝑘)𝑁,𝑗, 𝐺𝑁,𝑗 (𝑥) , 𝑡)
+ ∑

𝑙∈𝑄

𝜑(3) (𝑦(𝑘)
𝑁,𝑙, 𝐻̂𝑁,𝑙 (𝑥) , 𝑡) .

(14)

At first, we are to prove that 𝜙𝑁(𝑥) converges to𝜙(𝑥) with probability one uniformly as 𝑁 󳨀→ ∞, for
which we need to prove that as 𝑁 󳨀→ ∞, 𝜑(1)(𝑢(𝑘)

𝑁,𝑖,𝐹𝑁,𝑖(𝑥), 𝑧̂(𝑘)
𝑁 , 𝑡) converges to 𝜑(1)(𝑢(𝑘)

𝑖 , 𝐹𝑖(𝑥), 𝑧(𝑘), 𝑡) (𝑖 =1, . . . , 𝑚)with probability one uniformly,𝜑(2) (V(𝑘)𝑁,𝑗, 𝐺𝑁,𝑗(𝑥), 𝑡)
converges to 𝜑(2)(V(𝑘)𝑗 , 𝐺𝑗(𝑥), 𝑡) (𝑗 = 1, . . . , 𝑝) with prob-
ability one uniformly, and 𝜑(3)(𝑦(𝑘)

𝑁,𝑙
, 𝐻̂𝑁,𝑙(𝑥), 𝑡) converges

to 𝜑(3)(𝑦(𝑘)
𝑙

, 𝐻𝑙(𝑥), 𝑡) (𝑙 = 1, . . . , 𝑞) with probability one
uniformly on 𝑆(𝑥∗, 𝛿), respectively. The proof for it is divided
into the following three parts.

(A) First we shall prove that as 𝑁 󳨀→ ∞,𝜑(1)(𝑢(𝑘)
𝑁,𝑖, 𝐹𝑁,𝑖(𝑥), 𝑧(𝑘)

𝑁 ) converges to 𝜑(1)(𝑢(𝑘)
𝑖 , 𝐹𝑖(𝑥), 𝑧(𝑘)) (𝑖 =1, . . . , 𝑚) with probability one uniformly on 𝑆(𝑥∗, 𝛿).

According to the definition of 𝜑(1)(𝑎, 𝑏, 𝑧), we have
󵄨󵄨󵄨󵄨󵄨𝜑(1) (𝑢̂(𝑘)

𝑁,𝑖, 𝐹𝑁,𝑖 (𝑥) , 𝑧̂(𝑘)
𝑁 , 𝑡) − 𝜑(1) (𝑢(𝑘)

𝑖 , 𝐹𝑖 (𝑥) , 𝑧(𝑘), 𝑡)󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨𝑢̂(𝑘)

𝑁,𝑖𝑒(𝐹𝑁,𝑖(𝑥)−𝑧(𝑘)𝑁 )/𝑡 − 𝑢(𝑘)
𝑖 𝑒(𝐹𝑁,𝑖(𝑥)−𝑧(𝑘)𝑁 )/𝑡

+ 𝑢(𝑘)
𝑖 𝑒(𝐹𝑁,𝑖(𝑥)−𝑧(𝑘)𝑁 )/𝑡 − 𝑢(𝑘)

𝑖 𝑒(𝐹𝑖(𝑥)−𝑧(𝑘))/𝑡󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑢̂(𝑘)
𝑁,𝑖

− 𝑢(𝑘)
𝑖

󵄨󵄨󵄨󵄨󵄨 𝑒(𝐹𝑁,𝑖(𝑥)−𝑧(𝑘)𝑁 )/𝑡 + 𝑢(𝑘)
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨𝑒(𝐹𝑁,𝑖(𝑥)−𝑧(𝑘)𝑁 )/𝑡

− 𝑒(𝐹𝑖(𝑥)−𝑧(𝑘))/𝑡󵄨󵄨󵄨󵄨󵄨󵄨 .

(15)

One has that 𝐹𝑁,𝑖(𝑥) and 𝐹𝑖(𝑥) (𝑖 = 1, . . . , 𝑚) are continu-
ous on 𝑆(𝑥∗, 𝛿)with respect to 𝑥 from the assumption (a) and
Lemma 3, so there exists a closed interval [𝑐1, 𝑑1] (𝑐1, 𝑑1 ∈𝑅) such that 𝐹𝑁,𝑖(𝑥) ∈ [𝑐1, 𝑑1], and 𝐹𝑖(𝑥) ∈ [𝑐1, 𝑑1] for𝑥 ∈ 𝑆(𝑥∗, 𝛿). Since 𝑧̂(𝑘)

𝑁 and 𝑧(𝑘) are bounded, there exist 𝑐1󸀠,𝑑1
󸀠 ∈ 𝑅, such that 𝐹𝑁,𝑖(𝑥) − 𝑧(𝑘)

𝑁 ∈ [𝑐1󸀠, 𝑑1
󸀠] and 𝐹𝑖(𝑥) −

𝑧(𝑘) ∈ [𝑐1󸀠, 𝑑1
󸀠]. Thus, we have that 𝑒(𝐹𝑁,𝑖(𝑥)−𝑧(𝑘)𝑁 )/𝑡 is bounded

on 𝑆(𝑥∗, 𝛿) with respect to 𝑥. Let 𝑃(𝑦) = 𝑒𝑦/𝑡(𝑦 ∈ 𝑅). Then𝑃(𝑦) is continuous in [𝑐1󸀠, 𝑑1
󸀠]with respect to𝑦. It follows that𝑃(𝑦) is continuous uniformly in [𝑐1󸀠, 𝑑1

󸀠] from the property
of continuous function. That is, for any 𝜀 > 0, there exists 𝛿1,
for 𝑥, 𝑦 ∈ [𝑐1󸀠, 𝑑1

󸀠]; if |𝑥 − 𝑦| < 𝛿1, it holds that

󵄨󵄨󵄨󵄨󵄨𝑒𝑥/𝑡 − 𝑒𝑦/𝑡󵄨󵄨󵄨󵄨󵄨 < 𝜀. (16)

Note that 𝐹𝑁,𝑖(𝑥) converges to 𝐹𝑖(𝑥) (𝑖 = 1, . . . , 𝑚) with
probability one uniformly on 𝑆(𝑥∗, 𝛿) from Lemma 3 and 𝑧̂(𝑘)

𝑁

converges to 𝑧(𝑘) with probability one; hence for 𝛿1 > 0, there
exists 𝑁1, when 𝑁 > 𝑁1, for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿), we have

󵄨󵄨󵄨󵄨󵄨(𝐹𝑁,𝑖 (𝑥) − 𝑧̂(𝑘)
𝑁 ) − (𝐹𝑖 (𝑥) − 𝑧(𝑘))󵄨󵄨󵄨󵄨󵄨

< 󵄨󵄨󵄨󵄨󵄨𝐹𝑁,𝑖 (𝑥) − 𝐹𝑖 (𝑥)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑧̂(𝑘)
𝑁 − 𝑧(𝑘)󵄨󵄨󵄨󵄨󵄨 < 𝛿12 + 𝛿12 = 𝛿1.

(17)

It follows from (16) and (17) that for any 𝜀 > 0, there exists𝑁1, when 𝑁 > 𝑁1; for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿), it holds that
󵄨󵄨󵄨󵄨󵄨󵄨𝑒(𝐹𝑁,𝑖(𝑥)−𝑧(𝑘)𝑁 )/𝑡 − 𝑒(𝐹𝑖(𝑥)−𝑧(𝑘))/𝑡󵄨󵄨󵄨󵄨󵄨󵄨 < 𝜀. (18)

Thus, in view of (15), 𝑢(𝑘)
𝑖 ∈ 𝑆(𝑢∗, 𝛿), and the condition

that 𝑢̂(𝑘)
𝑁,𝑖 converges to 𝑢(𝑘)

𝑖 (𝑁 󳨀→ ∞) with probability
one, we obtain that 𝜑(1)(𝑢(𝑘)

𝑁,𝑖, 𝐹𝑁,𝑖(𝑥), 𝑧̂(𝑘)
𝑁 , 𝑡) converges to

𝜑(1)(𝑢(𝑘)
𝑖 , 𝐹𝑖(𝑥), 𝑧̂(𝑘), 𝑡) with probability one uniformly on𝑆(𝑥∗, 𝛿) as 𝑁 󳨀→ ∞.

(B) Next, we prove that 𝜑(2)(V(𝑘)𝑁,𝑗, 𝐺𝑁,𝑗(𝑥), 𝑡) converges
to 𝜑(2)(V(𝑘)𝑗 , 𝐺𝑗(𝑥), 𝑡) (𝑗 = 1, . . . , 𝑝) with probability one
uniformly on 𝑆(𝑥∗, 𝛿) as 𝑁 󳨀→ ∞.
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From the definition of 𝜑(2)(𝑐, 𝑑, 𝑡), we have
󵄨󵄨󵄨󵄨󵄨𝜑(2) (V̂(𝑘)𝑁,𝑗, 𝐺𝑁,𝑗 (𝑥) , 𝑡) − 𝜑(2) (V(𝑘)𝑗 , 𝐺𝑗 (𝑥) , 𝑡)󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨V̂(𝑘)𝑁,𝑗 (𝑒𝐺𝑁,𝑗(𝑥)/𝑡 − 1) − V(𝑘)𝑗 (𝑒𝐺𝑁,𝑗(𝑥)/𝑡 − 1)
+ V(𝑘)𝑗 (𝑒𝐺𝑁,𝑗(𝑥)/𝑡 − 1) − V(𝑘)𝑗 (𝑒𝐺𝑗(𝑥)/𝑡 − 1)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨V̂(𝑘)𝑁,𝑗

− V(𝑘)𝑗

󵄨󵄨󵄨󵄨󵄨 (𝑒𝐺𝑁,𝑗(𝑥)/𝑡 − 1) + V(𝑘)𝑗

󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝐺𝑁,𝑗(𝑥)/𝑡 − 𝑒𝐺𝑗(𝑥)/𝑡󵄨󵄨󵄨󵄨󵄨󵄨 .

(19)

Since 𝐺𝑁,𝑗(𝑥) and 𝐺𝑗(𝑥) (𝑗 = 1, . . . , 𝑝) are continuous
on 𝑆(𝑥∗, 𝛿) with respect to 𝑥 from the assumption (a) and
Lemma 3, there exits a closed interval [𝑐2, 𝑑2] (𝑐2, 𝑑2 ∈ 𝑅)
such that 𝐺𝑁,𝑗(𝑥) ∈ [𝑐2, 𝑑2] and 𝐺𝑖(𝑥) ∈ [𝑐2, 𝑑2] for 𝑥 ∈
𝑆(𝑥∗, 𝛿), which means that 𝑒𝐺𝑁,𝑗(𝑥)/𝑡 is bounded on 𝑆(𝑥∗, 𝛿)
with respect to 𝑥. From the proof process of (A), we get that,
for any 𝜀 > 0, there exists a positive integer𝑁2, when𝑁 > 𝑁2,
for 𝑥 ∈ 𝑆(𝑥∗, 𝛿), it holds that

󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝐺𝑁,𝑗(𝑥)/𝑡 − 𝑒𝐺𝑗(𝑥)/𝑡󵄨󵄨󵄨󵄨󵄨󵄨 < 𝜀. (20)

Therefore, combined with (19), it follows from V̂(𝑘)𝑁,𝑗

converging to V(𝑘)𝑗 with probability one as 𝑁 󳨀→ ∞
and V(𝑘)𝑗 ∈ 𝑆(V∗, 𝛿) that 𝜑(2)(V̂(𝑘)𝑁,𝑗, 𝐺𝑁,𝑗(𝑥), 𝑡) converges to
𝜑(2)(V(𝑘)𝑗 , 𝐺𝑗(𝑥), 𝑡) (𝑗 = 1, . . . , 𝑝) uniformly with probability
one on 𝑆(𝑥∗, 𝛿) as 𝑁 󳨀→ ∞.

(C) Now we prove that 𝜑(3)(𝑦(𝑘)
𝑁,𝑙

, 𝐻̂𝑁,𝑙(𝑥), 𝑡) converges to
𝜑(3)(𝑦(𝑘)

𝑙 , 𝐻𝑙(𝑥), 𝑡) with probability one uniformly on 𝑆(𝑥∗, 𝛿)
as 𝑁 󳨀→ ∞.

From the definition of 𝜑(3)(𝑒, 𝑓, 𝑡), we have
󵄨󵄨󵄨󵄨󵄨𝜑(3) (𝑦(𝑘)

𝑁,𝑙, 𝐻̂𝑁,𝑙 (𝑥) , 𝑡) − 𝜑(3) (𝑦(𝑘)
𝑙 , 𝐻𝑙 (𝑥) , 𝑡)󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝑡 (𝑦(𝑘)
𝑁,𝑙 + 12𝑡𝐻̂𝑁,𝑙 (𝑥)) 𝐻̂𝑁,𝑙 (𝑥)

− 1𝑡 (𝑦(𝑘)
𝑙 + 12𝑡𝐻̂𝑁,𝑙 (𝑥)) 𝐻̂𝑁,𝑙 (𝑥)

+ 1𝑡 (𝑦(𝑘)
𝑙 + 12𝑡𝐻̂𝑁,𝑙 (𝑥)) 𝐻̂𝑁,𝑙 (𝑥)

− 1𝑡 (𝑦(𝑘)
𝑙 + 12𝑡𝐻𝑙 (𝑥))𝐻𝑙 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1𝑡 󵄨󵄨󵄨󵄨󵄨𝑦(𝑘)

𝑁,𝑙 − 𝑦(𝑘)
𝑙

󵄨󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨𝐻̂𝑁,𝑙 (𝑥)󵄨󵄨󵄨󵄨󵄨 + 1𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨[𝑦(𝑘)
𝑙 + 12𝑡 (𝐻̂𝑁,𝑙 (𝑥) + 𝐻𝑙 (𝑥))]󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ 󵄨󵄨󵄨󵄨󵄨𝐻̂𝑁,𝑙 (𝑥) − 𝐻𝑙 (𝑥)󵄨󵄨󵄨󵄨󵄨 .

(21)

Since 𝐻̂𝑁,𝑙(𝑥) and 𝐻𝑙(𝑥) (𝑙 = 1, . . . , 𝑞) are continuous on𝑆(𝑥∗, 𝛿) with respect to 𝑥 according to the assumption (a)
and Lemma 3, there exists a closed interval [𝑐3, 𝑑3] (𝑐3, 𝑑3 ∈𝑅) such that 𝐻̂𝑁,𝑙(𝑥) ∈ [𝑐3, 𝑑3] and 𝐻𝑙(𝑥) ∈ [𝑐3, 𝑑3] for𝑥 ∈ 𝑆(𝑥∗, 𝛿); i.e., 𝐻̂𝑁,𝑙(𝑥) + 𝐻𝑙(𝑥) is bounded. Then from𝑦(𝑘)
𝑙

∈ 𝑆(𝑦∗, 𝛿) it follows that [𝑦(𝑘)
𝑙

+ (1/2𝑡)(𝐻̂𝑁,𝑙(𝑥) +𝐻𝑙(𝑥))] is bounded on 𝑆(𝑥∗, 𝛿). From Lemma 3, it is true that

𝐻̂𝑁,𝑙(𝑥) converges to𝐻𝑙(𝑥) (𝑙 = 1, . . . , 𝑞)with probability one
uniformly on 𝑆(𝑥∗, 𝛿). That is, for any 𝜀 > 0, there exists
a positive integer 𝑁3, when 𝑁 > 𝑁3, for 𝑥 ∈ 𝑆(𝑥∗, 𝛿), the
following inequality holds with probability one:

󵄨󵄨󵄨󵄨󵄨𝐻̂𝑁,𝑙 (𝑥) − 𝐻𝑙 (𝑥)󵄨󵄨󵄨󵄨󵄨 < 𝜀. (22)

Moreover, considering (21) and the fact that 𝑦(𝑘)
𝑁,𝑙

con-
verges to 𝑦(𝑘)

𝑙
with probability one as 𝑁 󳨀→ ∞, we have

that 𝜑(3)(𝑦(𝑘)
𝑁,𝑙

, 𝐻̂𝑁,𝑙(𝑥), 𝑡) converges to 𝜑(3)(𝑦(𝑘)
𝑙

, 𝐻𝑙(𝑥), 𝑡) with
probability one uniformly on 𝑆(𝑥∗, 𝛿) as 𝑁 󳨀→ ∞.

Thus, from the above analyses of (A), (B) and (C), we draw
the conclusion that 𝜙𝑁(𝑥) converges to 𝜙(𝑥) with probability
one uniformly on 𝑆(𝑥∗, 𝛿) as𝑁 󳨀→ ∞. Furthermore, in view
of the fact that ln 𝑥 is continuouswith respect to𝑥 onR, it can
be proven that 𝑡 ln𝜙𝑁(𝑥, 𝑡) converges to 𝑡 ln𝜙(𝑥) uniformly
with probability one as 𝑁 󳨀→ ∞ for 𝑡 > 0, which implies
that the conclusion (i) is true.

(ii) From the conclusion (i) and Lemma 3, we can prove
that the conclusion (ii) is true.

Theorem 6. If assumptions (a)-(c) hold and letting 𝑢̂(0)
𝑁,𝑖 =

𝑢(0)
𝑖 (𝑖 = 1, . . . , 𝑚), V̂(0)𝑁,𝑗 = V(0)𝑗 (𝑗 = 1, . . . , 𝑝), 𝑦(0)

𝑁,𝑙 = 𝑦(0)
𝑙 (𝑙 =

1, . . . , 𝑞), and 𝑧̂(0)
𝑁 = 𝑧(0), then for any 𝑘 ≥ 0, the following

statements hold:

(i) As𝑁 󳨀→ ∞, 𝑢̂(𝑘)
𝑁,𝑖 converges to𝑢(𝑘)

𝑖 with probability one
for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑚, V̂(𝑘)𝑁,𝑗 converges to V

(𝑘)
𝑗 with probability

one for 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑝, 𝑦(𝑘)
𝑁,𝑙

converges to 𝑦(𝑘)
𝑙

with
probability one for 𝑙 = 1, ⋅ ⋅ ⋅ , 𝑞, and 𝑧̂(𝑘)

𝑁 converges to𝑧(𝑘) with probability one;

(ii) 𝐿𝑁(𝑥, 𝑢̂(𝑘)
𝑁 , V̂(𝑘)𝑁 , 𝑦(𝑘)

𝑁 , 𝑧̂(𝑘)
𝑁 , 𝑡) converges to 𝐿(𝑥, 𝑢(𝑘), V(𝑘),𝑦(𝑘), 𝑧(𝑘), 𝑡) with probability one uniformly on 𝑆(𝑥∗, 𝛿)

as 𝑁 󳨀→ ∞;
(iii) 𝜐(𝑘)

𝑁 converges to 𝜐(𝑘) with probability one, and𝐷(𝑆(𝑘)
𝑁 , 𝑆(𝑘)) converges to 0 with probability one as𝑁 󳨀→ ∞.

Proof. (i) We use the mathematical induction method to
show that the statement (i) is true below. For 𝑘 = 0, we know
that 𝑢̂(0)

𝑁,𝑖 = 𝑢(0)
𝑖 (𝑖 = 1, . . . , 𝑚), V̂(0)𝑁,𝑗 = V(0)𝑗 (𝑗 = 1, . . . , 𝑝),

𝑦(0)
𝑁,𝑙

= 𝑦(0)
𝑙

(𝑙 = 1, . . . , 𝑞) and 𝑧̂(0)
𝑁 = 𝑧(0), which means that

the conclusion (i) is true for 𝑘 = 0. Next we prove that the
conclusion (i) is true for 𝑘 ≥ 1.

For 𝑘 = 1, from 𝑢̂(0)
𝑁,𝑖 = 𝑢(0)

𝑖 , one has that

𝑢̂(1)
𝑁,𝑖 = 𝑢(0)

𝑖 𝑒𝐹𝑁,𝑖(𝑥(0)𝑁 )/𝑡

∑𝑚
𝑗=1 𝑢(0)

𝑗 𝑒𝐹𝑁,𝑗(𝑥(0)𝑁 )/𝑡
,

𝑢(1)
𝑖 = 𝑢(0)

𝑖 𝑒𝐹𝑖(𝑥(0))/𝑡
∑𝑚

𝑗=1 𝑢(0)
𝑗 𝑒𝐹𝑗(𝑥(0))/𝑡 ,

𝑖 = 1, . . . , 𝑚.

(23)
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For any 𝑖 (𝑖 = 1, . . . , 𝑚), we have
󵄨󵄨󵄨󵄨󵄨𝐹𝑁,𝑖 (𝑥(0)

𝑁 ) − 𝐹𝑖 (𝑥(0))󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨𝐹𝑁,𝑖 (𝑥(0)

𝑁 ) − 𝐹𝑖 (𝑥(0)
𝑁 )󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝐹𝑖 (𝑥(0)

𝑁 ) − 𝐹𝑖 (𝑥(0))󵄨󵄨󵄨󵄨󵄨 .
(24)

From Lemma 3, we know that 𝐹𝑁,𝑖(𝑥(0)
𝑁 ) converges to 𝐹𝑖(𝑥(0)

𝑁 )
with probability one as 𝑁 󳨀→ ∞, which implies that the first
term on the right side of (24) converges to 0 as𝑁 󳨀→ ∞. And
we know that 𝐹𝑖(𝑥) is continuous and bounded on 𝑆(𝑥∗, 𝛿)
from Lemma 3, and 𝑥(0)

𝑁 converges to 𝑥(0) with probability
one as 𝑁 󳨀→ ∞ from Theorem 5, so the second part on
the right side of (24) converges to 0 as 𝑁 󳨀→ ∞. That is,𝐹𝑁,𝑖(𝑥(0)

𝑁 ) converges to 𝐹𝑖(𝑥(0)) with probability one as 𝑁 󳨀→∞. And we know 𝑒𝑥/𝑡 is continuous with respect to 𝑥 on R,
hence 𝑒𝐹𝑁,𝑖(𝑥(0)𝑁 )/𝑡 converges to 𝑒𝐹𝑖(𝑥(0))/𝑡 with probability one as𝑁 󳨀→ ∞. Furthermore, we can prove that 𝑢̂(1)

𝑁,𝑖 converges to𝑢(1)
𝑖 with probability one as 𝑁 󳨀→ ∞ for 𝑖 = 1, . . . , 𝑚.
For 𝑘 = 1, we have

V̂(1)𝑁,𝑗 = V̂(0)𝑁,𝑗𝑒𝐺𝑁,𝑗(𝑥(0)𝑁 )/𝑡,
V(1)𝑗 = V(0)𝑗 𝑒𝐺𝑗(𝑥(0))/𝑡,

𝑗 = 1, . . . , 𝑝.
(25)

For any 𝑗 (𝑗 = 1, . . . , 𝑝), V̂(0)𝑁,𝑗 = V(0)𝑗 , so we have

󵄨󵄨󵄨󵄨󵄨V̂(1)𝑁,𝑗 − V(1)𝑗

󵄨󵄨󵄨󵄨󵄨 = V(0)𝑗

󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝐺𝑁,𝑗(𝑥(0)𝑁 )/𝑡 − 𝑒𝐺𝑗(𝑥(0))/𝑡󵄨󵄨󵄨󵄨󵄨󵄨 . (26)

Similarly, we can prove that V̂(1)𝑁,𝑗 converges to V(1)𝑗 with
probability one as 𝑁 󳨀→ ∞ for 𝑗 = 1, . . . , 𝑝 from Lemma 3
andTheorem 5.

For 𝑘 = 1, since 𝑦(0)
𝑁,𝑙

= 𝑦(0)
𝑙

(𝑙 = 1, . . . , 𝑞), it holds that
𝑦(1)
𝑁,𝑙 = 𝑦(0)

𝑙 + 1𝑡 𝐻̂𝑁,𝑙 (𝑥(0)
𝑁 ) ,

𝑦(1)
𝑙 = 𝑦(0)

𝑙 + 1𝑡 𝐻𝑙 (𝑥(0)) ,
𝑙 = 1, . . . , 𝑞.

(27)

Hence for any 𝑙 (𝑙 = 1, . . . , 𝑞), we have
󵄨󵄨󵄨󵄨󵄨𝑦(1)

𝑁,𝑙 − 𝑦(1)
𝑙

󵄨󵄨󵄨󵄨󵄨 = 1𝑡 󵄨󵄨󵄨󵄨󵄨𝐻̂𝑁,𝑙 (𝑥(0)
𝑁 ) − 𝐻𝑙 (𝑥(0))󵄨󵄨󵄨󵄨󵄨

≤ 1𝑡 󵄨󵄨󵄨󵄨󵄨𝐻̂𝑁,𝑙 (𝑥(0)
𝑁 ) − 𝐻𝑙 (𝑥(0)

𝑁 )󵄨󵄨󵄨󵄨󵄨
+ 1𝑡 󵄨󵄨󵄨󵄨󵄨𝐻𝑙 (𝑥(0)

𝑁 ) − 𝐻𝑙 (𝑥(0))󵄨󵄨󵄨󵄨󵄨 .
(28)

We can also prove that 𝑦(1)
𝑁,𝑙 converges to 𝑦(1)

𝑙 (𝑙 = 1, . . . , 𝑞)
with probability one as 𝑁 󳨀→ ∞ for 𝑙 = 1, . . . , 𝑞 from
Lemma 3 andTheorem 5.

For 𝑘 = 1, it holds that
𝑧̂(1)
𝑁 = 𝑡 ln( 𝑚∑

𝑖=1

𝑢̂(0)
𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(0)𝑁 )/𝑡) ,

𝑧(1) = 𝑡 ln( 𝑚∑
𝑖=1

𝑢(0)
𝑖 𝑒𝐹𝑖(𝑥(0))/𝑡) .

(29)

Similar to the above proof process, we can draw the conclu-
sion that 𝑧̂(1)

𝑁 converges to 𝑧(1) with probability one as 𝑁 󳨀→∞.
That is, we have proven that the conclusion (i) is true

for 𝑘 = 1. Now suppose that the conclusion (i) is true for𝑘 = 𝑟, where 𝑟 is an integer (𝑟 ≥ 2). Next, we prove that the
conclusion (i) is true for 𝑘 = 𝑟 + 1.

Since the conclusion (i) is true for 𝑘 = 𝑟, we have that𝑥(𝑟)
𝑁 converges to 𝑥(𝑟) with probability one as 𝑁 󳨀→ ∞ from

Theorem 5. For 𝑘 = 𝑟 + 1, we have
𝑢̂(𝑟+1)
𝑁,𝑖 = 𝑢̂(𝑟)

𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(𝑟)𝑁 )/𝑡

∑𝑚
𝑗=1 𝑢̂(𝑟)

𝑁,𝑗𝑒𝐹𝑁,𝑗(𝑥(𝑟)𝑁 )/𝑡
,

𝑢(𝑟+1)
𝑖 = 𝑢(𝑟)

𝑖 𝑒𝐹𝑖(𝑥(𝑟))/𝑡
∑𝑚

𝑗=1 𝑢(𝑟)
𝑗 𝑒𝐹𝑗(𝑥(𝑟))/𝑡 ,

𝑖 = 1, . . . , 𝑚.

(30)

For any 𝑖 (𝑖 = 1, . . . , 𝑚), one has󵄨󵄨󵄨󵄨󵄨󵄨𝑢̂(𝑟)
𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(𝑟)𝑁 )/𝑡 − 𝑢(𝑟)

𝑖 𝑒𝐹𝑖(𝑥(𝑟))/𝑡󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨󵄨𝑢̂(𝑟)

𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(𝑟)𝑁 )/𝑡 − 𝑢(𝑟)
𝑖 𝑒𝐹𝑁,𝑖(𝑥(𝑟)𝑁 )/𝑡󵄨󵄨󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨󵄨󵄨𝑢(𝑟)
𝑖 𝑒𝐹𝑁,𝑖(𝑥(𝑟)𝑁 )/𝑡 − 𝑢(𝑟)

𝑖 𝑒𝐹𝑖(𝑥(𝑟))/𝑡󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨𝑢̂(𝑟)

𝑁,𝑖 − 𝑢(𝑟)
𝑖

󵄨󵄨󵄨󵄨󵄨 𝑒𝐹𝑁,𝑖(𝑥(𝑟)𝑁 )/𝑡

+ 𝑢(𝑟)
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝐹𝑁,𝑖(𝑥
(𝑟)
𝑁 )/𝑡 − 𝑒𝐹𝑖(𝑥(𝑟))/𝑡󵄨󵄨󵄨󵄨󵄨󵄨 .

(31)

In view of the proof process in Theorem 5, it follows that
𝑢̂(𝑟)
𝑁,𝑖𝑒𝐹𝑁,𝑖(𝑥(𝑟)𝑁 )/𝑡 converges to 𝑢(𝑟)

𝑖 𝑒𝐹𝑖(𝑥(𝑟))/𝑡 with probability one
as 𝑁 󳨀→ ∞. Moreover, note that the special forms of 𝑢̂(𝑟+1)

𝑁,𝑖

and 𝑢(𝑟+1)
𝑖 , we can verify that 𝑢̂(𝑟+1)

𝑁,𝑖 converges to 𝑢(𝑟+1)
𝑖 with

probability one as 𝑁 󳨀→ ∞ for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑚.
Similarly, we can prove that V̂(𝑟+1)𝑁,𝑗 converges to V(𝑟+1)𝑗 with

probability one as𝑁 󳨀→ ∞ for 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑝, 𝑦(𝑟+1)
𝑁,𝑙

converges
to𝑦(𝑟+1)

𝑙 with probability one as𝑁 󳨀→ ∞ for 𝑙 = 1, ⋅ ⋅ ⋅ , 𝑞, and
𝑧̂(𝑟+1)
𝑁 converges to 𝑧(𝑟+1) with probability one as 𝑁 󳨀→ ∞
from Lemma 3 and Theorem 5. That is, the conclusion (i) is
true for 𝑘 = 𝑟 + 1. By mathematical induction method, hence
we know that conclusion (i) is true for any 𝑘 ≥ 0.

(ii) Considering conclusion (i) and Theorem 5, we know
that conclusion (ii) is true.

(iv) In view of conclusion (ii) and Lemma 3, we have that
conclusion (iii) is true.

Thus, the proof of Theorem 6 is completed.
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Up until now, we have established the relationship
between the optimal solution of problem (3) and the optimal
solution of problem (12), and the convergence of the SAA
Lagrangemultiplier sequence inAlgorithm 4 with probability
one as 𝑁 󳨀→ ∞. Next we are to prove that the optimal
solution sequence and the SAA Lagrange multiplier sequence
obtained byAlgorithm4 converge to the optimal solution and
the corresponding Lagrange multiplier of problem (1) with
probability one as 𝑁 󳨀→ ∞ under the assumptions (a)-(h).

Theorem 7. If assumptions (a)-(h) hold, and let 𝑢̂(0)
𝑁,𝑖 =

𝑢(0)
𝑖 (𝑖 = 1, . . . , 𝑚), V̂(0)𝑁,𝑗 = V(0)𝑗 (𝑗 = 1, . . . , 𝑝), 𝑦(0)

𝑁,𝑙
= 𝑦(0)

𝑙
(𝑙 =

1, . . . , 𝑞), 𝑧(0)
𝑁 = 𝑧(0), then there exist 𝛿 > 0 and 𝑡̂ ∈ (0, 1) such

that for any (𝑢(0), V(0), 𝑦(0), 𝑧(0), 𝑡) ∈ 𝐵𝛿(𝑢∗, V∗, 𝑦∗, 𝑧∗) × (0, 𝑡̂),𝑥(𝑘)
𝑁 converges to 𝑥∗ with probability one, 𝑢̂(𝑘)

𝑁 converges to𝑢∗ with probability one, V̂(𝑘)𝑁 converges to V∗ with probability
one, and 𝑦(𝑘)

𝑁 converges to 𝑦∗ with probability one, respectively,
when 𝑁 󳨀→ ∞ and 𝑘 󳨀→ ∞.

Proof. Based on the property of norm, one has

󵄩󵄩󵄩󵄩󵄩𝑥(𝑘)
𝑁 − 𝑥∗󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑥(𝑘)

𝑁 − 𝑥(𝑘)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑥(𝑘) − 𝑥∗󵄩󵄩󵄩󵄩󵄩 , (32)

󵄩󵄩󵄩󵄩󵄩𝑢̂(𝑘)
𝑁 − 𝑢∗󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑢̂(𝑘)

𝑁 − 𝑢(𝑘)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑢(𝑘) − 𝑢∗󵄩󵄩󵄩󵄩󵄩 , (33)
󵄩󵄩󵄩󵄩󵄩V̂(𝑘)𝑁 − V∗

󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩V̂(𝑘)𝑁 − V(𝑘)
󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩V(𝑘) − V∗

󵄩󵄩󵄩󵄩󵄩 , (34)
󵄩󵄩󵄩󵄩󵄩𝑦(k)

𝑁 − 𝑦∗󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑦(𝑘)
𝑁 − 𝑦(𝑘)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑦(𝑘) − 𝑦∗󵄩󵄩󵄩󵄩󵄩 , (35)

󵄩󵄩󵄩󵄩󵄩𝑧̂(𝑘)
𝑁 − 𝑧∗󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑧̂(𝑘)

𝑁 − 𝑧(𝑘)󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑧(𝑘) − 𝑧∗󵄩󵄩󵄩󵄩󵄩 . (36)

If assumptions (d)-(h) are satisfied, then it follows from
Theorem3.1 of [13] that there exist𝛿 > 0 (𝛿 < 𝛿) and 𝑡̂ ∈ (0, 1)
such that as 𝑘 󳨀→ ∞, 𝑥(𝑘) 󳨀→ 𝑥∗, 𝑢(𝑘) 󳨀→ 𝑢∗, V(𝑘) 󳨀→ V∗,𝑦(𝑘) 󳨀→ 𝑦∗, and 𝑧(𝑘) 󳨀→ 𝑧∗ for any (𝑢(0), V(0), 𝑦(0), 𝑧(0), 𝑡) ∈𝐵𝛿(𝑢∗, V∗, 𝑦∗, 𝑧∗) × (0, 𝑡̂).

If assumptions (a)-(c) are satisfied, and 𝑢̂(0)
𝑁,𝑖 = 𝑢(0)

𝑖 (𝑖 =
1, . . . , 𝑚), V̂(0)𝑁,𝑗 = V(0)𝑗 (𝑗 = 1, . . . , 𝑝), 𝑦(0)

𝑁,𝑙
= 𝑦(0)

𝑙
(𝑙 =

1, . . . , 𝑞) and 𝑧̂(0)
𝑁 = 𝑧(0), it follows from Theorem 6 that 𝑢̂(𝑘)

𝑁

converges to 𝑢(𝑘) with probability one, V̂(𝑘)𝑁 converges to V(𝑘)

with probability one, 𝑦(𝑘)
𝑁 converges to 𝑦(𝑘) with probability

one, 𝑧̂(𝑘)
𝑁 converges to 𝑧(𝑘) with probability one, and 𝑥(𝑘)

𝑁

converges to 𝑥(𝑘) with probability one as 𝑁 󳨀→ ∞.
Thus, combined with (32)-(35) and the above analysis, it

has been proven that Theorem 7 is true under assumptions
(a)-(h).

Remark 8. Theorem 7 shows that Algorithm 4 is locally
convergent under assumptions (a)-(h). That is, when the
initial multiplier (𝑢̂(0)

𝑁 , V̂(0)𝑁 , 𝑦(0)
𝑁 ) are close to the optimal

multiplier (𝑢∗, V∗, 𝑦∗), 𝑧(0) is close to 𝑧∗, and 𝑡 is less than a
threshold, the solution sequence𝑥(𝑘)

𝑁 obtained byAlgorithm4
locally converges to the optimal solution 𝑥∗ of original
problem (1) with probability one as𝑁 󳨀→ ∞, (𝑢̂(𝑘)

𝑁 , V̂(𝑘)𝑁 , 𝑦(𝑘)
𝑁 )

converges to (𝑢∗, V∗, 𝑦∗) with probability one as 𝑁 󳨀→ ∞,

and 𝑧̂(𝑘)
𝑁 ) converges to 𝑧∗ with probability one as 𝑁 󳨀→ ∞

under assumptions (a)-(h).

4. Numerical Results

In this section, the numerical results for eight test examples
by using Algorithm 4 are presented. These test examples are
compiled based on the deterministic optimization problems
in [13] by considering random variable 𝜉. The numerical
experiments are implemented in Matlab2014 on the same
computer whose CPU basic parameters are Intel CORE(TM)
i5-3337U@1.80GHZ and memory 8GB.

In the experiments, the random variable 𝜉 is set to be
uniformly distributed on Ξ = [0, 1] and the random sample{𝜉1, 𝜉2, . . . , 𝜉𝑁} with sample size 𝑁 is generated by random
number generator 𝑢𝑛𝑖𝑓𝑟𝑛𝑑 in Matlab2014. We choose 𝑁 =102, 𝑁 = 103, 𝑁 = 104, 𝑁 = 105, and 𝑁 = 106 to
make comparison for each test example. The initial values
of 𝑢(0)

𝑁 , V(0)𝑁 , 𝑦(0)
𝑁 and 𝑧(0)

𝑁 are set as 𝑢(0)
𝑁 = (1/𝑚, . . . , 1/𝑚)𝑇,

V(0)𝑁 = (1, ⋅ ⋅ ⋅ , 1)𝑇, 𝑦(0)
𝑁 = (1, ⋅ ⋅ ⋅ , 1)𝑇 and 𝑧(0)

𝑁 = 1 for each
example, and 𝑡(0) is chosen small enough and determined
by the scale of test problem; Unconstrained minimization
problem in Step 2 of Algorithm 4 is solved by BFGS quasi-
Newton method combined with Wolf nonexact linear search
rule. The stopping precision in Step 3 is 𝜀 = 10−5, and the
termination condition is

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∑𝑖∈𝑀𝑢̂(𝑘)
𝑁,𝑖 (𝐹𝑁,𝑖 (𝑥(𝑘)

𝑁 ) − 𝑇 (𝑥(𝑘)
𝑁 ))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∑𝑗∈𝑃V̂

(𝑘)
𝑁,𝑗𝐺𝑁,𝑗 (𝑥(𝑘)

𝑁 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩󵄩𝐻̂𝑁 (𝑥(𝑘)
𝑁 )󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀.

(37)

The obtained numerical results are reported in Tables
1-8, in which 𝑁 represents sample size; 1/𝑡 represents the
value of 1/𝑡; 𝑖𝑡 represents the number of iterations, i.e., the
numbers of the Lagrange multipliers being updated; ‖𝑥(𝑘)

𝑁 −𝑥∗‖ represents the gap between the solution sequence 𝑥(𝑘)
𝑁

obtained by Algorithm 4 and the optimal solution 𝑥∗ of the
corresponding test problem; and ‖𝑧(𝑘)

𝑁 − 𝑧∗‖ represents the
gap between the approximate value 𝑧(𝑘)

𝑁 of objective function𝑇(𝑥) obtained by Algorithm 4 and the optimal value 𝑧∗ of the
corresponding test problem, respectively.

Example 1. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, 2, 3) andℎ𝑙(𝑥, 𝜉) (𝑙 = 1, 2) are defined as follows:

𝑓1 (𝑥, 𝜉) = 3𝜉2𝑥2
1 + 𝑥2

2,
𝑓2 (𝑥, 𝜉) = (2 − 𝑥1)2 + 2𝜉 (2 − 𝑥2)2 ,
𝑓3 (𝑥, 𝜉) = 4𝜉 exp (𝑥2 − 𝑥1) ,
ℎ1 (𝑥, 𝜉) = 𝑥1 + 2𝜉𝑥2 − 4𝜉,
ℎ2 (𝑥, 𝜉) = −𝑥2

1 − 𝑥2
2 + 6.75𝜉2,

(38)
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Table 1: The numerical results for Example 1.

𝑁 1𝑡 𝑖𝑡 ‖𝑥(𝑘)
𝑁 − 𝑥∗‖ ‖𝑧̂(𝑘)

𝑁 − 𝑧∗‖
102 3 30 0.053618 2.714061e-02103 3 30 0.013345 5.746432e-02104 3 30 0.002998 1.567222e-03105 3 34 0.001830 6.904709e-03106 3 34 0.000273 2.444700e-04

Table 2: The numerical results for Example 2.

𝑁 1𝑡 𝑖𝑡 ‖𝑥(𝑘)
𝑁 − 𝑥∗‖ ‖𝑧̂(𝑘)

𝑁 − 𝑧∗‖
102 0.2 48 0.040829 1.723749e-02103 0.2 73 0.004546 1.666095e-03104 0.2 89 0.001116 3.148451e-03105 0.2 104 0.000239 8.722890e-04106 0.2 107 0.000188 4.128465e-04

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (1.35355, 0.64645)𝑇 ,
𝑧∗ = 2.25. (39)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 1.

Example 2. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, 2, 3), 𝑔𝑗(𝑥, 𝜉) (𝑗 =1), and ℎ𝑙(𝑥, 𝜉) (𝑙 = 1) are defined as follows:

𝑓1 (𝑥, 𝜉) = 3𝜉2𝑥4
1 + 𝑥2

2,
𝑓2 (𝑥, 𝜉) = (2 − 𝑥1)2 + 2𝜉 (2 − 𝑥2)2 ,
𝑓3 (𝑥, 𝜉) = 4𝜉 exp (𝑥2 − 𝑥1) ,
𝑔1 (𝑥, 𝜉) = −4𝜉𝑥3

1 − 3𝜉2𝑥2
2,

ℎ1 (𝑥, 𝜉) = 𝑥2
1 − 2𝜉𝑥2

2,

(40)

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (1, 1)𝑇 ,
𝑧∗ = 2. (41)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 2.

Example 3. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, 2) and ℎ𝑙(𝑥, 𝜉) (𝑙 =1, 2) are defined as follows:

𝑓1 (𝑥, 𝜉) = 2𝜉 exp( 𝑥2
11000 + (𝑥2 − 1)2) ,

𝑓2 (𝑥, 𝜉) = 3𝜉2 exp( 𝑥2
11000 + (𝑥2 + 1)2) ,

ℎ1 (𝑥, 𝜉) = 𝑥2
11000 + 2𝜉𝑥2

2 + 3𝜉2𝑥1𝑥2,
ℎ2 (𝑥, 𝜉) = −2𝜉𝑥1 + 𝑥2

2,

(42)

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (0, 0)𝑇 ,
𝑧∗ = 2.71828. (43)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 3.

Example 4. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, 2, 3) andℎ𝑙(𝑥, 𝜉) (𝑙 = 1, 2) are defined as follows:

𝑓1 (𝑥, 𝜉) = 0.5 (2𝜉𝑥1 + 10𝑥1(𝑥1 + 0.1) + 4𝜉𝑥2
2) ,

𝑓2 (𝑥, 𝜉) = 0.5 (−2𝜉𝑥1 + 10𝑥1(𝑥1 + 0.1) + 4𝜉𝑥2
2) ,

𝑓3 (𝑥, 𝜉) = 0.5 (2𝜉𝑥1 − 10𝑥1(𝑥1 + 0.1) − 4𝜉𝑥2
2) ,

ℎ1 (𝑥, 𝜉) = 2𝜉𝑥2
1 + 2𝜉𝑥2

2 + 𝑥1𝑥2,
ℎ2 (𝑥, 𝜉) = −2𝜉𝑥1 + 𝑥2

2,

(44)
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Table 3: The numerical results for Example 3.

𝑁 1𝑡 𝑖𝑡 ‖𝑥(𝑘)
𝑁 − 𝑥∗‖ ‖𝑧̂(𝑘)

𝑁 − 𝑧∗‖
102 0.1 23 0.000755 4.628155e-04103 0.1 26 0.000408 1.361478e-04104 0.1 26 0.000363 5.530880e-04105 0.1 26 0.000191 2.105646e-04106 0.1 26 0.000051 1.955180e-05

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (0, 0)𝑇 ,
𝑧∗ = 2.71828. (45)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 4.

Example 5. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, . . . , 5),𝑔𝑗(𝑥, 𝜉) (𝑗 = 1, 2, 3), and ℎ𝑙(𝑥, 𝜉) (𝑙 = 1) are defined as
follows:

𝑓1 (𝑥, 𝜉) = 2𝑥2
1 + 4𝜉𝑥2

2 + 2𝜉𝑥2
3 + 2𝑥1𝑥2 + 4𝜉𝑥1𝑥3

− 24𝜉2𝑥1 − 6𝑥2 − 8𝜉𝑥3 + 9,
𝑓2 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10ℎ1 (𝑥, 𝜉) ,
𝑓3 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10𝑔1 (𝑥, 𝜉) ,
𝑓4 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10𝑔2 (𝑥, 𝜉) ,
𝑓5 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10𝑔3 (𝑥, 𝜉) ,
𝑔1 (𝑥, 𝜉) = −2𝜉𝑥1,
𝑔2 (𝑥, 𝜉) = −3𝜉2𝑥2,
𝑔3 (𝑥, 𝜉) = −2𝜉𝑥3,
ℎ1 (𝑥, 𝜉) = 𝑥1 + 𝑥2 + 8𝜉3𝑥3 − 3,

(46)

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (43 , 79 , 49)𝑇 ,
𝑧∗ = 19 .

(47)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 5.

Example 6. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, . . . , 9), 𝑔𝑗(𝑥,𝜉) (𝑗 = 1, 2) and ℎ𝑙(𝑥, 𝜉) (𝑙 = 1, . . . , 6) are defined as follows:

𝑓1 (𝑥, 𝜉) = 𝑥2
1 + 𝑥2

2 + 2𝜉𝑥1𝑥2 − 28𝜉𝑥1 − 16𝑥2 + (𝑥3

− 10)2 + 12𝜉2 (𝑥4 − 5)2 + 2𝜉 (𝑥5 − 3)2 + 2 (𝑥6

− 1)2 + 20𝜉3𝑥2
7 + 7 (𝑥8 − 11)2 + 4𝜉 (𝑥9 − 10)2

+ (𝑥10 − 7)2 + 90𝜉,
𝑓2 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ1 (𝑥, 𝜉) ,
𝑓3 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ2 (𝑥, 𝜉) ,
𝑓4 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20𝑔1 (𝑥, 𝜉) ,
𝑓5 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ3 (𝑥, 𝜉) ,
𝑓6 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ4 (𝑥, 𝜉) ,
𝑓7 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ5 (𝑥, 𝜉) ,
𝑓8 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20𝑔2 (𝑥, 𝜉) ,
𝑓9 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ6 (𝑥, 𝜉) ,
𝑔1 (𝑥, 𝜉) = −(− 1

2 (𝑥1 − 8)2 − 4𝜉 (𝑥2 − 2)2 − 9𝜉2𝑥2
5

+ 2𝜉𝑥6 + 30) ,
𝑔2 (𝑥, 𝜉) = − (3𝑥1 − 12𝜉𝑥2 − 12 (𝑥9 − 8)2 + 7𝑥10) ,
ℎ1 (𝑥, 𝜉) = − (−3 (𝑥1 − 2)2 − 8𝜉 (𝑥2 − 3)2 − 6𝜉2𝑥2

3

+ 7𝑥4 + 240𝜉) ,
ℎ2 (𝑥, 𝜉) = − (−5𝑥2

1 − 16𝜉𝑥2 − (𝑥3 − 6)2 + 4𝜉𝑥4

+ 120𝜉2) ,
ℎ3 (𝑥, 𝜉) = − (−𝑥2

1 − 4𝜉 (𝑥2 − 2)2 + 6𝜉2𝑥1𝑥2 − 14𝑥5

+ 6𝑥6) ,
ℎ4 (𝑥, 𝜉) = − (−4𝑥1 − 10𝜉𝑥2 + 9𝜉2𝑥7 − 9𝑥8 + 105) ,
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Table 4: The numerical results for Example 4.

𝑁 1𝑡 𝑖𝑡 ‖𝑥(𝑘)
𝑁 − 𝑥∗‖ ‖𝑧̂(𝑘)

𝑁 − 𝑧∗‖
102 0.5 4 0.000000 4.061068e-07103 0.5 4 0.000000 4.053219e-07104 0.5 4 0.000000 4.050488e-07105 0.5 4 0.000000 4.050740e-07106 0.5 4 0.000000 4.050678e-07

Table 5: The numerical results for Example 5.

𝑁 1𝑡 𝑖𝑡 󵄩󵄩󵄩󵄩󵄩𝑥(𝑘)
𝑁 − 𝑥∗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑧̂(𝑘)

𝑁 − 𝑧∗󵄩󵄩󵄩󵄩󵄩102 0.8 18 0.350233 7.913036e-01103 0.8 18 0.199523 4.201455e-01104 0.8 17 0.032177 5.933858e-02105 0.8 17 0.006590 1.221448e-03106 0.8 17 0.000542 8.848920e-04

ℎ3 (𝑥, 𝜉) = − (−𝑥2
1 − 4𝜉 (𝑥2 − 2)2 + 6𝜉2𝑥1𝑥2 − 14𝑥5

+ 6𝑥6) ,
ℎ4 (𝑥, 𝜉) = − (−4𝑥1 − 10𝜉𝑥2 + 9𝜉2𝑥7 − 9𝑥8 + 105) ,

ℎ6 (𝑥, 𝜉) = − (8𝑥1 − 2𝑥2 − 10𝜉𝑥9 + 6𝜉2𝑥10 + 12) ,
(48)

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (2.171996, 2.363683, 8.773926, 5.095985, 0.990655, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927)𝑇 ,
𝑧∗ = 24.306209. (49)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 6.

Example 7. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, . . . , 5), 𝑔𝑗(𝑥,𝜉) (𝑗 = 1, 2), and ℎ𝑙(𝑥, 𝜉) (𝑙 = 1, 2) are defined as follows:

𝑓1 (𝑥, 𝜉)
= (𝑥1 − 10)2 + 10𝜉 (𝑥2 − 12)2 + 5𝜉4𝑥4

3

+ 3 (𝑥4 − 11)2 + 20𝜉𝑥6
5 + 7𝑥2

6 + 3𝜉2𝑥4
7 − 4𝑥6𝑥7

− 20𝜉𝑥6 − 8𝑥7,
𝑓2 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10ℎ1 (𝑥, 𝜉) ,
𝑓3 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10𝑔1 (𝑥, 𝜉) ,
𝑓4 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10𝑔2 (𝑥, 𝜉) ,
𝑓5 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 10ℎ2 (𝑥, 𝜉) ,
𝑔1 (𝑥, 𝜉)

= − (−7𝑥1 − 6𝜉𝑥2 − 10𝑥2
3 − 2𝜉𝑥4 + 3𝜉2𝑥5 + 282) ,

𝑔2 (𝑥, 𝜉) = − (−23𝑥1 − 𝑥2
2 − 18𝜉2𝑥2

6 + 16𝜉𝑥7 + 196) ,
ℎ1 (𝑥, 𝜉)

= − (−2𝑥2
1 − 6𝜉𝑥4

2 − 𝑥3 − 8𝜉𝑥2
4 − 5𝑥5 + 127) ,

ℎ2 (𝑥, 𝜉)
= − (−4𝑥2

1 − 𝑥2
2 + 3𝑥1𝑥2 − 6𝜉2𝑥2

3 − 10𝜉𝑥6 + 11𝑥7) ,
(50)

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (2.33050, 1.95137, −0.47754, 4.36573,
− 0.62449, 1.03813, 1.59423)𝑇 ,

𝑧∗ = 680.63006.
(51)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 7.
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Table 6: The numerical results for Example 6.

𝑁 1𝑡 𝑖𝑡 󵄩󵄩󵄩󵄩󵄩𝑥(𝑘)
𝑁 − 𝑥∗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑧̂(𝑘)

𝑁 − 𝑧∗󵄩󵄩󵄩󵄩󵄩102 0.8 21 0.175122 2.486983e-01103 0.8 21 0.017835 1.832466e-02104 0.8 21 0.014858 5.719731e-02105 0.8 21 0.004011 5.719731e-03106 0.8 21 0.000949 4.484174e-04

Table 7: The numerical results for Example 7.

𝑁 1𝑡 𝑖𝑡 ‖𝑥(𝑘)
𝑁 − 𝑥∗‖ ‖𝑧̂(𝑘)

𝑁 − 𝑧∗‖
102 1 17 0.105795 2.061338e-01103 1 17 0.015291 2.527593e-02104 1 17 0.002059 4.118053e-03105 1 13 0.001702 1.004443e-03106 1 21 0.000676 9.903274e-04

Example 8. In problem (1), 𝑓𝑖(𝑥, 𝜉) (𝑖 = 1, . . . , 18), 𝑔𝑗(𝑥,𝜉) (𝑗 = 1, . . . , 5), and ℎ𝑙(𝑥, 𝜉) (𝑙 = 1, . . . , 12) are defined as
follows:

𝑓1 (𝑥, 𝜉) = 𝑥2
1 + 𝑥2

2 + 2𝜉𝑥1𝑥2 − 28𝜉𝑥1 − 16𝑥2 + (𝑥3

− 10)2 + 12𝜉2 (𝑥4 − 5)2 + 2𝜉 (𝑥5 − 3)2 + 2 (𝑥6

− 1)2 + 20𝜉3𝑥2
7 + 7 (𝑥8 − 11)2 + 4𝜉 (𝑥9 − 10)2

+ (𝑥10 − 7)2 + 2𝜉 (𝑥11 − 9)2 + 10 (𝑥12 − 1)2
+ 10𝜉 (𝑥13 − 7)2 + 4 (𝑥14 − 14)2 + 27 (𝑥15 − 1)2
+ 5𝜉4𝑥4

16 + 2𝜉 (𝑥17 − 2)2 + 13 (𝑥18 − 2)2 + (𝑥19

− 2)2 + 2𝜉𝑥2
20 + 95,

𝑓2 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ1 (𝑥, 𝜉) ,
𝑓3 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ2 (𝑥, 𝜉) ,
𝑓4 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20𝑔1 (𝑥, 𝜉) ,
𝑓5 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ3 (𝑥, 𝜉) ,
𝑓6 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ4 (𝑥, 𝜉,
𝑓7 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ5 (𝑥, 𝜉) ,
𝑓8 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20𝑔2 (𝑥, 𝜉) ,
𝑓9 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ6 (𝑥, 𝜉) ,
𝑓10 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20𝑔3 (𝑥, 𝜉) ,
𝑓11 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ7 (𝑥, 𝜉) ,
𝑓12 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ8 (𝑥, 𝜉) ,
𝑓13 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20𝑔4 (𝑥, 𝜉) ,
𝑓14 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20𝑔5 (𝑥, 𝜉) ,

𝑓15 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ9 (𝑥, 𝜉) ,
𝑓16 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ10 (𝑥, 𝜉) ,
𝑓17 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ11 (𝑥, 𝜉) ,
𝑓18 (𝑥, 𝜉) = 𝑓1 (𝑥, 𝜉) + 20ℎ12 (𝑥, 𝜉) ,
𝑔1 (𝑥, 𝜉) = −(− 1

2 (𝑥1 − 8)2 − 4𝜉 (𝑥2 − 2)2 − 9𝜉2𝑥2
5

+ 2𝜉𝑥6 + 30) ,
𝑔2 (𝑥, 𝜉) = − (3𝑥1 − 12𝜉𝑥2 − 12 (𝑥9 − 8)2 + 7𝑥10) ,
𝑔3 (𝑥, 𝜉) = − (−2𝜉𝑥1 − 𝑥2 − 8𝜉𝑥11 + 21𝑥12) ,
𝑔4 (𝑥, 𝜉) = − (−3𝑥1 − 12𝜉2𝑥2 − 6𝜉 (𝑥13 − 6)2 + 14𝑥14

+ 10) ,
𝑔5 (𝑥, 𝜉) = − (−14𝑥2

1 − 70𝜉𝑥15 + 79𝑥16 + 92) ,
ℎ1 (𝑥, 𝜉) = − (−3 (𝑥1 − 2)2 − 8𝜉 (𝑥2 − 3)2 − 6𝜉2𝑥2

3

+ 7𝑥4 + 240𝜉) ,
ℎ2 (𝑥, 𝜉) = − (−5𝑥2

1 − 16𝜉𝑥2 − (𝑥3 − 6)2 + 4𝜉𝑥4

+ 120𝜉2) ,
ℎ3 (𝑥, 𝜉) = − (−𝑥2

1 − 4𝜉 (𝑥2 − 2)2 + 6𝜉2𝑥1𝑥2 − 14𝑥5

+ 6𝑥6) ,
ℎ4 (𝑥, 𝜉) = − (−4𝑥1 − 10𝜉𝑥2 + 9𝜉2𝑥7 − 9𝑥8 + 105) ,
ℎ5 (𝑥, 𝜉) = − (−10𝑥1 + 16𝜉𝑥2 + 17𝑥7 − 4𝜉𝑥8) ,
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Table 8: The numerical results for Example 8.

𝑁 1𝑡 𝑖𝑡 ‖𝑥(𝑘)
𝑁 − 𝑥∗‖ ‖𝑧̂(𝑘)

𝑁 − 𝑧∗‖
102 0.5 30 0.236371 2.061338e-01103 0.5 30 0.107028 2.527593e-01104 0.5 30 0.031119 4.118053e-02105 0.5 30 0.003603 5.506888e-03106 0.5 30 0.001569 2.177321e-03

ℎ6 (𝑥, 𝜉) = − (8𝑥1 − 2𝑥2 − 10𝜉𝑥9 + 6𝜉2𝑥10 + 12) ,
ℎ7 (𝑥, 𝜉) = − (−𝑥2

1 − 15𝑥11 + 16𝜉𝑥12 + 28) ,
ℎ8 (𝑥, 𝜉) = − (−4𝑥1 − 18𝜉𝑥2 − 10𝜉𝑥2

13 + 27𝜉2𝑥14

+ 87) ,
ℎ9 (𝑥, 𝜉) = − (−15𝑥2

2 − 22𝜉𝑥15 + 183𝜉2𝑥16 + 54) ,

ℎ10 (𝑥, 𝜉) = − (−5𝑥2
1 − 2𝑥2 − 9𝑥4

17 + 4𝜉3𝑥18 + 68) ,
ℎ11 (𝑥, 𝜉) = − (−𝑥2

1 + 𝑥2 − 38𝜉𝑥19 + 40𝜉𝑥20 − 19) ,
ℎ12 (𝑥, 𝜉) = − (−7𝑥2

1 − 5𝑥2
2 − 2𝜉𝑥2

19 + 30𝑥20) ,
(52)

where the optimal solution and the optimal value (see [13])
are

𝑥∗ = (2.175216, 2.352850, 8.766448, 5.066932, 0.988667, 1.431000, 1.329483,
9.835926, 8.287277, 8.370178, 2.275828, 1.358623, 6.077186, 14.170830, 0.9962345, 0.655691, 1.466590, 2.000361, 1.046588, 2.063194)𝑇 ,

𝑧∗ = 133.7283.
(53)

The numerical results for this example obtained by Algo-
rithm 4 are shown in Table 8.

From the numerical results in Tables 1-8, the following
remarks are made.

Remark 9. The preliminary numerical results show that
Algorithm 4 is feasible and promising.

Remark 10. Compared with the numerical results for the
same test example with the different sample size 𝑁, the
numerical results in Tables 1-8 show that the precisions of
the optimal solution and the optimal value by Algorithm 4
become higher as the sample size is chosen larger, which
coincides with the convergence result of Algorithm 4 in
Section 3.

5. Conclusions

An implementable SAA nonlinear Lagrange algorithm for
solving constrained minimax stochastic optimization prob-
lems is presented by this paper. And the convergence theory
of the proposed algorithm is established under some assump-
tions, in which the KKT solution sequence obtained by the
algorithm is demonstrated to converge to the optimal KKT
solution of the original problem with probability one as the
sample size approaches to infinity. Furthermore, numerical
experiments are implemented by using the proposed SAA
nonlinear Lagrange algorithm for solving eight typical test
examples, and the results of numerical experiment verify the

convergence theory and indicate that the new algorithm is
promising. Moreover, the numerical experiments for obtain-
ing the solutions with higher precision and solving large scale
problems deserve our future attention. And applying this
proposed algorithm to solve some practical problems is also
interesting.
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