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Electromagnetic vector sensors (EMVS) have attracted growing attention in recent years. However, the mutual coupling effects
in practical EMVS arrays may seriously degrade the parameter estimation performance. In order to solve this problem, a novel
array configuration consisting of two parallel sparse dipole arrays is proposed. Based on the spatially rotational invariance property
between the two parallel arrays and the interdipole spacing inside each array, highly accurate but ambiguous direction-cosine
estimates, coarse direction-of-arrival (DOA) estimates, and polarization parameter estimation can be obtained jointly. The coarse
DOA estimates are then employed to disambiguate the phase ambiguities in the fine estimates. Compared with collocated EMVS,
the proposed array overcomes themutual coupling problem.Moreover, the DOA estimation accuracy is promoted due to the sparse
array aperture extension. Simulation results demonstrate the effectiveness of the proposed algorithm.

1. Introduction

Source localization and polarization estimationusing electro-
magnetic vector sensors (EMVS) have received considerable
attention over the past decades. Generally, an electromagnetic
vector sensor consists of three orthogonal electrically short
dipoles and three orthogonal magnetically small loops [1–4].
All of the six components are spatially collocated in a point-
like geometry, and no spatial phase-factor exists among them.
Many advanced algorithmshave been developed for direction
finding, polarization estimation, and tracking schemes [5–9].
Particularly, a lot of eigenstructure-based direction finding
and polarization estimation schemes have been presented in
recent years. In [10], a temporal-invariance version estima-
tion of signal parameters via rotational invariance technique
(ESPRIT) [11] has been applied for a single collocated six-
component vector sensor to estimate the arrival angles and
polarization states of multiple pure tones. In [12], a spatial-
invariance version of ESPRIT has been used for some collo-
cated EVMS’s deployed in a sparse rectangular grid without
incurring cyclic ambiguity in the final estimates of the
sources’ direction parameters. In [13, 14], a spatial-invariance

version of ESPRIT has been proposed for arbitrarily spaced
EVMS’s, whose locations are unknown. In [15], based on
a spatially collocated EMVS, the author uses vector cross-
product to perform direction finding for multiple noncoop-
erative wideband fast frequency-hop signals.

In the above-mentioned literature, the algorithms mostly
presume that all the six components of EMVS are utilized.
However, the responses of electric field and magnetic field
may be different between each other in practical systems.
Therefore, in [16] Wong proposed to deploy only one triad
to mitigate this problem. In [17], the authors utilized a triad
of collocated and perpendicular electrically short dipoles
(or of electrically small loops) and derived the Cramér-Rao
lower bound accounting for the possibility of failure in any
individual dipoles (or loops). Recently, aiming at the low
radiation efficiency of such short dipoles or small loops, the
authors developed a triad of electrically large circular loops
for the estimation of an incident emitter’s direction-of-arrival
(DOA) or polarization [18]. Similarly, in [19], the authors
proposed a triad of electrically “long” dipoles for direction
finding and polarization estimation. However, both of them
adopted a spatially collocated array structure. Therefore, the
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Figure 1: Two parallel spatially spread dipole arrays configuration.

mutual coupling effect of these collocated triad structure
is strong, and the developed algorithms require the prior
knowledge of polarization information, which is often invalid
in practical applications.

Note that the mutual coupling effect across the collocated
dipoles/loops is neglected in the above-mentioned literature.
However, the mutual coupling may degrade the parameters
estimation performance and increase the hardware cost of the
vector sensors. Therefore, a vector cross-product direction
finding algorithm is proposed in [20, 21] for six orthogonally
oriented but spatially noncollocating dipoles/loops.However,
the algorithm developed there requires a temporal invariance
of the incident sources, which is often invalid in practical.
Moreover, the array structure proposed is spatially displaced
along one direction; thus it cannot only provide high accuracy
and unambiguous DOA estimates. In [22], the author devel-
oped a sparse array composed of three noncollocating dipole
(or loop) triads. Based on the ESPRIT principle, the high
accuracy and unambiguous estimates of DOA and polariza-
tion parameters are obtained. However, the direction-cosines
estimates along 𝑥 and 𝑦 axes are obtained from two inde-
pendent eigendecomposition operations; thus they require
additional parameter matching procedure. In [23], the author
advanced spatially spread dipole/loop quads/quints for direc-
tion finding and polarization estimation. However, it assumes
that the source signals are pure tones whichmay be invalid in
practical scenarios. In [24], the authors proposed a spatially
spread quint of only dipoles or loops, for DOA and polar-
ization estimation. Based on the centrosymmetric array, the
authors develop aDOAandpolarization estimator via vector-
cross-product. However, it requires a 2D search process for
conducting coarse 2D-DOA estimation, which is computa-
tionally inefficient. In [25–27], the authors utilize different
types of spatially separated dipoles/loops to constructs a
sparse planar array. This kind of structure can provide high
accuracy DOA estimates of multiple sources. However, the
direction-cosines estimates along 𝑥 and 𝑦 axes are obtained
from two independent eigendecomposition operations; thus
they require additional parameter matching procedure.

Aiming at addressing the above-mentioned problems,
we propose in this paper a novel array configuration which
consists of two parallel sparse dipole arrays. Based on the
spatially rotational invariance property between the two
parallel arrays and the interdipole spacing inside each array,
highly accurate but ambiguous direction-cosine estimates,
coarse DOA estimates, and polarization parameters estima-
tion can be obtained jointly. The coarse DOA estimates are
then employed to yield the final DOA estimates with high
accuracy.

Compared with the traditional methods, the proposed
scheme enjoys the following advantages: (1) The interdipole
spacing and intersubarray spacing can be extended much
greater than half a wavelength, which could reduce the
mutual coupling effect. (2) High accuracy 2DDOA estimates
can be obtained for the azimuth angle and the elevation angle
concurrently, due to the extended aperture in both directions.
(3) Only dipoles are utilized in the array, which avoids the
responses mismatch of dipoles and loops. (4)The parameters
are derived in closed-form and are therefore computationally
efficient. (5)TheDOA and polarization parameters are paired
automatically. (6) The source signals are not required to be
pure tones.

The rest of the paper is organized as follows: Section 2
introduces the signal model of the parallel spatially spread
dipole arrays. The proposed algorithm is described in Sec-
tion 3. In Section 4, simulations are conducted to validate
the performance of our method. We conclude this paper in
Section 5.

Throughout the paper, the complex conjugate, transpose,
Hermitian transpose, and pseudoinverse are denoted by (∙)∗,(∙)�푇, (∙)�퐻, and (∙)†, respectively. I�푚 represents am×m identity
matrix, andO�푚 is am×m zero matrix.

2. Signal Model

In order to obtain high accuracy elevation and azimuth
DOA estimates, we construct an array composed of two
parallel dipole arrays as shown in Figure 1. Note that each
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dipole array consists of four dipoles that are uniformly spread
along the 𝑥-axis, with the interelements spacing being 𝑑�푥. At
the origin of a Cartesian coordinate system, a short dipole
antenna element denoted as 𝐸�푧 is placed along the 𝑧-axis.
The other three of the dipoles (denoted as 𝐸�푥, 𝐸�푦, and 𝐸�푧) are
orthogonally oriented along each of the 𝑥-axis, 𝑦-axis, and 𝑧-
axis. In addition, the displacement along the 𝑦-axis between
the two parallel arrays is 𝑑�푦.

It is well known that, for a completely polarized unit
power transverse electromagnetic wave travelling through a
homogeneous isotropic medium, it can be characterized by
a 3×1 electric-field vector in the Cartesian coordinate system
[1]:

e (𝜃, 𝜙, 𝛾, 𝜂) = [[[
𝑒�푥𝑒�푦𝑒�푧

]]]
= [[[

cos 𝜃 cos 𝜙 − sin 𝜙
cos 𝜃 sin 𝜙 cos 𝜙− sin 𝜃 0

]]]
[sin 𝛾e�푗�휂

cos 𝛾 ]
(1)

where 𝜃 ∈ [0, 𝜋] is the signal’s elevation angle measured from
the positive 𝑧-axis, 𝜙 ∈ [0, 2𝜋) denotes the azimuth angle
measured from the positive 𝑥-axis, 𝛾 ∈ [0, 𝜋/2) stands for
the auxiliary polarization angle, and 𝜂 ∈ [−𝜋, 𝜋) refers to the
polarization phase difference.

Considering the spatial phase shift introduced by dis-
placement along the 𝑥-axis, the array manifold of the four
spatially spread dipoles on the left-hand side can be expressed
as

a (𝜃, 𝜙, 𝛾, 𝜂) = [[[[[[

𝑒�푥𝑒�푦𝑒�푧𝑒�푧
]]]]]]

⊙ [[[[[[[

𝑒−�푗(2�휋/�휆)3�푑𝑥�푢
𝑒−�푗(2�휋/�휆)2�푑𝑥�푢
𝑒−�푗(2�휋/�휆)�푑𝑥�푢1

]]]]]]]
(2)

Herein, ⊙ denotes the Hadamard product, and 𝑢 = sin 𝜃 cos𝜙
represents the direction-cosine of the 𝑥-axis. Note that the
interdipole displacement along the 𝑥-axis could be utilized
to extend the array aperture and also reduce the mutual
coupling.

To obtain the aperture expansion along the 𝑦-axis,
another dipole-quad array with the same structure is added
in parallel, and the displacement along the 𝑦-axis 𝑑�푦 can be
much greater than a half wavelength. Considering the spatial
phase-factor introduced by the parallel array structure, the
array manifold can be expressed as

b (𝜃, 𝜙, 𝛾, 𝜂) = [ a

a ⋅ 𝑒−�푗(2�휋/�휆)�푑𝑦V] (3)

and V = sin 𝜃 sin 𝜙 represents the direction-cosine of the y-
axis.

Assume that there are a total of 𝐾 signals impinging
onto the proposed array from the far-field.Thus, the received
signal data can be expressed as follows:

x (𝑡) = �퐾∑
�푘=1

b�푘𝑠�푘 (𝑡) + n (𝑡) = Bs (𝑡) + n (𝑡) (4)

B = [b (𝜃1, 𝜙1, 𝛾1, 𝜂1) , ⋅ ⋅ ⋅ , b (𝜃�퐾, 𝜙�퐾, 𝛾�퐾, 𝜂�퐾)] (5)

s (𝑡) = [𝑠1 (𝑡) , ⋅ ⋅ ⋅ , 𝑠�퐾 (𝑡)]�푇 (6)

where B is the array manifold, s(𝑡) is the signal vector, and
n(𝑡) denotes the additive Gaussian white noise.

Given a total number of 𝐿 snapshots generated at the
distinct instants {𝑡�푙: 𝑙 = 1, ..., 𝐿}, the main problem to be
addressed in this paper is to obtain high accuracy 2D DOA
estimates from these snapshots, i.e., estimate the azimuth
angle and elevation angle parameters {𝜃�푘, 𝜙�푘}, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾
of the impinging signals. Moreover, for beamforming pur-
poses, it may be also useful to estimate the corresponding
polarization parameters {𝛾�푘, 𝜂�푘}, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾.

Unlike the traditional scalar array antenna model, the
proposed parallel sparse dipole arrays in Figure 1 are
polarized, sparsely spread, and composed of noncollocating
orthogonally oriented dipoles. Therefore, a novel algorithm
is investigated in the next section for the polarized antenna
arrays.

3. Proposed Algorithm

In order to generate unambiguous 2D DOA and polarization
parameters with high accuracy for the proposed polarized
array, our algorithm creatively uses the ESPRIT technique
through the following stages: (1) based on the spatial rota-
tional invariance property between the two parallel arrays,
ESPRIT is utilized to generate the eigenvalues and the eigen-
vectors; (2) the eigenvalues offer the estimates of high accu-
racy but ambiguous 𝑦-axis direction-cosines; (3) the relation-
ships between the elements of each source’s steering vector
a(𝜃, 𝜙, 𝛾, 𝜂) are employed to obtain ambiguous high accuracy
but ambiguous 𝑥-axis direction-cosine estimates, coarse 2D
DOA estimates, and polarization parameter estimation; (4)
the coarse DOA estimation results are employed to select
a set of highly accurate and unambiguous direction-cosine
estimates from the set containing the cyclically ambiguous
estimates.

3.1. HighAccuracy and CyclicallyAmbiguous y-Axis Direction-
Cosine Estimation. It can be seen from (3) that the first and
the last four components of the steering vector b�푘 satisfy the
spatial rotational invariance, which corresponds to the two
parallel dipole arrays, respectively. For the 𝑘th source, this
rotational invariance property can be expressed as

J2b�푘 = J1b�푘𝑒−�푗(2�휋/�휆)�푑𝑦V𝑘 , 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾 (7)

J1 = [I4 O4] ,
J2 = [O4 I4] (8)

where J1 and J2 are the selection matrices.
Considering the 𝐾 far-field radiating sources received by

the array, the spatial rotational invariance property can be
generalized as the following matrix form:
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J2B = J1BΦV (9)

ΦV = diag [exp (−𝑗2𝜋𝜆 𝑑�푦V1) , exp (−𝑗2𝜋𝜆 𝑑�푦V2) , ⋅ ⋅ ⋅ ,
exp (−𝑗2𝜋𝜆 𝑑�푦V�퐾)] (10)

where diag[v] represents a diagonal matrix with its main
diagonal elements being those of v.

It is noticeable that ΦV contains the 𝑦-axis direction-
cosine information. Therefore, to obtain the estimation ofΦV,
we first generate the covariance matrix of the received data
x(𝑡):

R�푋 = 𝐸 {x (𝑡) x�퐻 (𝑡)} = BR�푠B
�퐻 + 𝜎2�푛I (11)

where 𝐸{∙} denotes expectation. By taking the eigenvalue
decomposition (EVD) ofR�푋, we have the following equation:

R�푋 = E�푆Λ�푆E
�퐻
�푆 + E�푁Λ�푁E

�퐻
�푁 (12)

where Λ�푆 is a diagonal matrix containing 𝐾 largest eigenval-
ues andΛ�푁 is a diagonalmatrix associatedwith the remaining
8-𝐾 ones. E�푆, which spans the signal subspace of R�푋, is
composed of the 𝐾 vectors corresponding to the 𝐾 largest
eigenvalues of R�푋. E�푁, which spans the noise subspace of R�푋,
is composed of the remaining 8-𝐾 vectors corresponding to
the 8-𝐾 small eigenvalues of R�푋.

Based on the subspace principle, the 8×𝐾 signal subspace
matrix can be expressed as

E�푆 = BT (13)

where T denotes an unknown K×K nonsingular matrix to
be determined. Therefore, according to (9) and (13), the
following relationships can be derived:

E�푆1 = J1E�푆 = J1BT (14)

E�푆2 = J2E�푆 = J2BT = J1BΦVT = E�푆1ΦV (15)

Applying the least squares (LS) algorithm [11], we have

E†�푆1E�푆2 = T−1
ΦVT (16)

where (∙)† denotes the Moore-Penrose inverse. The eigen-
value decomposition of the matrix E†�푆1E�푆2 yields the estimates
of T andΦV, respectively. And the main diagonal elements of
ΦV are composed of the eigenvalues of E†�푆1E�푆2. Therefore, the
direction-cosine along the 𝑦-axis can be obtained by

V�푓�푖�푛�푒
�푘

= −∠ [ΦV]�푘,�푘2𝜋𝑑�푦/𝜆 , 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾 (17)

where the ∠(∙) operator returns the phase of the complex
number in its argument.

Note that when the displacement parameter 𝑑�푦 between
the two parallel dipole arrays is much greater than half a
wavelength, these direction-cosines estimation values in (17)
will be of high accuracy, due to the extend aperture size along
the 𝑦-axis. However, they will suffer from cyclical ambiguity
problem at the same time.

3.2. HighAccuracy andCyclically Ambiguous x-AxisDirection-
Cosine Estimation. Since the nonsingular matrix T has been
determined in the above subsection, the manifold matrix
of the left-hand side subarray can be estimated from the
following expression:

[â1, â2, ⋅ ⋅ ⋅ , â�퐾] = 12𝑐 {J1Ê�푆T̂−1 + J2Ê�푆T̂
−1
Φ̂
−1

V } (18)

where â�푘 represents the estimation of a(𝜃�푘, 𝜙�푘, 𝛾�푘, 𝜂�푘) and c is
an unknown complex constant.

According to the array structure in Figure 1 and (2), the
arraymanifold of the left-hand side subarray can be estimated
as

â�푘 = 𝑐a

= 𝑐[[[[[[[

(sin 𝛾�푘 cos 𝜃�푘 cos 𝜙�푘𝑒�푗�휂𝑘 − cos 𝛾�푘 sin 𝜙�푘) 𝑒−�푗(2�휋/�휆)3�푑𝑥�푢
(sin 𝛾�푘 cos 𝜃�푘 sin 𝜙�푘𝑒�푗�휂𝑘 + cos 𝛾�푘 cos 𝜙�푘) 𝑒−�푗(2�휋/�휆)2�푑𝑥�푢

(− sin 𝛾�푘 sin 𝜃�푘𝑒�푗�휂𝑘) 𝑒−�푗(2�휋/�휆)�푑𝑥�푢
− sin 𝛾�푘 sin 𝜃�푘𝑒�푗�휂𝑘

]]]]]]]
(19)

Based on the estimated steering vector â�푘, the direction-
cosine of 𝑥-axis can be calculated

𝑢�푓�푖�푛�푒�푘 = ∠ {[â�푘]4 / [â�푘]3}2𝜋𝑑�푥/𝜆 (20)

where the ∠{∙} operator returns the phase of the complex
number in its argument and [â]�푖 denotes the 𝑖th entry of â.

Similarly, when the interdipole spacing parameter 𝑑�푥 is
much greater than half a wavelength, these direction-cosines
estimation values in (20) will be of high accuracy, due to
the extend aperture size along the 𝑥-axis. However, they will
suffer from cyclical ambiguity problem at the same time.

3.3. Coarse and Unambiguous 2D-DOAEstimation. With the
estimation of the steering vector â�푘, we can construct the
following 2×1 vector

q�푘 = [[[[[

[â�푘]1[â�푘]3 ⋅ 𝑒�푗2�∀{[â𝑘]4/[â𝑘]3}
[â�푘]2[â�푘]3 ⋅ 𝑒�푗�∀{[â𝑘]4/[â𝑘]3}

]]]]]
= [[[[

− cot 𝜃�푘 cos 𝜙�푘 + cot 𝛾�푘 cos 𝜂�푘 sin 𝜙�푘
sin 𝜃�푘

− cot 𝜃�푘 sin 𝜙�푘 − cot 𝛾�푘 cos 𝜂�푘 cos 𝜙�푘sin 𝜃�푘
]]]]

+ 𝑗[[[[
− cot 𝛾�푘 sin 𝜂�푘 sin 𝜙�푘

sin 𝜃�푘
cot 𝛾�푘 sin 𝜂�푘 cos 𝜙�푘sin 𝜃�푘

]]]]

(21)
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Therefore, the coarse 2D DOA estimates can be derived from
the following closed-form formulas [23]:

𝜙coarse
�푘

= {{{{{{{{{
arctan{−Im {[q�푘]1}

Im {[q�푘]2} } , Im {[q�푘]2} sin 𝜂�푘 ≥ 0
arctan{−Im {[q�푘]1}

Im {[q�푘]2} } + 𝜋, Im {[q�푘]2} sin 𝜂�푘 < 0
(22)

𝜃coarse�푘 = {{{{{{{{{
arctan ( 1𝑄�푘

) , 𝑄�푘 ≥ 0
arctan ( 1𝑄�푘

) + 𝜋, 𝑄�푘 < 0 (23)

𝑄�푘 = −Re {[q�푘]1} cos𝜙coarse
�푘 − Re {[q�푘]2} sin 𝜙coarse

�푘 (24)

Moreover, the polarization parameters are also readily to
be obtained in the closed-form

𝜂�푘 = −∠ ([q�푘]1 sin 𝜙coarse
�푘 − [q�푘]2 cos𝜙coarse

�푘 ) (25)

𝛾�푘 = arccot( Im {[q�푘]2 sin 𝜃coarse�푘 }
cos 𝜙coarse

�푘
sin 𝜂�푘 ) (26)

Accordingly, the coarse direction-cosine estimation for
the 𝑥 and 𝑦 axes can be calculated, respectively, as follows:

𝑢̂�푐�표�푎�푟�푠�푒�푘 = sin 𝜃 cos 𝜙 (27)

V̂�푐�표�푎�푟�푠�푒�푘 = sin 𝜃 sin 𝜙 (28)

These 2D coarse direction-cosine estimates can then
be applied to disambiguate the phase ambiguities in the
fine estimates, which are induced from the interdipole and
intersubarray spatial displacement.

3.4. Disambiguation Algorithm. Note that when 𝑑�푥 and 𝑑�푦
are much greater than half a wavelength, the estimated values𝑢�푓�푖�푛�푒
�푘

and V�푓�푖�푛�푒
�푘

in (20) and (17) will be cyclically ambiguous,
which is demonstrated as follows:

𝑢̂�푓�푖�푛�푒,�푛1
�푘

= 𝑢̂�푓�푖�푛�푒
�푘

+ 𝜆𝑑�푥 𝑛1 (29)

⌈𝑑�푥𝜆 (−1 − 𝑢̂�푓�푖�푛�푒
�푘

)⌉ ≤ 𝑛1 ≤ ⌊𝑑�푥𝜆 (1 − 𝑢̂�푓�푖�푛�푒
�푘

)⌋ (30)

V̂�푓�푖�푛�푒,�푛2
�푘

= V̂�푓�푖�푛�푒
�푘

+ 𝜆𝑑�푦 𝑛2 (31)

⌈𝑑�푦𝜆 (−1 − V̂�푓�푖�푛�푒
�푘

)⌉ ≤ 𝑛1 ≤ ⌊𝑑�푦𝜆 (1 − V̂�푓�푖�푛�푒
�푘

)⌋ (32)

Herein, the ⌈⋅⌉ operator returns the smallest integer greater
than its argument, and the ⌊⋅⌋ operator returns the largest
integer less than its argument. As such, this process generates
a set of cyclically ambiguous estimations.

Then, the coarse 2D DOA estimation results are applied
as reference values for choosing a set of highly accurate

and unambiguous direction-cosine estimates from the set
of ambiguous estimates. This is conducted by first defining
the following highly accurate and unambiguous direction-
cosines for the 𝑥 and 𝑦 axes, respectively. Note that the
direction-cosines estimates in [22] require two indepen-
dent eigendecomposition operations; thus they require addi-
tional parameter matching procedure. On the contrary, the
direction-cosines estimates in the proposed scheme are
obtained from only one eigendecomposition, and therefore,
the fine and coarse direction-cosine estimates for the 𝑥 and 𝑦
axes are automatically paired without any extra operation.

𝑛1,opt = arg
�푛1

min {󵄨󵄨󵄨󵄨󵄨󵄨𝑢̂�푓�푖�푛�푒,�푛1�푘
− 𝑢̂�푐�표�푎�푟�푠�푒�푘

󵄨󵄨󵄨󵄨󵄨󵄨} (33)

𝑛2,opt = arg
�푛2

min {󵄨󵄨󵄨󵄨󵄨󵄨V̂�푓�푖�푛�푒,�푛2�푘
− V̂�푐�표�푎�푟�푠�푒�푘

󵄨󵄨󵄨󵄨󵄨󵄨} (34)

These terms are then applied to obtain highly accurate
and unambiguous 2D-DOA parameter estimations as fol-
lows:

𝜃�푓�푖�푛�푒
�푘

= arcsin(√(𝑢̂�푓�푖�푛�푒,�푛1,𝑜𝑝𝑡
�푘

)2 + (V̂�푓�푖�푛�푒,�푛2,𝑜𝑝𝑡
�푘

)2) (35)

𝜙�푓�푖�푛�푒
�푘

= arccot(𝑢̂�푓�푖�푛�푒,�푛1,𝑜𝑝𝑡
�푘

V̂�푓�푖�푛�푒,�푛2,𝑜𝑝𝑡
�푘

) (36)

Consequently, the polarization parameter estimations
can be updated by substituting 𝜃�푓�푖�푛�푒

�푘
and 𝜙�푓�푖�푛�푒

�푘
into (24)

and (25). Note that the DOA and polarization estimates are
automatically paired without any extra operation.

3.5. Implementation of the Algorithm. Note that the exact
covariancematrices and subspaces are utilized in the previous
subsections, but the theoretical covariance matrix like R�푋 in
(11) is unavailable due to the limited number of 𝐿 snapshots.
In practical, it can be estimated as

R̂�푋 = 1𝐿
�퐿∑
�푡=1

{x (𝑡) x�퐻 (𝑡)} (37)

Consequently, the procedure of our proposed algorithm
is summarized as follows.

Step 1. Estimate the covariance matrix R�푋 using (36).

Step 2. Eigendecompose R�푋 to generate its signal subspace E�푠
as in (13).

Step 3. Partition E�푠 into two 4×𝐾 matrices ES1 and ES2 via
(14) and (15).

Step 4. Eigendecompose E†�푆1E�푆2 to obtain its eigenvalues and
eigenvectors.

Step 5. Thedirection-cosine along the y-axis can be estimated
by (17).

Step 6. Estimate the manifold matrix of the left-hand side
subarray according to (18).
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Figure 2: DOA and polarization estimation results of three sources. The SNR is set equal to 20 dB, the number of snapshots is 100, and 200
independent trials are carried out. (a) Azimuth and elevation angle estimation. (b) Polarization parameter estimation.

Step 7. Obtain the direction-cosines along the x-axis via (20).

Step 8. Construct the 2×1 vector q�푘 according to (21), and the
coarse DOA estimates can be obtained from (22), (23).

Step 9. The coarse direction-cosine estimates are employed
to disambiguate the ambiguities in the fine direction-cosine
estimates.

Step 10. The unambiguous direction-cosine estimates are
employed for 2DDOA estimation according to (35) and (36),
and the polarization parameters are estimated according to
(25) and (26).

4. Simulation Results

In this section, several numerical simulations are conducted
to validate the performance of the proposed algorithm. The
interdipole distance 𝑑�푥 along the 𝑥-axis is set as 10𝜆, and the
intersubarray distance 𝑑�푦 along the 𝑦-axis is set as 10𝜆. It is
assumed that the number of sources is known a priori in the
following simulations. And the signal-to-noise ratio (SNR) of
the 𝑘-th source is defined as 10 log10(𝜎2�푘/𝜎2�푛), where 𝜎2�푛 is the
noise power and 𝜎2�푘 is the power of the 𝑘-th source signal.

In the first experiment, we verify the effectiveness of the
proposed algorithm. Consider that there are three uncorre-
lated equipowered sources impinging on the array. The DOA
and polarization parameters are set as (𝜃1 = 20∘, 𝜙1 =20∘, 𝛾1 = 45∘, 𝜂1 = 45∘), (𝜃2 = 60∘, 𝜙2 = 55∘, 𝛾2 = 80∘, 𝜂2 =30∘), and (𝜃3 = 80∘, 𝜙3 = 40∘, 𝛾3 = 70∘, 𝜂3 = 60∘), respectively.
The number of snapshots is 100 and the SNR equals 20 dB.

Figure 2(a) demonstrates the results of the azimuth and ele-
vation angle estimation from 200 independent realizations.
Figure 2(b) illustrates the results of the auxiliary polarization
angle and polarization phase difference estimation from 200
independent realizations. According to Figure 2, it is evident
that the estimated DOA and polarization parameters are
correctly paired and almost equal to the true value. Thus,
the proposed algorithm can provide high accuracy direction
find and polarization estimation results. To further verify the
parameter estimation performance versus the SNR and the
snapshot number, two more experiments are carried out.The
performance is measured in terms of root mean-square error
(RMSE) for each individual parameter, which is defined as

𝑅𝑀𝑆𝐸 = √ 1𝑁
�푁∑
�푛=1

(𝑦�푛,�푘 − 𝑦�푘)2 (38)

where𝑦�푘 stands for the parameter,𝑦�푛,�푘 denotes the estimation
of 𝑦�푘 in the 𝑛-th trial, and 𝑁 is the number of Monte Carlo
trials that are conducted in the following simulations, which
is 1000.

In the second experiment, the estimation accuracy of
the proposed algorithm versus SNR is explored. Consider
that two uncorrelated equipowered sources are impinging
on the array. DOA and polarization parameters are (𝜃1 =30∘, 𝜙1 = 20∘, 𝛾1 = 45∘, 𝜂1 = −90∘) and (𝜃2 = 80∘, 𝜙2 =70∘, 𝛾2 = 45∘, 𝜂2 = 90∘), respectively. The SNR varies from
0 dB to 60 dB in steps of 5 dB. The number of snapshots
is fixed at 100. Figure 3 illustrates the RMSEs of DOA and
polarization estimation as a function of SNR. Note that, for
the azimuth and elevation angle estimates, both the coarse
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(a) RMSEs of azimuth angle estimates versus SNR
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(b) RMSEs of elevation angle estimates versus SNR
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(c) RMSEs of polarization parameter estimates versus SNR

Figure 3: RMSEs of DOA and polarization estimation versus SNR for the proposed algorithm. The number of snapshots is 100 and 1000
Monte Carlo trials are carried out. (a) RMSEs of azimuth angle estimates versus SNR; (b) RMSEs of elevation angle estimates versus SNR; (c)
RMSEs of the polarization parameter estimation versus SNR.

estimation and the fine estimation results are presented for
comparison. From Figures 3(a) and 3(b), it is obvious that the
coarse DOA estimates have higher RMSEs since the extended
array aperture is not fully utilized. In addition, as is expected,
the fine estimates have superior estimation accuracy than the
coarse ones after disambiguation. Moreover, the RMSEs of
both theDOAand polarization estimates decrease as the SNR
increases.

In the third experiment, we investigate the RMSEs of
the proposed algorithm with the variation of the number
of snapshots. The parameter settings are same as that of the
second experiment except that the SNR is set equal to 20 dB,
and the number of snapshots varies from 10 to 1000. From
Figures 4(a) and 4(b), we can draw a similar conclusion that
the fine DOA estimates have superior estimation accuracy
than the coarse ones after disambiguation. Moreover, it can
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(a) RMSEs of azimuth angle estimates versus snapshot number
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(b) RMSEs of elevation angle estimates versus snapshot number
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(c) RMSEs of polarization parameter estimates versus snapshot number

Figure 4: RMSEs of DOA and polarization estimation versus snapshot number for the proposed algorithm. The SNR is set equal to 20 dB
and 1000Monte Carlo trials are carried out. (a) RMSEs of azimuth angle estimates versus snapshot number; (b) RMSEs of elevation estimates
versus snapshot number; (c) RMSEs of the polarization parameter estimation versus snapshot number.

be observed that the parameter estimation performance of
the two sources improves as the snapshot number increases.
This is because the fact that a larger sample support will pro-
duce better estimate of the covariance matrix for stationary
data.

5. Conclusions

This paper developed a joint DOA and polarization esti-
mation algorithm for the proposed two parallel spatially

spread dipole arrays. The ESPRIT algorithm is employed
for conducting highly accurate and unambiguous coarse
parameter estimation based on the spatial rotation invariance
of the array structure. The spatially noncollocated array
structure is conducive toward reducing the mutual coupling
effect and the hardware cost of the electromagnetic vector-
sensors array compared with spatially collocated array struc-
tures. Moreover, the interelement spacing could be much
greater than half a wavelength, which promotes the 2D DOA
estimation accuracy.
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