
Research Article
Application of Adomian Decomposition
Method to Bounded and Unbounded Stokes’ Problems

Chi-Min Liu 1 and Ray-Yeng Yang2

1Division of Mathematics, General Education Center, Chienkuo Technology University, Taiwan
2Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Taiwan

Correspondence should be addressed to Chi-Min Liu; cmliu@ctu.edu.tw

Received 30 September 2018; Accepted 18 November 2018; Published 28 November 2018

Academic Editor: Richard I. Avery

Copyright © 2018 Chi-Min Liu and Ray-Yeng Yang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The well-known Stokes’ problems are reexamined by applying the Adomian decomposition method (ADM) associated with other
mathematical techniques in this paper. Both the finite-depth (bounded) and infinite-depth (unbounded) cases are analyzed. The
present paper raises and deals with twomajor concerns.The first one is that, for Stokes’ problems, it lacks one boundary condition at
the expansion point to fully determine all coefficients of the ADM solution in which an unknown function appears.This unknown
function which is dependent on the transformed variable will be determined by the boundary condition at the far end.The second
concern is that the derived solution begins to deviate from the exact solution as the spatial variable grows for the unbounded
problems. This can be greatly improved by introducing the Padé approximant to satisfy the boundary condition at the far end. For
the second problems, the derived ADM solution can be easily separated into the steady-state and the transient parts for a deeper
comprehension of the flow.The present result shows an excellent agreement with the exact solution.The ADM is therefore verified
to be a reliable mathematical method to analyze Stokes’ problems of finite and infinite depths.

1. Introduction

The Adomian decomposition method (ADM) has been
extensively applied to pursue approximate solutions of math-
ematical as well as practical problems in many disciplines [1].
Without using linearization, perturbation, closure approx-
imation, or discretization methods, the ADM provides an
efficient way to study a rather wide class of nonlinear as well
as stochastic equations [2]. It can be applied to study ordi-
nary differential equations (ODEs) and partial differential
equations (PDEs) for various kinds of problems. The core
idea of the ADM is to decompose the target variable(s) or
unknown(s) into an infinite series with no requirement of
assuming small parameters. In general, the lowest term of
the ADM solution is determined by the imposed initial or
boundary condition of the problem, and then other higher
terms can be calculated by applying the integral operator of
recursion form with the help of lower terms.

Among the ADM studies, different aspects and emphases
were demonstrated in literature. Herein we briefly review

two focal points. The first one is whether the required
boundary/initial condition(s) for deriving the ADM solution
is fully known or not. For a differential equation, if the
highest-order derivative of the unknown function is 𝑛, one
requires (𝑛 − 1) boundary/initial condition(s) at the same
point to obtain the solution with all coefficients determined.
Cases with fully known boundary/initial conditions include
the studies of KdV and mKdV equations [3], Schrödinger
equations [4], Boussinesq and KP equations [5], Burgers’ and
Boussinesq equations [6], the coupled Burgers’ equation [7],
heat equation [8], and diffusion equation [9]. In contrast
to the above problems with fully given conditions, past
studies, including the problems of boundary-layer equation
[10], Lane-Emden equations [11], and nonlinear Blasius
equation and heat transfer equation [12], are lacking one
boundary/initial condition to determine all coefficients of
the ADM solution. This has to be solved by considering
another boundary condition at different point. The second
point we concern is the domain range of the problems. For
problems in a finite domain, past studies have verified the
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excellent accuracy and reliability of the ADM [9, 11]. As
for the infinite/unbounded cases, the Padé approximant is
usually applied to improve the accuracy of the ADM at the
far end [3, 6, 7, 10–14]. Even if the Padé approximant is
successful in extending the valid range of the ADM solution,
an unbounded problem still increases the difficulty to keep
the accuracy in the whole domain. The above concerns are
crucial issues discussed in present study.

In fluid mechanics, Stokes’ problem [15] may stand for
the most important and classical one for viscous flows. It
describes a viscous flow which is suddenly driven by either
a moving plate with constant speed (the first problem) or
an oscillating plate (the second problem). Stokes’ problems
have been extensively studied by not only mathematical
methods [16] but also numerical simulations [17]. Recently,
the applicability of the ADM to Stokes’ problems was exam-
ined in several articles. The ADM was applied to study
the steady-state oscillating solution of unbounded Stokes’
second problem [18]. In this work, two boundary conditions,
the Dirichlet and Neumann conditions at the oscillating
plate, are provided to determine the lowest two terms of
the solution. Though the Dirichlet boundary condition is
prescribed, the Neumann one, however, which cannot be
determined by the original PDE system, is given by the exact
solution. Accordingly, the applicability of the ADM may not
be well verified in this case. Later, the ADM was again used
to verify the steady-state oscillating solution of bounded
Stokes’ second problem [19]. In the above two studies, only
the steady-state oscillating solutions are examined which
implies the initial condition is not considered or given in the
original PDEs. In addition to Stokes’ problems, three classical
viscous flows in a finite domain, which include the Couette
flow, the Poiseuille flow, and the Couette-Poiseuille flow,
were analyzed to obtain the steady-state oscillating solutions
[20].

To improve the knowledge and verify the accuracy and
applicability of the ADM for Stokes’ problems, the exact
solution, which contains the steady-state and transient parts,
will be examined herein by applying the ADM and other
mathematical techniques for bounded and unbounded cases.
Different frommany of past studies, two boundary conditions
which are given at different spatial positions, one at 𝑦 = 0
and another at 𝑦 = ℎ (for bounded problems) or 𝑦 󳨀→∞ (for unbounded problems), result in extra mathematical
efforts to determine all coefficients of the ADM solution
as two conditions are required at 𝑦 = 0 for solving
the present second-order PDEs. Accordingly, an unknown
function appeared in some coefficients of the ADM solution
which has to be determined by the boundary condition at𝑦 = ℎ or 𝑦 󳨀→ ∞. For the unbounded case, the Padé
approximant is introduced to avoid divergent behaviors when𝑦 grows.The organization of present paper is as what follows.
In Section 2, the bounded Stokes’ problems are examined
using the ADM. For the unbounded problems, the ADM as
well as the Padé approximants are applied to perform the
analysis in Section 3. For all problems, the Laplace transform
is required to implement the analysis due to the prescribed
initial condition. To verify the accuracy and applicability of
the ADM, present solutions are compared with the exact

solutions of Stokes’ problems. Concluding remarks are made
in Section 4.

2. Bounded Stokes’ Problems

In this section, the bounded (finite-depth) Stokes’ first and
second problems are analyzed by using the ADM. A New-
tonian fluid of dynamic viscosity ] is considered occupy the
upper 𝑦 domain with a finite depth ℎ. The only driven force
comes from the plate located 𝑦 = 0 which it begins to
eithermove in a constant speed (the first problem) or oscillate
with frequency 𝜔 (the second problem). Plate motion is only
allowed in the 𝑥 direction for 𝑡 > 0. Detailed derivations for
the two problems are addressed in the following subsections.

2.1. The First Problem. For the first problem, the momentum
equation for velocity 𝑢(𝑦, 𝑡) in 𝑥 direction, boundary and
initial conditions are shown in dimensionless forms

𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑦2 , (1)

𝑢 = 1 at 𝑦 = 0 for 𝑡 > 0, (2)

𝜕𝑢𝜕𝑦 = 0 at 𝑦 = 1 for 𝑡 > 0, (3)

𝑢 = 0 for 𝑡 ≤ 0, (4)

where the relations with dimensional variables are 𝑦 = 𝑦∗/ℎ,𝑡 = ]𝑡∗/ℎ2, 𝑢 = 𝑢∗/𝑢0 and 𝑢0 is the plate speed. Boundary
conditions (2) and (3), respectively, address the plate motion
at 𝑦 = 0 and the stress-free condition at the free surface 𝑦 = 1.
Now the Laplace transform defined as

𝑢̂ (𝑠) = ∫∞
0
𝑢 (𝑡) 𝑒−�푠�푡𝑑𝑡, (5)

is applied to (1) to (3) with the help of (4). The results are

𝑠𝑢̂ = 𝜕2𝑢̂𝜕𝑦2 , (6)

𝑢̂ = 1𝑠 , at 𝑦 = 0, (7)

𝜕𝑢̂𝜕𝑦 = 0, at 𝑦 = 1. (8)

To begin the ADManalysis [1, 2], a linear differential operator
and its inverse integral are defined

L�푦 (.) = 𝜕2𝜕𝑦2 (.) , (9)

L−1�푦 (.) = ∫�푦
0
∫�푦
0
(.) 𝑑𝑦 𝑑𝑦. (10)

Now we apply (10) into (6) and then solve it by applying the
boundary condition at 𝑦 = 0. It yields

𝑢̂ (𝑦, 𝑠) = 1𝑠 + 𝑔 (𝑠) ⋅ 𝑦 + ∫
�푦

0
∫�푦
0
𝑠𝑢̂ 𝑑𝑦𝑑𝑦. (11)



Mathematical Problems in Engineering 3

In (11), the unknown 𝑔(𝑠) stands for the Neumann
boundary condition at 𝑦 = 0, i.e., 𝑢�푦(𝑦 = 0). Different from
many studies in which the unknown is a constant, 𝑔(𝑠) is
dependent on the transformed variable 𝑠. Values of 𝑔(𝑠) will
be determined later. Nowwe assume the transformed velocity𝑢̂ to be of a series form

𝑢̂ (𝑦, 𝑠) = ∞∑
�푖=1

𝑢̂�푖 (𝑦, 𝑠) . (12)

The first-order term of (12) is assigned by using the boundary
conditions at 𝑦 = 0,

𝑢̂1 = 1𝑠 + 𝑔 (s) 𝑦, (13)

and higher-order terms are determined by a recursion rela-
tion

𝑢̂�푛+1 = ∫�푦
0
∫�푦
0
𝑠𝑢̂�푛 𝑑𝑦𝑑𝑦 for 𝑛 ≥ 1. (14)

After some algebra, higher-order terms are solved:

𝑢̂2 = 12𝑦2 + 𝑠𝑔 (𝑠)6 𝑦3, (15)

𝑢̂3 = 𝑠24𝑦4 + 𝑠2𝑔 (𝑠)120 𝑦5, (16)

𝑢̂4 = 𝑠2720𝑦6 + 𝑠3𝑔 (𝑠)5040 𝑦7, (17)

𝑢̂�푛 = 𝑠�푛−2(2𝑛 − 2)!𝑦2�푛−2 + 𝑠�푛−1𝑔 (𝑠)(2𝑛 − 1)!𝑦2�푛−1. (18)

Now we define the approximate transformed solution of
order 𝑛 is denoted by 𝑈̂�푛:

𝑈̂�푛 (𝑦, 𝑠) = �푛∑
�푖=1

𝑢̂�푖 (𝑦, 𝑠) . (19)

As all approximate transformed solutions 𝑈̂�푛 contain the
unknown 𝑔(𝑠), it implies that the determination of value of𝑔(𝑠) will differ and depend on the approximate order 𝑛. The
unknown 𝑔(𝑠) is now determined by making 𝑈̂�푛 to satisfy the
boundary condition at the free surface at 𝑦 = 1:

𝜕𝑈̂�푛𝜕𝑦 = 0 at 𝑦 = 1. (20)

The results for 𝑈̂1 to 𝑈̂4 are
𝑔1 (𝑠) = 0 for 𝑈̂1, (21)

𝑔2 (𝑠) = −2𝑠 + 2 for 𝑈̂2, (22)

𝑔3 (𝑠) = −4 (𝑠 + 6)𝑠2 + 12𝑠 + 24 for 𝑈̂3, (23)

𝑔4 (𝑠) = −6 (𝑠2 + 20𝑠 + 120)
𝑠3 + 30𝑠2 + 360𝑠 + 720 for 𝑈̂4. (24)

By calculating the inverse Laplace transform of (19) with
the help of (21) to (24), one now can obtain the approximate
solutions 𝑈�푛:

𝑈1 = 1, (25)

𝑈2 = 1 + 2𝑦3 − 6𝑦3 ⋅ 𝑒−2�푡 + −2𝑦3 + 3𝑦26 ⋅ 𝛿 (𝑡) , (26)

𝑈3 = 1 + 6𝑦5 − 20𝑦3 + 15𝑦230 ⋅ 𝛿 (𝑡) + −4𝑦5 + 5𝑦4120
⋅ 𝛿�耠 (t)
− 2𝑦 (15 − 5 (3 + √3) 𝑦2 + 3 (2 + √3)𝑦4)15
⋅ 𝑒−2(3+√3)�푡
− 2𝑦 (15 − 5 (3 − √3) 𝑦2 + 3 (2 − √3)𝑦4)15
⋅ 𝑒−2(3−√3)�푡,

(27)

where 𝛿(∙) represent the Dirac Delta function, and 𝑈4
is ignored herein due to its very length expression. For
measuring the accuracy of ADM solutions, the exact solution
used for comparison is [21]

𝑈�푒�푥�푎�푐�푡 = 1 − 4𝜋
∞∑
�푛=0

12𝑛 + 1
⋅ exp [−(2𝑛 + 1)2 𝜋24 𝑡] sin [(2𝑛 + 1) 𝜋2 𝑦] .

(28)

Figures 1(a) and 1(b) show the velocity profiles of 𝑈1
to 𝑈4 by dash curves of different colors and 𝑈exact by solid
curve for the cases of 𝑡 = 0.5 and 𝑡 = 1, respectively. For
this bounded problem, it is found that a higher-order ADM
solution approaches the exact solution much closer than a
lower-order one. For quantitatively comparing the accuracy
of the approximate solution 𝑈�푛 with the exact solution, a
parameter

𝐸�푛 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑈�푛 − 𝑈�푒�푥�푎�푐�푡𝑈�푒�푥�푎�푐�푡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (29)

is defined to measure the difference between the exact and
ADM solutions. Table 1 shows the error percentages at the
free surface 𝑦 = 1 where the maximum error may occur for
each approximate solution. Results show that the difference
decreases as time grows. It is remarked that, as 𝑈1 = 1 is
equivalent to the speed ofmoving plate, all other approximate
solutions will gradually approach to 𝑈1 as time approaches
infinity.
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Table 1: Error percentages 𝐸�푛 at 𝑦 = 1.
𝐸1 𝐸2 𝐸3 𝐸4𝑡 = 0.5 58.93% 19.03% 2.02% 0.24%𝑡 = 1 12.10% 8.12% 0.90% 0.04%
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Figure 1: Velocity profiles of the exact and ADM solutions for the bounded Stokes’ first problem. (a) 𝑡 = 0.5. (b) 𝑡 = 1.
2.2. The Second Problem. For the second problem, the gov-
erning equation, boundary and initial conditions are

𝜕𝑢𝜕𝑡 = 𝜆𝜕
2𝑢𝜕𝑦2 , (30)

𝑢 = cos 𝑡 at 𝑦 = 0 for 𝑡 > 0, (31)

𝜕𝑢𝜕𝑦 = 0 at 𝑦 = 1 for 𝑡 > 0, (32)

𝑢 = 0 for 𝑡 ≤ 0, (33)

where the relations with dimensional variables are 𝑦 = 𝑦∗/ℎ,𝑡 = 𝜔𝑡∗, 𝑢 = 𝑢∗/𝑢0, and 𝜆 = ]/𝜔ℎ2. The only difference
between the first and second problems is the boundary
condition at the plate addressed by (2) and (31). For the reason
of simplicity and without losing generality of the problem,
the value of 𝜆 which indicates the viscous effects is assigned
to be unity henceforth. By following the same procedures
presented in previous subsection, the transformed solution
is shown as

𝑢̂1 = 𝑠𝑠2 + 1 + 𝑔 (s) 𝑦, (34)

𝑢̂2 = 𝑠2 ( 𝑠𝑠2 + 1𝑦2 + 𝑔 (s)3 𝑦3) , (35)

𝑢̂3 = 𝑠224 ( 𝑠𝑠2 + 1𝑦4 + 𝑔 (s)5 𝑦5) , (36)

𝑢̂�푛 = 𝑠�푛−1(2𝑛 − 2)! ( 𝑠𝑠2 + 1𝑦2�푛−2 + 𝑔 (s)2𝑛 − 1𝑦2�푛−1) . (37)

The unknown 𝑔�푛 for each approximate solution is solved by
letting it for the transformed approximate solutions 𝑈̂1 to 𝑈̂4,
as defined in (19), satisfy the boundary condition at 𝑦 = 1. It
reads

𝑔1 (𝑠) = 0 for 𝑈̂1, (38)

𝑔2 (𝑠) = −2𝑠2(𝑠2 + 1) (𝑠 + 2) for 𝑈̂2, (39)

𝑔3 (𝑠) = −4𝑠2 (𝑠 + 6)(𝑠2 + 1) (𝑠2 + 12𝑠 + 24) for 𝑈̂3, (40)

𝑔4 (𝑠) = −6𝑠2 (𝑠2 + 20𝑠 + 120)
(𝑠2 + 1) (𝑠3 + 30𝑠2 + 360𝑠 + 720) for 𝑈̂4 (41)
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Table 2: Error percentages 𝐸�푛 at 𝑦 = 1.
𝐸1 𝐸2 𝐸3 𝐸4𝑡 = 𝜋 21.49% 10.67% 0.56% 0.16%𝑡 = 2𝜋 21.55% 10.86% 0.55% 0.17%

The approximate solutions 𝑈1 to 𝑈4 can be obtained by
performing the inverse Laplace transform to 𝑈̂1 to 𝑈̂4. The
results are

𝑈1 = cos 𝑡, (42)

𝑈2 = −2𝑦3 + 3𝑦26 ⋅ 𝛿 (𝑡) + 8𝑦3 − 24𝑦15 ⋅ 𝑒−2�푡 + 2y3 − 6y + 1515
⋅ cos 𝑡 + 2𝑦3 − 15𝑦2 + 24𝑦30 ⋅ sin 𝑡,

(43)

𝑈3 = 6𝑦5 − 20𝑦3 + 15𝑦230 ⋅ 𝛿 (𝑡) + 4𝑦5 − 5𝑦4120 ⋅ 𝛿�耠 (t)
− 16𝑦 ((165 + 84√3) 𝑦4 − (405 + 145√3) 𝑦2 + 390 + 15√3)3365
⋅ 𝑒−2(3+√3)�푡
− 16𝑦 ((165 − 84√3) 𝑦4 − (405 − 145√3) 𝑦2 + 390 − 15√3)3365
⋅ 𝑒−2(3−√3)�푡 + 196𝑦5 − 3365𝑦4 + 12000𝑦3 − 23520𝑦 + 8076080760
⋅ cos 𝑡 + −600𝑦5 + 3920𝑦2 − 40380𝑦 + 7200080760 ⋅ sin 𝑡.

(44)

where 𝑈4 is ignored again due to its lengthy expres-
sion. It is found that the approximate solutions are con-
stituted by oscillating terms, cos 𝑡 and sin 𝑡, exponential
terms, and the Dirac delta function 𝛿(𝑡) and its deriva-
tive. Morever, terms related to cos 𝑡 and sin 𝑡 consti-
tute the steady-state oscillating solution while exponential
terms are the transient components which decay as time
grows.

Figure 2 displays the velocity profiles at 𝑡 = 𝜋 and 𝑡 = 2𝜋.
The exact solution for comparison is introduced [21]:

𝑈�푒�푥�푎�푐�푡 = cos 𝑡 + 2 ∞∑
�푖=0

sin 𝑛𝑦𝑛
⋅ (−𝑒−�푛2�푡 + 𝑛2 sin 𝑡 − cos 𝑡 + 𝑒−�푛2�푡𝑛4 + 1 ) ,

(45)

where

𝑛 = 2𝑖 + 12 𝜋. (46)

It shows that both 𝑈3 and 𝑈4 show excellent behaviors
in comparison with the exact solution. Table 2 displays the
difference ratio between the ADM solution and the exact
solution. No obvious difference appears for approximate
solutions of all orders at the first round of oscillation.

3. Unbounded Stokes’ Problems

The unbounded Stokes’ problem, which describes the
induced viscous flow in an infinite-depth domain, is investi-
gated in this section. In general, a problem in an unbounded
domain usually shows divergent behaviors as values of some
variables or parameters increase, especially by using methods
based on a series expansion. Accordingly, in addition to the
ADM, the Padé approximant is introduced to improve the
accuracy of velocity profile in the unbounded domain. In the
following two subsections, the first and second problems will
be examined, respectively. All variables, conditions and phys-
ical definitions are the same with those shown in previous
section, except the position of the upper boundary is moved
form 𝑦 = ℎ to 𝑦 󳨀→ ∞.

3.1. The First Problem. For the Stokes’ first problem, the
momentum equation in 𝑥 direction, boundary and initial
conditions are

𝜕𝑢𝜕𝑡 = 𝜕2𝑢𝜕𝑦2 , (47)

𝑢 = 1 at 𝑦 = 0 for 𝑡 > 0, (48)

𝑢 = 0 at 𝑦 󳨀→ ∞ for 𝑡 > 0, (49)

𝑢 = 0 for 𝑡 ≤ 0. (50)

By following the same procedures shown in previous section,
the transformed ADM solutions 𝑈̂4 is

𝑈̂4 = 1𝑠 + 𝑔𝑦 + 12𝑦2 + 𝑠𝑔6 𝑦3 + 𝑠24𝑦4 + 𝑠2𝑔120𝑦5
+ 𝑠2720𝑦6 + 𝑠3𝑔5040𝑦7.

(51)

It is noted again that the unknown 𝑔(𝑠) will be determined
by applying the boundary condition at 𝑦 󳨀→ ∞. As (51)
quickly diverges while 𝑦 goes large, the Padé approximant is
now applied to transform (51) into the following Padé forms:

𝑈̂[1,1] = 1 + ((2𝑔2𝑠 − 1) /2𝑔) 𝑦𝑠 [1 − (1/2𝑔) 𝑦] , (52)
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𝑈̂[2,2] = 1 + ((30𝑔𝑠 − 24𝑔3𝑠2) / (36 − 24𝑔2𝑠)) 𝑦 + ((15𝑠 − 14𝑔2𝑠2) / (36 − 24𝑔2𝑠)) 𝑦2𝑠 [1 + ((−6𝑔𝑠) / (36 − 24𝑔2𝑠)) 𝑦 + ((4𝑔2𝑠2 − 3𝑠) / (36 − 24𝑔2𝑠)) 𝑦2] , (53)

𝑈̂[3,3] = (1 + (−540 + 3840𝑔2𝑠 − 3360𝑔4𝑠2)(3240𝑔 − 3360𝑔3𝑠) 𝑦 + (900𝑔𝑠 − 912𝑔3𝑠2)(3240𝑔 − 3360𝑔3𝑠)𝑦2 + (−225𝑠 + 616𝑔2𝑠2 − 392𝑔4𝑠3)(3240𝑔 − 3360𝑔3𝑠) 𝑦3)
⋅ (𝑠 [1 + (−540 + 600𝑔2𝑠)(3240𝑔 − 3360𝑔3𝑠)𝑦 + (−180𝑔𝑠 + 168𝑔3𝑠2)(3240𝑔 − 3360𝑔3𝑠) 𝑦2 + (45𝑠 − 44𝑔2𝑠2)(3240𝑔 − 3360𝑔3𝑠)𝑦3])

−1 ,
(54)

where the subscript [𝑚, 𝑛] denotes the order of the Padé
approximant. To satisfy the boundary condition at 𝑦 󳨀→ ∞,
it requires that the highest term of 𝑦 power in the numerator
has to vanish. It reads

𝑔 (𝑠) =
{{{{{{{{{{{{{{{{{{{{{{{

±√ 12𝑠 for 𝑈̂[1,1]
±√ 1514𝑠 for 𝑈̂[2,2]
±12√ 22 ± √347𝑠 for 𝑈̂[3,3].

(55)

As the derivation of 𝑈[3,3] can be readily performed by
following the same derivation for𝑈[1,1] and𝑈[2,2], for the sake
of a brief and clear demonstration, we only show details of the
derivation for𝑈[1,1] and𝑈[2,2] and neglect the display of𝑈[3,3]
henceforward. Applying the minus values of 𝑔(𝑠) in (55) to
(52) and (53) results in

𝑈̂[1,1] = 22𝑠 + √2𝑠1.5𝑦, (56)

𝑈̂[2,2] = 168 − 5√210√𝑠𝑦168𝑠 + 7√210𝑠1.5𝑦 + 21𝑠2𝑦2 . (57)

It is remarked that, if one takes the plus values of 𝑔(𝑠)
in (55), the derived velocity profiles will fall into an invalid
range. 𝑈[1,1] and 𝑈[2,2] now can be calculated by performing
the inverse Laplace transform

𝑈 = 12𝜋𝑖 ∫
�푘−�푖∞

�푘+�푖∞
𝑈̂𝑒�푠�푡𝑑𝑠 (58)

to (56) and (57).The path of the contour integration is shown
in Figure 3. Inside the contour it has two poles 𝑠1 and 𝑠2 for𝑈[2,2]. Therefore, we have

𝑈[1,1] = − 12𝜋𝑖 (∫�퐴�퐵 +∫�퐵�퐶 +∫�퐶�퐷�퐸 +∫�퐸�퐹
+ ∫
�퐹�퐺
𝑈̂[1,1]𝑒�푠�푡𝑑𝑠) ,

(59)

𝑈[2,2] = − 12𝜋𝑖 (∫�퐴�퐵 +∫�퐵�퐶 +∫�퐶�퐷�퐸 +∫�퐸�퐹
+ ∫
�퐹�퐺
𝑈̂[2,2]𝑒�푠�푡𝑑𝑠) + Res(11 − √455𝑖3𝑦2 )

+ Res(11 + √455𝑖3𝑦2 ) ,
(60)

where the integrations along the pathsAB and FG are zero, the
integration along the path CDE is −2𝜋𝑖, and Res(∙) represents
the residues of poles inside the contour. After some algebra,
(59) and (60) are further calculated to be

𝑈[1,1] = 1 − √2𝑦𝜋 ∫∞
�=0

𝛼0.5𝛼 (𝛼𝑦 + 2) ⋅ 𝑒−��푡𝑑𝛼, (61)

𝑈[2,2] = 1 + √210𝑦21𝜋 ∫∞
�=0

5𝛼𝑦2 − 96(𝛼𝑦2 + 11/3)2 + 455/9
⋅ 𝑒−��푡√𝛼 𝑑𝛼 + exp (11𝑡/3𝑦2)7√455 [−50√70𝑟0.5
⋅ sin(𝜃2 + √4553𝑦2 𝑡) + 518 sin(√4553𝑦2 𝑡)
− 288√70𝑟0.5 sin(−𝜃2 + √4553𝑦2 𝑡)
+ 4032𝑟 sin(−𝜃 + √4553𝑦2 𝑡)] ,

(62)

with the relations 𝑟 = 24
𝜃 = tan−1

√45511 . (63)

The exact solution for the first problem is introduced for
comparison [16]:

𝑈�푒�푥�푎�푐�푡 = Erfc( 𝑦2√𝑡) , (64)

where Erfc(∙) denotes the complementary error function.
The ADM-Padé solutions and the exact solution are plotted
in Figure 4 for the cases of 𝑡 = 1 and 𝑡 = 5. For the range0 ≤ 𝑦 ≤ 5, 𝑈[3,3] has an excellent agreement with the exact
solution while behaviors of𝑈[1,1] and𝑈[2,2] are comparatively
poor. It is also found that the difference becomes smaller for
all approximate solutions at larger times.
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Figure 3: Contour integral of unbounded Stokes’ first problem. The poles 𝑠1 and 𝑠2 are for 𝑈[2,2] only.
3.2. The Second Problem. For the second problem of infi-
nite depth, all equations are the same with the finite-
depth case except the boundary condition as 𝑦 approaches
infinity:

𝜕𝑢𝜕𝑡 = 𝜆𝜕
2𝑢𝜕𝑦2 , (65)

𝑢 = cos 𝑡 at 𝑦 = 0 for 𝑡 > 0, (66)𝑢 = 0 at 𝑦 󳨀→ ∞ for 𝑡 > 0, (67)

𝑢 = 0 for 𝑡 ≤ 0, (68)

By letting𝜆 be unity and following the samederivation shown
previously, the 4th-order transformed solution is

𝑈̂4 = 𝑠𝑠2 + 1 + 𝑔𝑦 + 𝑠22 (𝑠2 + 1)𝑦2 + 𝑠𝑔6 𝑦3
+ 𝑠324 (𝑠2 + 1)𝑦4 + 𝑠2𝑔120𝑦5 + 𝑠4720 (𝑠2 + 1)𝑦6
+ 𝑠3𝑔5040𝑦7.

(69)

Therefore the transformed ADM-Padé approximants are
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𝑈̂[1,1] = 𝑠 [1 + ((𝑠2 + 1) 𝑔/𝑠 − 𝑠2/2 (𝑠2 + 1) 𝑔)𝑦](𝑠2 + 1) [1 − (𝑠2/2 (𝑠2 + 1) 𝑔) 𝑦] , (70)

𝑈̂[2,2]
= 𝑠 [1 + ((𝑠2 + 1) 𝑔/𝑠 + (𝑔𝑠2 (𝑠2 + 1) / (−6𝑠3 + 4𝑔2 (𝑠2 + 1)2)))𝑦 + ((−15𝑠4 + 14𝑔2𝑠 (𝑠2 + 1)2) /12 (−3𝑠3 + 2𝑔2 (𝑠2 + 1)2))𝑦2]

(𝑠2 + 1) [1 + (𝑔𝑠2 (𝑠2 + 1) / (−6𝑠3 + 4𝑔2 (𝑠2 + 1)2)) 𝑦 + ((3𝑠4 − 4𝑔2𝑠 (𝑠2 + 1)2) /12 (−3𝑠3 + 2𝑔2 (𝑠2 + 1)2)) 𝑦2]
(71)

𝑈̂[3,3] = (𝑠[[1 + (
(𝑠2 + 1) 𝑔𝑠 − 𝑠5/1920 (𝑠2 + 1)3 + −𝑔𝑠2/1728 (𝑠2 + 1)

7𝑔3𝑠3/2160 − 𝑔𝑠6/320 (𝑠2 + 1)2 )𝑦 +(19𝑔3𝑠5/21600 (𝑠2 + 1) − 𝑔𝑠8/1152 (𝑠2 + 1)3
7𝑔3𝑠3/2160 − 𝑔𝑠6/320 (𝑠2 + 1)2 )𝑦2

+ (49𝑔4𝑠4/129600 + 𝑠10/4608 (𝑠2 + 1)4 − 77𝑔2𝑠7/129600 (𝑠2 + 1)2
7𝑔3𝑠3/2160 − 𝑔𝑠6/320 (𝑠2 + 1)2 )𝑦3]])((𝑠2 + 1)[[1

+ (𝑠8/1920 (𝑠2 + 1)3 − 𝑔2𝑠5/1728 (𝑠2 + 1)
7𝑔3𝑠3/2160 − 𝑔𝑠6/320 (𝑠2 + 1)2 )𝑦 + (𝑔𝑠7/5760 (𝑠2 + 1)2 − 7𝑔3𝑠4/43200

7𝑔3𝑠3/2160 − 𝑔𝑠6/320 (𝑠2 + 1)2 )𝑦2

+ +(11𝑔𝑠6/259200 (𝑠2 + 1) − 𝑠9/23040 (𝑠2 + 1)3
7𝑔3𝑠3/2160 − 𝑔𝑠6/320 (𝑠2 + 1)2 )𝑦3]])

−1

(72)

The unknown 𝑔(𝑠) in above equations is solved by setting the
coefficient of the highest 𝑦 term in the numerator to be zero.
It reads

𝑔 (𝑠) =
{{{{{{{{{{{{{{{{{{{{{{{{{

± 𝑠1.5√2 (𝑠2 + 1) for 𝑈̂[1,1]
± √15𝑠1.5√14 (𝑠2 + 1) for 𝑈̂[2,2]
±√22 ± √34𝑠1.52√7 (𝑠2 + 1) for 𝑈̂[3,3].

(73)

By applying values of 𝑔(𝑠) in (73) into (70) and (71), and
then performing the inverse Laplace transform with the help
of the contour integral shown in Figure 5, the results are
(results for 𝑈[3,3] is neglected)

𝑈[1,1] = −√2𝑦𝜋 ∫∞
�=0

𝛼1.5𝑒−��푡(𝛼2 + 1) (𝛼𝑦2 + 2)𝑑𝛼 + Res (𝑖)
+ Res (−𝑖) ,

(74)

where the summation of two residues are

1𝑦4 + 4 [(4 − 2𝑦 + 𝑦3) cos 𝑡 + (2𝑦 − 2𝑦2 + 𝑦3) sin 𝑡] , (75)

and

𝑈[2,2] = √210𝑦21𝜋 ∫∞
�=0

5𝛼𝑦2 − 96(𝛼𝑦2 + 11/3)2 + 455/9
⋅ 𝛼1.5𝑒−��푡𝛼2 + 1 𝑑𝛼 + Res (𝑖) + Res (−𝑖)
+ Res(11 − √455𝑖3𝑦2 )
+ Res(11 + √455𝑖3𝑦2 ) ,

(76)

where the summation of four residues are

121√2𝑦2 ⋅ (𝑐1𝑐3 − 𝑐2𝑐4) cos 𝑡 − (𝑐1𝑐4 + 𝑐2𝑐3) sin 𝑡𝑐21 + 𝑐22
+ 𝑒11�푡/3�푦27√455 (c25 + 𝑐26 )
⋅ [−5√70𝑟2.5 (−𝑐6 cos(2.5𝜃 + √455𝑡3𝑦2 )
+ 𝑐5 sin(2.5𝜃 + √455𝑡3𝑦2 ))
+ 518𝑟2 (−𝑐6 cos(2𝜃 + √455𝑡3𝑦2 )
+ 𝑐5 sin(2𝜃 + √455𝑡3𝑦2 ))
− 288√70𝑟1.5 (−𝑐6 cos(1.5𝜃 + √455𝑡3𝑦2 )
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Figure 5: Contour integral of unbounded Stokes’ second problem.

+ 𝑐5 sin(1.5𝜃 + √455𝑡3𝑦2 ))
+ 4032𝑟(−𝑐6 cos(𝜃 + √455𝑡3𝑦2 )
+ 𝑐5 sin(𝜃 + √455𝑡3𝑦2 ))] ,

(77)

with 𝑟 and 𝜃 are defined in (63), and coefficients 𝑐1 to 𝑐6 are
𝑐1 = 64𝑦2 − 1
c2 = 223𝑦2
c3 = 5√210𝑦 − 96√210𝑦 + 1344√2𝑦2
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c4 = −5√210𝑦 + 518√2 − 96√210𝑦
c5 = 9𝑦4 − 334
c6 = 22√455.

(78)

The exact solution is also shown for comparison [16]:

𝑈�푒�푥�푎�푐�푡 = 12
⋅ Re{exp [−𝑦√2 + 𝑖 (𝑡 − 𝑦√2)]Erfc( 𝑦2√𝑡 − √𝑖𝑡)
+ exp [ 𝑦√2 + 𝑖 (𝑡 + 𝑦√2)]Erfc( 𝑦2√𝑡 + √𝑖𝑡)} ,

(79)

where Re represents the real part of the complex. Figure 6
displays the velocity distributions of the ADM-Padé solutions
for 𝑡 = 𝜋 and 𝑡 = 2𝜋 for the range 0 ≤ 𝑦 ≤ 5. Dash
and solid curves represented the ADM-Padé solutions and
the exact solution, respectively. It is found that the higher-
order ADM-Padé solution provides a much better behavior
than the lower-order one. Similar to the bounded case, the
steady-state and the transient parts can be readily obtained
by separating oscillating and nonoscillating terms.

4. Conclusions

In this paper, we examined of Stokes’ first and second
problems by applying the Adomian decomposition method
with the help of the Padé approximant. Both bounded and

unbounded cases are analyzed to acquire the approximate
solutions. Two major concerns including the determination
of the unknown in the ADM solution and the treatment
of the unbounded domain are demonstrated and solved.
Comparisons between the ADM solutions and the exact
solution show an excellent agreement which verifies the
accuracy and applicability of the ADM for Stokes’ problems.
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