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The dynamics of a system consisting of a nonlinear primary oscillator, subjected to a harmonic external force, and a nonlinear
energy sink (NES) are investigated. The analytical solutions for the steady-state responses are obtained by the complexification-
averaging method and the analytical model is confirmed by numerical simulations. The results indicate that the introduction of
the NES can effectively suppress the vibrations of the primary oscillator. However, as the excitation amplitude increased, the NES
may lose its efficiency within certain frequency range due to the appearance of the high response branches. Following the results
analysis, it is concluded that this failure can be eliminated by reducing the nonlinear stiffness of the NES properly. The effects of
nonlinear stiffness of the primary oscillator on the corresponding responses are also studied.The increase in this nonlinear stiffness
can reduce the response amplitude and alter the frequency band where the high branches exist.

1. Introduction

The nonlinear energy sink, consisting of a small mass and
a pure nonlinear spring, constitutes an effective solution for
vibration suppression over a broad frequency range [1–3]. It
can result in a one-way irreversible energy transfer from the
primary system to the NES. Compared to traditional linear
and weakly nonlinear absorbers, the NES has the higher
suppression efficiency under many conditions [4, 5].

The targeted energy transfer (TET) inmechanical systems
is one of the attractive issues in the past decades. The
introduction of the strong nonlinearity to the primary system
can lead to complicated dynamic responses.Themechanisms
and phenomena of the nonlinear TET, such as the transient
and sustained resonance captures, energy localization, and
weakly and strongly modulation responses, were of high
concern to researchers [6–8]. Applications of the NES for
the vibration suppression in various structures were reported

in several papers. Theoretical and experimental studies indi-
cated that the vibrations of beams [9, 10], plates [11, 12],
circular cylinders [13], and stay-cables [14] can be effectively
suppressed by the NES attachment. With the deepening
of research, NES has been applied increasingly to suppress
vibration of complicated engineering systems such as rotor-
blisk-journal bearing system [15], helicopter [16], and whole-
spacecraft [17].

The investigation on energy transfer efficiency of the NES
when the primary system is excited by harmonic load is an
indispensable part of applications for this absorber [18, 19].
Following a series of optimization, the essentially nonlinear
absorber exhibited apparent advantages over linear or weakly
nonlinear counterparts. However, a main drawback in NES
exists: several unwanted additional branches of response
may become apparent under certain conditions. The strategy
which can eliminate these branches is a key issue for robust
increase of this absorber [20, 21]. In addition, in the vast
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Figure 1: Nonlinear primary oscillator with a nonlinear energy sink.

majority of cases, the controlled primary systems were linear
models. These researches contributed significantly to the
characteristics of the nonlinear TET. However, many engi-
neering structures present nonlinear characters, and their
nonlinear phenomena must be considered [22–25]. The dy-
namics of the TET system where the nonlinear factors of the
primary system were taken into account had been paid more
attentions [26–29].

In the current study, the steady-state responses of a non-
linear primary oscillator coupled to a NES are investigated
by the complexification-averaging technique. The nonlinear
frequency responses of the system under various excitation
amplitudes are considered.The nonlinear stiffness of the NES
is adjusted to attempt to eliminate these unwanted branches.
Also, the effects of the nonlinear stiffness of both the NES and
primary oscillator on the vibration suppression are analyzed
and compared.

2. Dynamic System

A nonlinear primary oscillator with a single degree of free-
dom essentially nonlinear attachment is presented in Figure 1.
A harmonic external force is imposed on the primary
oscillator. The dynamic equation for the integrated system is
derived as follows:�̈� + 𝛾

1
�̇� + 𝐾𝑤 + 𝑘

1
𝑤3 + 𝑘

2 (𝑤 − V)3 + 𝛾2 (�̇� − V̇)= 𝑓 cosΩ𝑡, (1a)

𝜀V̈ + 𝑘
2 (V − 𝑤)3 + 𝛾2 (V̇ − �̇�) = 0, (1b)

where𝐾, 𝑘
1
, and 𝛾

1
are the linear stiffness, nonlinear stiffness,

and linear damping of the primary oscillator, respectively.𝑘
2
and 𝛾

2
are the nonlinear stiffness and linear damping of

the NES. 𝑓 and Ω represent the excitation amplitude and
frequency, respectively. 𝜀 is the mass ratio between the NES
and the primary oscillator and 0 < 𝜀 ≪ 1. For convenience,
we let𝑀 = 1.

The complexification-averaging technique is utilized to
obtain the slow-flowmodel of the integrated system, whereas
the following transformations are introduced:

𝑢 (𝑡) = 𝑤 (𝑡) − V (𝑡) ,�̇� + 𝑖Ω𝑤 = 𝛼
1
𝑒𝑖Ω𝑡,�̇� − 𝑖Ω𝑤 = 𝛼
1
𝑒−𝑖Ω𝑡,�̇� + 𝑖Ω𝑢 = 𝛼
2
𝑒𝑖Ω𝑡,�̇� − 𝑖Ω𝑢 = 𝛼
2
𝑒−𝑖Ω𝑡,

(2)

where 𝛼
𝑛
is the conjugate of the 𝛼

𝑛
, (𝑛 = 1, 2), 𝑖 = √−1.

Based on expression (2), we have𝑤 = 𝛼1𝑒𝑖Ω𝑡 − 𝛼1𝑒−𝑖Ω𝑡2𝑖Ω ,
�̇� = 𝛼1𝑒𝑖Ω𝑡 + 𝛼1𝑒−𝑖Ω𝑡2 ,
�̈� = 12 (�̇�1𝑒𝑖Ω𝑡 + 𝑖Ω𝛼1𝑒𝑖Ω𝑡 + �̇�1𝑒−𝑖Ω𝑡 − 𝑖Ω𝛼1𝑒−𝑖Ω𝑡) ,𝑢 = 𝛼2𝑒𝑖Ω𝑡 − 𝛼2𝑒−𝑖Ω𝑡2𝑖Ω ,
�̇� = 𝛼2𝑒𝑖Ω𝑡 + 𝛼2𝑒−𝑖Ω𝑡2 ,
�̈� = 12 (�̇�2𝑒𝑖Ω𝑡 + 𝑖Ω𝛼2𝑒𝑖Ω𝑡 + �̇�2𝑒−𝑖Ω𝑡 − 𝑖Ω𝛼2𝑒−𝑖Ω𝑡) .

(3)

Substituting (3) into (1a) and (1b) and retaining the slow-
flow parts, we obtain�̇�
1
+ 𝑖Ω𝛼

1
+ 𝛾
1
𝛼
1
+ 𝐾𝛼1𝑖Ω + 3𝑘1𝛼21𝛼14𝑖Ω3 + 3𝑘2𝛼22𝛼24𝑖Ω3+ 𝛾

2
𝛼
2
= 𝑓, (4a)

𝜀 (�̇�
1
+ 𝑖Ω𝛼

1
− �̇�
2
− 𝑖Ω𝛼

2
) − 3𝑘2𝛼22𝛼24𝑖Ω3 − 𝛾2𝛼2 = 0. (4b)

Letting, 𝛼
1
= 𝑎
1
+ 𝑖𝑏
1
,𝛼2 = 𝑎2 + 𝑖𝑏2. (5)
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We substitute (5) into (4a) and (4b) and separate real and
imaginary parts, yielding

̇𝑎
1
= −𝑎
1
𝛾
1
+ 𝑏
1
Ω − 𝐾𝑏1Ω − 3𝑘2𝑏2 (𝑎22 + 𝑏22 )4Ω3

− 𝛾
2
𝑎
2
− 3𝑘1𝑏1 (𝑎21 + 𝑏21)4Ω3 + 𝑓, (6a)

�̇�
1
= −𝑎
1
Ω − 𝑏
1
𝛾
1
+ 𝐾𝑎1Ω + 3𝑘2𝑎2 (𝑎22 + 𝑏22)4Ω3

− 𝛾
2
𝑏
2
+ 3𝑘1𝑎1 (𝑎21 + 𝑏21)4Ω3 , (6b)

𝜀 ̇𝑎
2
− 𝜀 ̇𝑎
1
= 𝜀Ω𝑏

2
− 𝜀Ω𝑏

1
− 3𝑘2𝑏2 (𝑎22 + 𝑏22)4Ω3 − 𝛾

2
𝑎
2
, (6c)

𝜀�̇�
2
− 𝜀�̇�
1
= 𝜀Ω𝑎

1
− 𝜀Ω𝑎

2
+ 3𝑘2𝑎2 (𝑎22 + 𝑏22)4Ω3 − 𝛾

2
𝑏
2
. (6d)

The steady-state responses of the system are investigated
through letting ̇𝑎

1
= 0, �̇�

1
= 0, ̇𝑎

2
= 0, �̇�

2
= 0. Solving

the resulting nonlinear algebraic equations, the response
amplitude of the primary oscillator and the relative motion
between two oscillators are obtained and the expressions are,
respectively,

𝑤 = √𝑎21 + 𝑏21Ω ,
𝑤 − V = √𝑎22 + 𝑏22Ω . (7)

In order for the stability of the steady-state solutions to
be analyzed, the small perturbations 𝛿

𝑛
(𝑛 = 1, 2, 3, 4) are

introduced: 𝑎
1
= 𝑎
10
+ 𝛿
1
,𝑏

1
= 𝑏
10
+ 𝛿
2
,𝑎

2
= 𝑎
20
+ 𝛿
3
,𝑏2 = 𝑏20 + 𝛿4,

(8)

where 𝑎
10
, 𝑏
10
, 𝑎
20
, 𝑏
20

are the steady-state solutions of the
system. Substituting (8) into (6a), (6b), (6c), and (6d) yieldṡ𝛿
1
= −𝛾
1
𝛿
1
+ Ω𝛿
2
− 𝐾Ω𝛿2− 3𝑘24Ω3 [(𝑎220 + 3𝑏220) 𝛿4 + 2𝑎20𝑏20𝛿3] − 𝛾2𝛿3− 3𝑘14Ω3 [(𝑎210 + 3𝑏210) 𝛿2 + 2𝑎10𝑏10𝛿1] ,

(9a)

̇𝛿
2
= −𝛾
1
𝛿
2
− Ω𝛿
1
+ 𝐾Ω𝛿1+ 3𝑘24Ω3 [(3𝑎220 + 𝑏220) 𝛿3 + 2𝑎20𝑏20𝛿4] − 𝛾2𝛿4+ 3𝑘14Ω3 [(3𝑎210 + 𝑏210) 𝛿1 + 2𝑎10𝑏10𝛿2] ,

(9b)

̇𝛿
3
= Ω𝛿
4
− Ω𝛿
2− 3𝑘24𝜀Ω3 [(𝑎220 + 3𝑏220) 𝛿4 + 2𝑎20𝑏20𝛿3]− 𝛾2𝛿3𝜀 + ̇𝛿1,

(9c)

̇𝛿
4
= Ω𝛿
1
− Ω𝛿
3+ 3𝑘24𝜀Ω3 [(3𝑎220 + 𝑏220) 𝛿3 + 2𝑎20𝑏20𝛿4]− 𝛾2𝛿4𝜀 + ̇𝛿2.

(9d)

The coefficient matrix of (9a), (9b), (9c), and (9d) is
presented as follows; the eigenvalues of thematrix can be used
to determine the stability of the solutions:

𝐽 = (𝐽11 𝐽12 𝐽13 𝐽14𝐽
21
𝐽
22
𝐽
23
𝐽
24𝐽

31
𝐽
32
𝐽
33
𝐽
34𝐽

41
𝐽
42
𝐽
43
𝐽
44

), (10)

where 𝐽
11
= −𝛾
1
− 3𝑘1𝑎10𝑏102Ω3 ,𝐽

12
= Ω − 𝐾Ω − 3𝑘1 (𝑎210 + 3𝑏210)4Ω3 ,

𝐽
13
= −𝛾
2
− 3𝑘2𝑎20𝑏202Ω3 ,𝐽

14
= −3𝑘2 (𝑎220 + 3𝑏220)4Ω3 ,

𝐽
21
= −Ω + 𝐾Ω + 3𝑘1 (3𝑎210 + 𝑏210)4Ω3 ,

𝐽
22
= −𝛾
1
+ 3𝑘1𝑎10𝑏102Ω3 ,𝐽

23
= 3𝑘2 (3𝑎220 + 𝑏220)4Ω3 ,

𝐽
24
= −𝛾
2
+ 3𝑘2𝑎20𝑏202Ω3 ,𝐽

31
= −𝛾
1
− 3𝑘1𝑎10𝑏102Ω3 ,
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𝐽
32
= −𝐾Ω − 3𝑘1 (𝑎210 + 3𝑏210)4Ω3 ,

𝐽
33
= −𝛾2𝜀 − 3𝑘2𝑎20𝑏202𝜀Ω3 − 𝛾2 − 3𝑘2𝑎20𝑏202Ω3 ,𝐽
34
= Ω − 3𝑘2 (𝑎220 + 3𝑏220)4𝜀Ω3 − 3𝑘2 (𝑎220 + 3𝑏220)4Ω3 ,

𝐽
41
= 𝐾Ω + 3𝑘1 (3𝑎210 + 𝑏210)4Ω3 ,

𝐽
42
= −𝛾
1
+ 3𝑘1𝑎10𝑏102Ω3 ,𝐽

43
= −Ω + 3𝑘2 (3𝑎220 + 𝑏220)4𝜀Ω3 + 3𝑘2 (3𝑎220 + 𝑏220)4Ω3 ,

𝐽
44
= −𝛾2𝜀 + 3𝑘2𝑎20𝑏202𝜀Ω3 − 𝛾2 + 3𝑘2𝑎20𝑏202Ω3 .

(11)

3. Validation

The numerical results are utilized for the predictions con-
firmation of the analytical model. The Runge-Kutta method
is directly attacking (1a) and (1b) to obtain the numerical
results. It is demonstrated in Figure 2(a) that the results
obtained from these two methods agree well. In Figure 2(a),
squares and circles represent stable and unstable solutions
obtained from complexification-averaging technique, respec-
tively. Pluses represent numerical solutions obtained from
Runge-Kutta method. Moreover, the stability of the analytical
results is also presented in this figure. In order for the general
applicability of the results to be ensured, all parameters in
(1a) and (1b) are dimensionless values. The stable responses
when Ω = 14.8 and Ω = 15.7 as well as the unstable re-
sponses when Ω = 15.1 and Ω = 15.4 are shown in Fig-
ures 2(b)–2(e), respectively. The unstable responses demon-
strate a kind of relaxation oscillation, usually referred to as
strong modulation response. These parameters are selected,
respectively, as𝐾 = 225, 𝑘

1
= 50, 𝑘

2
= 700, 𝛾

1
= 0.1, 𝛾

2
= 0.2,𝜀 = 0.1, 𝑓 = 1.

4. Results and Discussions

4.1. Effects of NES Nonlinear Stiffness. The vibration sup-
pression efficiency is of most concern. In this section, the
efficiency is investigated under various harmonic excitation
amplitudes by the analytical method, whereas all parameters
except the nonlinear stiffness 𝑘

2
are selected as the parameters

in Section 3. Figure 3 illustrates the nonlinear frequency re-
sponses of the primary oscillator without the NES and with
various NESs under 𝑓 = 1. When the nonlinear stiffness 𝑘2 is
selected as 100, the good vibration suppression effect is
achieved, the value of the resonance peak is reduced exceed-
ing three times with respect to that of the primary oscillator
without the NES attached. In this case, the responses in
the entire frequency band are stable. When the nonlinear

stiffness 𝑘
2
is increased to 400, the unstable responses appear

approximately at Ω = 15 and the suppression efficiency of
this NES is enhanced compared to that of the NES with 𝑘

2
=100. Generally, theweakly/stronglymodulation responses are

preferable for vibration suppression. When 𝑘
2
= 700, the

efficiency is further enhanced and the frequency band where
the unstable response occurs is broadened. When 𝑘

2
= 1000,

two high branches of the frequency response curve appear
in the frequency band [13.4, 14], one is stable and the other
is unstable. The appearance of the high stable branch is inter-
preted that the NES intensifies the vibration of the primary
oscillator in this frequency band.When 𝑘

2
= 1300, compared

to those demonstrated in Figure 3(e), the frequency band
where the high stable branch exists is broadened and the
maximum response amplitude is larger.

The frequency responses of the primary oscillator under
the harmonic excitation amplitude 𝑓 = 3 are presented in
Figure 4. When 𝑘

2
= 50, the unstable response appears

approximately at Ω = 15 and a large amount of vibration
energy is dissipated. When 𝑘2 = 150 and 𝑘2 = 250, the high
branches appear, whereas the frequency band where the high
stable branch appears to be broader as the nonlinear stiffness
increased. When the excitation amplitude 𝑓 = 5, the varia-
tions in the frequency response along with the nonlinear
stiffness 𝑘

2
are the same as those demonstrated in Figures 3

and 4. It is noted that the high branches appear as 𝑘
2
= 50 in

this case. Comparing Figures 3–5, it is discovered that, prior
to the appearance of the high response branches, the unstable
response occurs approximately at the linear natural frequency
of the primary oscillator firstly. In addition, as the excitation
amplitude increased, the lower stiffness should be selected to
prevent the appearance of the high branches of the frequency
response.

Then, the bifurcations for the primary oscillator via
the nonlinear stiffness of the NES under a fixed excitation
frequency and various excitation amplitudes are studied.
When Ω = 15, the response amplitude always remains at the
relatively low value as 𝑓 = 2 in the studied value range of the
nonlinear stiffness. As the excitation amplitude increased, the
high branches will appear at certain stiffness. For example,
when 𝑓 = 3, the response amplitude decreases with increas-
ing the nonlinear stiffness 𝑘

2
at first, and the response of

the primary oscillator becomes unstable as 𝑘2 = 93. Next,
the high branches of the response amplitude appear until the
nonlinear stiffness 𝑘

2
= 147. Comparing the four subfigures

in Figure 6, it is worth being noted that the larger the excita-
tion amplitude, the lower the stiffness which corresponds to
the bifurcation point. Figure 7 shows that, when Ω = 15.5,
the response amplitude always remains the relatively lower
value as𝑓 = 2; however, a bifurcation occurs as the nonlinear
stiffness 𝑘

2
= 93 and the response becomes unstable after

the nonlinear stiffness 𝑘
2
= 132. Similarly, the stiffness

which corresponds to the bifurcation point is reduced as the
excitation amplitude increased.

4.2. Effects of Primary Oscillator Nonlinear Stiffness. The
effects of the primary oscillator nonlinear stiffness on the fre-
quency response are investigated. All parameters except 𝑘

1
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Figure 2: Analytical model validation.
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Figure 3: Frequency responses of the primary oscillator with various NESs as 𝑓 = 1 and 𝑘
1
= 50.
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Figure 4: Frequency responses of the primary oscillator with various NESs as 𝑓 = 3 and 𝑘
1
= 50.
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Figure 5: Frequency responses of the primary oscillator with various NESs as 𝑓 = 5 and 𝑘
1
= 50.

and 𝑘
2
are the same as those in Figure 4. Figure 8 is

depicted as 𝑘1 = 0 (i.e., the primary oscillator is linear). The
change rates of the response amplitude, within the high stable
branches in Figures 8(c) and 8(d), are quite different from the
counterparts when 𝑘

1
̸= 0. Comparing the responses of the

primary oscillator without the NES, which are demonstrated
in Figures 4(a), 8(a), 9(a), and 10(a), it is indicated that the

value of the resonance peak decreases and the frequency
which corresponds to the resonance peak increases with the
raise of the nonlinear stiffness 𝑘

1
. It can also be concluded

by comparing the rest figures in Figures 4, 9, and 10 that
the integrated systems with the various values of 𝑘

1
and

the same value of 𝑘
2
have the similar response. Similar to

the effects of the nonlinear stiffness 𝑘
1
on the dynamics
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Figure 6: Bifurcations of primary oscillator asΩ = 15.
of the primary oscillator without the NES, an increase in
the nonlinear stiffness 𝑘

1
brings about the decrease of the

unwanted branches when the NES is coupled to the primary
oscillator. In addition, the nonlinear stiffness 𝑘

1
has a small

effect on the frequency range of the high branches of the
frequency response.

5. Concluding Remarks

The effects of the nonlinear stiffness of both the NES and
primary oscillator on the dynamics of the primary oscillator
under various harmonic excitations are investigated. The
complexification-averaging technique is utilized to obtain the
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Figure 7: Bifurcations of primary oscillator asΩ = 15.5.
analytical model of the integrated system, and the coefficient
matrix of the integrated system with small perturbation is
obtained to analyze the stability of the dynamic responses.

The predictions of the analytical model are confirmed
by numerical simulations. The analytical results demonstrate
that the vibration suppression can be enhanced by increasing
the NES nonlinear stiffness. However, the high branches

appear following the stiffness excessive increase. As the stiff-
ness remains fixed, the high branches also can appear with the
excitation amplitude increases. Actually, for preventing the
appearance of the high branches of the frequency response
under the large amplitude external force, the nonlinear
stiffness should be properly adjusted to a relatively low value.
Therefore, the utilization of a semiactive control is an efficient
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Figure 8: Frequency responses of the linear primary oscillator with various NESs as 𝑓 = 3.
method for the robustness improvement of the nonlinear
absorber.

TheNES brings an extra nonlinear factor to the nonlinear
primary oscillator. A distinction should be made between
the contributions of the two nonlinear factors. The results
indicate that the introduction of the strongly nonlinear factor
can not only suppress the vibrations of the primary oscillator

but also can result in the bifurcations and instability of the
responses under certain conditions. In the system studied in
this paper, by contrast, the effects of the nonlinear stiffness
of the primary oscillator are relatively simple. The increase
in this nonlinear stiffness can reduce the response amplitude
and alter the frequency band where the high branches exist.
Also, the stiffness of the primary oscillator can affect the
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Figure 9: Frequency responses of the primary oscillator with various NESs as 𝑘
1
= 200 and 𝑓 = 3.
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Figure 10: Frequency responses of the primary oscillator with various NESs as 𝑘
1
= 350 and 𝑓 = 3.

value of the NES optimal stiffness. In this work, the cubic
nonlinearity of the primary oscillator is considered only. The
effects of the NES on the dynamics of the primary oscillator
which has more complex nonlinear factors are required to be
further investigated.
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