
Research Article
Improvement Analysis and Application of Real-Coded Genetic
Algorithm for Solving Constrained Optimization Problems

JiquanWang ,1 Zhiwen Cheng,1 Okan K. Ersoy,2

Panli Zhang,1 Weiting Dai,1 and Zhigui Dong1

1College of Engineering, Northeast Agricultural University, Harbin Heilongjiang 150030, China
2Purdue University, School of Electrical and Computer Engineering West Lafayette, Indiana 47907-1285, USA

Correspondence should be addressed to Jiquan Wang; wang-jiquan@163.com

Received 22 November 2017; Revised 23 March 2018; Accepted 24 April 2018; Published 6 June 2018

Academic Editor: Fazal M. Mahomed

Copyright © 2018 Jiquan Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An improved real-coded genetic algorithm (IRCGA) is proposed to solve constrained optimization problems. First, a sorting
grouping selection method is given with the advantage of easy realization and not needing to calculate the fitness value. Secondly,
a heuristic normal distribution crossover (HNDX) operator is proposed. It can guarantee the cross-generated offsprings to locate
closer to the better one among the two parents and the crossover direction to be very close to the optimal crossover direction or
to be consistent with the optimal crossover direction. In this way, HNDX can ensure that there is a great chance of generating
better offsprings.Thirdly, since the GA in the existing literature has many iterations, the same individuals are likely to appear in the
population, thereby making the diversity of the population worse. In IRCGA, substitution operation is added after the crossover
operation so that the population does not have the same individuals, and the diversity of the population is rich, thereby helping avoid
premature convergence. Finally, aiming at the shortcoming of a single mutation operator which cannot simultaneously take into
account local search and global search, this paper proposes a combinationalmutationmethod, whichmakes themutation operation
take into account both local search and global search. The computational results with nine examples show that the IRCGA has fast
convergence speed. As an example application, the optimization model of the steering mechanism of vehicles is formulated and the
IRCGA is used to optimize the parameters of the steering trapezoidal mechanism of three vehicle types, with better results than
the other methods used.

1. Introduction

The genetic algorithm (abbreviated as GA or GAs) was
proposed by Professor John H. Holland and his students at
University ofMichigan at the end of the 1960s and in the early
1970s [1–4]. In 1975, Professor Holland published the first
monograph devoted to the elaboration of the basic theories
and methods of genetic algorithms [1] and put forward the
most important schema theorem of the genetic algorithm
theory research and development. In the same year, De Hong
KA proposed the evolutionary strategy of elitism preserva-
tion in his doctoral thesis. Several evolutionary strategies by
elitism preservation and selective substitution and duplica-
tion were subsequently proposed [5–8]. At present, the GA is
basically computed mostly by these evolutionary strategies.
In 1989, Goldberg [9] made a comprehensive and systematic

summary and discussion of the genetic algorithm and laid the
foundation of the modern genetic algorithm.

The encoding schemes in GA are either binary coding
or real coding. The shortcomings of binary coding of GA
are [10] as follows: (1) for some high dimensional and high
precision continuous function optimization problems, the
randomness of the binary genetic algorithm makes the local
search ability poor, and the binary coding of adjacent integers
may have a large Hamming distance, thus reducing search
efficiency and influencing the computational accuracy of the
genetic operator; (2) binary coding needs to be encoded
and decoded frequently, thus increasing the calculation time,
with potential conversion errors; (3) with a finite discrete
lattice, an individual approaching the extreme value may be
omitted, causing the algorithm to reach premature conver-
gence or optimization speed to be very slow; (4) algorithm
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efficiency decreases sharply with the increase of variables
and the improvement of computational accuracy; (5) as
the accuracy of the solution is controlled by the encoding
length, binary coding may need too long codes, resulting in
excessive computing and memory space as well as reduced
computational speed. In 1992, Michalewicz proposed a real-
coded genetic algorithm (RCGA) which is more efficient in
these regards [11]. RCGA has many attractive properties such
as high precision, no coding and decoding required, effective
large space search, simple computing, fast convergence, and
resistance against falling into a local extreme value [6, 7].
It has been widely applied in areas such as automatic con-
trol, combinatorial optimization, machine learning, image
processing, self-adaptation control, planning and design,
industrial engineering, intelligent manufacturing systems,
bioengineering, system engineering, artificial intelligence,
intelligent machine system, and artificial life [6–8, 12–16].
It is especially suitable to deal with complex and nonlinear
problems that cannot be solved by traditional searchmethods
[6]. Thus, it is one of the key technologies of intelligent
computing in the 21st century.

Research on RCGA algorithms can be grouped into the
following categories: (1) the determination of an optimal
population size [17–20]; (2) generation of the initial pop-
ulation [21–23]; (3) improvement of the existing crossover
operator [24–27]; (4) improvement of the existing muta-
tion operator [28–30]; (5) improvement of the evolutionary
strategy [31–33]; (6) automatic adjustment of the operator
parameters [34–37]. The progress with these algorithms
has improved the computational speed and promoted the
development of GA theory with new applications.

Crossover operators play a crucial role in expanding the
solution space and obtaining the globally optimal solution.
Mutations are also important to increase the population
diversity, helping GA to expand the search scope and to avoid
falling into local optima. As a result, many scholars have
focused their attention on the improvement of crossover and
mutation operators. In 2016, Chuang et al. [24] proposed a
direction-based crossover operator (DBX), but the possible
crossover directions of DBX are limited. Although it may
generate a crossover direction capable of guiding the chromo-
somes tomove towards the optimal solution, this is not highly
probable.Meanwhile, when the dimensionalities of the popu-
lation are few, the null vector solution is likely to be generated,
resulting in no crossover direction. In addition, as some
better chromosomes in the population are used to replace
the worse chromosomes in the course of ranking selection,
the population diversity may become worse after multiple
iterations, eventually leading to lost diversity, and thus cannot
converge to the global optimal solution. In 1996,D.W.Wang et
al. proposed a mutation operator which mutated towards the
gradient direction of the objective function [38]. When the
objective function is not differentiable, mutation operation
cannot be performed. In 2008, Peltokangas et al. summarized

the uniform mutation operator, the nonuniform mutation
operator, the power mutation operator, and the boundary
mutation operator [39–44]. The computation times of the
nonuniform mutation operator and the power mutation
operator are larger. The boundary mutation is only suitable
for the optimization problem when the optimal solution is
on the boundary of the feasible region and the offsprings of
uniformmutation operator have no connectionwith the indi-
viduals of other mutations. In 2016, Chuang et al. proposed a
mutation operator for dynamic randommutation [24], whose
step size computational formula had some conflicts with
the interpretation of the formula. In addition, the mutation
operator needs to give the maximum number of iterations in
advance, which is difficult to estimate in advance.

In summary, a good crossover operator and mutation
operator should fulfill four conditions: (1) the crossover
generated offspring individuals should be in the vicinity
of the better individual among the two-parent individuals
of participation crossover, thus generating better offsprings;(2) the calculations should be as few as possible; (3) the
mutation operator should take into account global as well
as local search so that the algorithm can quickly converge
to the global optimal solution rather than falling into local
optima; (4) the loop statement should be avoided in pro-
gramming to increase speed of computation. Aiming at
these four conditions, this paper proposes a new IRCGA to
solve constrained optimization problems. The results with
nine test functions show that the IRCGA is effective and
feasible in solving constrained optimization problems. As an
example application, the optimization model of the steering
mechanism of vehicles is formulated, and the IRCGA is
used to optimize the parameters of the steering trapezoidal
mechanism of three vehicle types, and the better results are
obtained as compared to other methods used.

2. Penalty Function Method for Constrained
Optimization Problems

The mathematic model of a constrained optimization prob-
lem can be generally expressed as follows:

min 𝑓 (𝑋) , 𝑋 = [𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑘, ⋅ ⋅ ⋅ , 𝑋𝑛] ∈ 𝑅
s.t. ℎ𝑖 (𝑋) = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑝

𝑔𝑗 (𝑋) ≥ 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑞
(1)

where n is the population size, ℎ𝑖(𝑋) = 0 is the ith
equation constraint, p is the number of equation constraints,𝑔𝑗(𝑋) ≥ 0 is the jth inequality constraint, q is the number
of inequality constraints, and 𝑋𝑘 is a m-dimensional vector𝑋𝑘=(𝑥𝑘1,𝑥𝑘2,. . .,𝑥𝑘𝑚).

Equation (1) can also be expressed as

min 𝑓 (𝑋) , 𝑋 = [𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑘, ⋅ ⋅ ⋅ 𝑋𝑛] ∈ 𝑅
𝑅 = {𝑋 | ℎ𝑖 (𝑋) = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑝; 𝑔𝑗 (𝑋) ≥ 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑞} (2)
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Table 1: Sorting grouping selection.

Before Sorting After Sorting Grouping pairing
The first group Pairing The second group

X P(Xi,M) 𝑋󸀠 𝑃(𝑋󸀠𝑖 ,𝑀) 𝑃(𝑋󸀠𝑖 ,𝑀) 𝑋𝐴 ↔ 𝑋𝐵 𝑃(𝑋󸀠𝑖 ,𝑀)
X1 P(X1,M) 𝑋󸀠1 𝑃(𝑋󸀠1,𝑀) 𝑃(𝑋󸀠1,𝑀) 𝑋󸀠1 ↔ 𝑋󸀠6 𝑃(𝑋󸀠6,𝑀)
X2 P(X2,M) 𝑋󸀠2 𝑃(𝑋󸀠2,𝑀) 𝑃(𝑋󸀠2,𝑀) 𝑋󸀠2 ↔ 𝑋󸀠7 𝑃(𝑋󸀠7,𝑀)
X3 P(X3,M) 𝑋󸀠3 𝑃(𝑋󸀠3,𝑀) 𝑃(𝑋󸀠3,𝑀) 𝑋󸀠3 ↔ 𝑋󸀠8 𝑃(𝑋󸀠8,𝑀)
X4 P(X4,M) 𝑋󸀠4 𝑃(𝑋󸀠4,𝑀) 𝑃(𝑋󸀠4,𝑀) 𝑋󸀠4 ↔ 𝑋󸀠9 𝑃(𝑋󸀠9,𝑀)
X5 P(X5,M) 𝑋󸀠5 𝑃(𝑋󸀠5,𝑀) 𝑃(𝑋󸀠5,𝑀) 𝑋󸀠5 ↔ 𝑋󸀠10 𝑃(𝑋󸀠10,𝑀)
X6 f (X6,M) 𝑋󸀠6 𝑃(𝑋󸀠6,𝑀)
X7 P(X7,M) 𝑋󸀠7 𝑃(𝑋󸀠7,𝑀)
X8 P(X8,M) 𝑋󸀠8 𝑃(𝑋󸀠8,𝑀)
X9 P(X9,M) 𝑋󸀠9 𝑃(𝑋󸀠9,𝑀)
X10 P(X10,M) 𝑋󸀠10 𝑃(𝑋󸀠10,𝑀)

Letting 𝑋∗ be the optimal solution to the constrained
optimization problem means that ∀ 𝑋 ∈ 𝑅: 𝑓(𝑋∗) ≤ 𝑓(𝑋).
In addition, if 𝑔𝑗(𝑋∗)=0, the constraint is referred to as active
constraint. Under this concept, all the equation constraintsℎ𝑖(𝑋)=0 (i=1,2,. . .p) are active at𝑋∗.

The penalty function method can be converted to an
unconstrained optimization problem by constructing two
constrained functions; meanwhile, the penalty factors are
introduced and added to the objective function, thus con-
structing the penalty function given by [45]

𝑃 (𝑋,𝑀)
= 𝑓 (𝑋)

+𝑀1 𝑝∑
𝑖=1

[ℎ𝑖 (𝑋)]2 +𝑀2 𝑞∑
𝑗=1

[min (0, 𝑔𝑗 (𝑋))]2
(3)

whereM1 andM2 are the penalty factors, generally chosen as
large enough positive constants; the second and third terms
on the right are the penalty terms, and 𝑃(𝑋,𝑀) is the penalty
function.

In (3), when 𝑋 ∈ 𝑅, there should be no penalty to the
feasible points, thus P(X, M)=f (X); when 𝑋 ∉ 𝑅, for the
nonfeasible points,M1 andM2 should be very big; therefore,
the values of the second and third terms in (3) are large,
which is equivalent to the ‘penalty’ for the infeasible point.
Moreover, when X gets farther away from the feasible region,
the penalty should be larger. It is conceivable that when M1
and M2 become sufficiently large, the minimal point X(M)
of the unconstrained optimization problem of (3) is close
enough to the minimum point of the original constrained
optimization problem. And when 𝑋(𝑀) ∈ 𝑅, it becomes the
minimal point of the original constraint problem.

The minimum value of (3) is

min𝑃 (𝑋,𝑀) (4)

which is equivalent to the minimum value of (1).

3. New Real-Coded Genetic Algorithm

3.1. Sorting Grouping Selection (SGS). We assume the follow-
ing: (1) the maximum of the objective function is sought,(2) the population size n is an even number, and (3) the
individuals in the population are sorted with respect to their
objective function value P(X, M) in descending order. If the
minimum of the objective function is sought, the objective
function P(X,M) is negated so that we still seek the max-
imum. The population before sorting is 𝑋=(𝑋1,𝑋2,⋅ ⋅ ⋅ ,𝑋𝑛),
and, after sorting, it becomes𝑋󸀠=(𝑋󸀠1,𝑋󸀠2,⋅ ⋅ ⋅ ,𝑋󸀠𝑛) and satisfies𝑃(𝑋󸀠1,𝑀) ≥ 𝑃(𝑋󸀠2,𝑀)≥ ⋅ ⋅ ⋅ ≥ 𝑃(𝑋󸀠𝑛,𝑀).

First, the chromosomes in the population are arranged
into two groups. Group 1 includes the first n/2 chromosomes
and Group 2 includes the second n/2 chromosomes. The 1st
individual in Group 1 is matched with the 1st individual in
Group 2, the 2nd individual in Group 1 is matched with the
2nd individual in Group 2, and so on. In this way, we can
obtain n/2 pairs of individuals. See Table 1 for the specific
operation of the sorting grouping selection.

In Table 1, we carry out crossover of 𝑋󸀠1 in Group 1 with𝑋󸀠6 in Group 2,𝑋󸀠2 in Group 1 with𝑋󸀠7 in Group 2, and so on.
As compared with the roulette wheel selection and the

tournament selection, the SGS method can enlarge the dis-
tance in every pair of the parent individuals and magnify the
difference between the parent individuals under matching;
in addition, the SGS is a direct operation based on the
ranking of objective function values without computing the
individual fitness values.The computation is simple and rapid
in selecting the chromosomes for crossover.

3.2. Heuristic Normal Distribution Crossover (HNDX). If
the objective function is to solve the optimization problem
of maximum value, as the individual of bigger objective
function value has higher probability of approaching the
optimal solution, it is believed that the optimal solution
is likely to be near the individual with a bigger objective
function value [46]. Inspired by this, this paper proposes
a heuristic normal distribution crossover (HNDX) operator



4 Mathematical Problems in Engineering

95.44%

99.74%

68.26%

34.13% 34.13% 13.59%13.59%2.15% 2.15%

-3 -2 -  + +2 +3

Figure 1: Density function of normal distribution.

which emphasizes the parent which has a bigger objective
function value. With the resulting better crossover direction,
two potential offsprings are generated, thus improving the
convergence speed of IRCGA.

The key to HNDX is how to make the crossover gener-
ated offsprings in the vicinity of the superior parent or in
the superior crossover direction. We note that a generated
random number according to the normal distribution has a
large probability near its mean 𝜇. In the process of crossover,
if the better one among the two parents is served as the mean𝜇 of the normal distribution, then it is guaranteed that the
generating offspring according to normal distribution is in
the vicinity of the better parent. Therefore, an offspring is
generated by normal distribution and the normal distribution
is denoted as N(𝜇,𝜎2). The density function of the normal
distribution is shown in Figure 1.

It can be seen from Figure 1 that the probability of the
random number X generated by N(𝜇, 𝜎2) in the interval (𝜇-𝜎,𝜇+𝜎) is 68.26%, the probability of X in the interval (𝜇-
2𝜎,𝜇+2𝜎) is 95.44%, and the probability of X in the interval
(𝜇-3𝜎,𝜇+3𝜎) is 99.74%. It can be seen that the probability that
X falls outside (𝜇-3𝜎,𝜇+3𝜎) is less than 0.3%, and it is often
considered that the corresponding event does not occur in
practice. Thus, the interval (𝜇-3𝜎,𝜇+3𝜎) can be regarded as
the actual possible interval of the random variable X, which
is called the 6𝜎 principle of the normal distribution. Based on
the above analysis, as long as we control the size of 𝜎 value, we
can basically guarantee that the random number X generated
by N(𝜇, 𝜎2) is near the mean 𝜇.

Let the two parents of participation crossover be 𝑋󸀠𝑖
(i=1,2,⋅ ⋅ ⋅ ,𝑛/2) and𝑋󸀠𝑗 (𝑗=𝑛/2+1, 𝑛/2+2,⋅ ⋅ ⋅ ,𝑛). Assuming that𝑋󸀠𝑖 is superior to𝑋󸀠𝑗, the two offsprings Yi (𝑖=1,2,⋅ ⋅ ⋅ ,𝑛/2) and
Yj (𝑗=𝑛/2+1, 𝑛/2+2,⋅ ⋅ ⋅ ,𝑛) are generated by

𝑌𝑖 = 𝑁(𝑋󸀠𝑖 , 𝜀 + [𝑋󸀠𝑖 − 𝑋󸀠𝑗6 ]
∙

∧2)
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛2 ; 𝑗 = 𝑛2 + 1, 𝑛2 + 2, ⋅ ⋅ ⋅ , 𝑛

𝑌𝑗 = 𝜆󳨀→𝐷 𝑗 = 𝑛2 + 1, 𝑛2 + 2, ⋅ ⋅ ⋅ , 𝑛
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Figure 2: Schematic diagram of HNDX.

󳨀→𝐷 = 𝑌𝑖 − 𝑋󸀠𝑗
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛2 ; 𝑗 = 𝑛2 + 1, 𝑛2 + 2, ⋅ ⋅ ⋅ , 𝑛

(5)

where 𝑋󸀠𝑖 is the mean of the normal distribution, [(𝑋󸀠𝑖 −𝑋󸀠𝑗)/6]∙∧2 is the variance of the normal distribution, .∧2 is
the square of each element in vector (𝑋󸀠𝑖 − 𝑋󸀠𝑗)/6, 𝜀 is a small
positive number to avoid that the variance of the normal
distribution is 0, 󳨀→𝐷 is the crossover direction, and 𝜆 is a
uniformly distributed random number in [0.5, 1.5].

Let the two-parent individuals of participation crossover
be 𝑋󸀠1 and 𝑋󸀠2 and 𝑋󸀠1 be superior to 𝑋󸀠2. To illustrate the
principle of HNDX, letting the variable dimension m be 2,
the principle of HNDX is shown in Figure 2.

In Figure 1, DY1=Y1C, 𝐴𝐸=𝐸𝐵.
Equation (5) shows that Y1 is an offspring randomly

generated according to 𝑁 (𝑋󸀠1, 𝜀 + ((𝑋󸀠1-𝑋󸀠2)/6).∧2), with its
mean equal to themean of𝑋󸀠1 and its variance equal to 𝜀+((𝑋󸀠1
-𝑋󸀠2)/6).∧2. In addition, it can be seen from Figure 1 that the
random number generated according to 𝑁(𝑋󸀠1, 𝜀 + ((𝑋󸀠1 −𝑋󸀠2)/6).∧2) has high probability of being in the vicinity of
the mean 𝑋󸀠1 of the normal distribution. According to the
above analysis, an offspring Y1 is generated by the crossover
of the two parents 𝑋󸀠1 and 𝑋󸀠2 and Y1 has a high probability
of being within the shadow region of Figure 2; that is to say,
Y1 is within a circle whose center is 𝑋󸀠1, which can basically
guarantee that Y1 is in the vicinity of the better parent𝑋󸀠1.

The second offspring Y2 is generated by the crossover
of the two parents 𝑋󸀠1 and 𝑋󸀠2 as 𝑌2 = 𝜆󳨀→𝐷, where the
crossover direction is given by 󳨀→𝐷 = 𝑌1 − 𝑋󸀠1. Therefore, Y2
might be at any point on the line CD. In addition, since Y1
is likely to be at any point within the circle that takes the
line segment 𝑋󸀠1𝑌1 as radius and 𝑋󸀠1 as center of the circle,
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Figure 3: Schematic diagrams of HNDX operation in three cases in a two-dimensional space.

there are numerous possible cross directions󳨀→𝐷. Let𝑋∗ be the
optimal solution of the problem to be solved. For the parent𝑋󸀠1 of participation crossover, the optimal crossover direction
is
󳨀→𝑍 = 𝑋∗ − 𝑋󸀠1; and for 𝑋󸀠2, the optimal crossover direction

is 󳨀→𝑌 = 𝑋∗ − 𝑋󸀠2. The crossover direction 󳨀→𝐷 generated by
HNDX is likely to be completely consistent with the optimal
crossover direction, even if it is not completely consistent
with the optimal crossover direction 󳨀→𝑌 and

󳨀→𝑍. Hence, it has
high probability of generating a direction that is very close
to the optimal crossover direction 󳨀→𝑌 and

󳨀→𝑍. In summary,
HNDX has high probability of generating better offsprings,
thereby significantly improving the convergence speed of the
algorithm.

Compared with the DBX in [24], HNDX can generate
numerous crossover directions while DBX can only generate
2m-1 crossover directions; moreover, the probability that the
offsprings generated by HNDX are close to the optimal
solution ismuch higher than that ofDBX. In addition,HNDX
can avoid use of loop statements in programming, and the
program is relatively simple.

Let y be the individuals in the population after sorting
according to the objective function values and x be the cross-
generated offsprings. We adopt the evolutionary strategy of
Section 3.5 and choose the crossover probability equal to 1.

The correspondingMatlab program code of HNDX can be as
follows:

x(1:n/2,:)=normrnd(y(1:n/2,:),0.001+((y(1:n/2,:)-
y(n/2+1:n,:))/6).∧2);
x(n/2+1:n,:)=unifrnd(0.5,1.5)∗(x(1:n/2,:)-
y(n/2+1:n,:));

It is observed that HNDX Matlab program has neither
loop statement nor conditional statement, while DBX has
both. As a result, HNDX program is simpler and takes less
time to accomplish the corresponding statements.

As an example, in terms of 2D search space, for the
spatial positions of two parents 𝑋1󸀠 and 𝑋2󸀠 participating
in crossover, there are three possible cases: (a) both parents
are in the infeasible region; (b) one parent is in the feasible
regionwhile the other is not; (c) both parent are in the feasible
region. Of these three cases, the HNDX operation in a two-
dimensional space is shown in Figure 3.

In Figure 3, the schematic of case (a) shows that the
HNDX operator can effectively guide the movement of two
parents from an infeasible region to a feasible region. In the
case of (b), HNDX crossover enables the individuals in the
infeasible region to move into the feasible region. When the
individuals are already in the feasible region as in the case of
(c), HNDX searches in the neighborhood of the two parents
and generates a direction to guide them to move towards the
optimal solution.
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3.3. Substitution Operation. In the global optimization prob-
lem with many local optima, when the algorithm finds a
region with an extreme value (whether it is a local extremum
or a global extremum), individuals in the population con-
stantlymove closer to the region and theremay be the same or
similar individuals in the population.With the increase of the
number of iterations, the same individuals in the population
will gradually increase andmay evenmake all the individuals
in the population be the same, which will make the diversity
of the population worse; thus the convergence speed of GA
and the ability of exploring other extreme value regions are
affected. In the case of the IRCGA proposed in the literature
for the optimization problem with many local optima [24],
it is possible that the vast majority of individuals in the pop-
ulation become the same or all individuals become the same
such that the algorithm cannot converge to the global optimal
solution. In order to avoid the occurrence of the above
phenomena and to maintain the diversity of the population
during the iteration process, substitution operation is added
to the IRCGA proposed herein. Substitution operation is as
follows.

If there are the same two or more individuals in a
population after crossover, only one of them shall be reserved
while eliminating the others. If the current population size is
n1, n-n1 individuals are generated at random to maintain the
population size unchanged as n. Since the n-n1 individuals
in the substitution operation are randomly generated, the
substitution operation has the function of jumping out of the
local optimum.

3.4. Combinational Mutation. In the cases of the mutation
operator given in the existing literature, some local search
abilities are strong [47, 48] and some global search abilities are
strong [48]. For the optimization problems with less extreme
points, a mutation operator with stronger local search ability
should be adopted. For the optimization problems with
more extreme points, if a mutation operator with stronger
local search ability is adopted, it is easy to converge to a
local optimum; if a mutation operator with stronger global
search ability is adopted and the accuracy requirement of
the optimal solution for the problem to be optimized is
higher, the convergence speed of the algorithm slows down.
With some of the mutation operators given in the literature,
there is strong global search capability at the beginning
of the iterations, and with the increase of the number of
iterations, local search capabilities are enhanced. However,
this requires the maximum number of iterations to be given,
which is difficult to do in advance. Although this method
is theoretically feasible, it is usually worse in practice [24].
In summary, a single mutation operator is difficult to take
into account both global and local search capabilities. For this
reason, this paper proposes a method of combinatorial muta-
tion which uses three-mutation operators. The first mutation
operator enhances the local search ability with the increase of
the number of iterations; the second mutation operator has
strong global search capability; the third mutation operator
has strong local search capability. The specific approach of
combinational mutation is as follows.

We divide the number of iterations by 3. When the
remainder is 1, the second mutation operator is used; when
the remainder is 2, the first mutation operator is used;
when the remainder is 0, the third mutation operator is
used.

The advantage of combinatorial mutation is that the local
search ability of mutation operator is taken into account
in the iterative process and the global searching ability of
mutation operator is also taken into account. The three-
mutation operators are as follows:

𝑋󸀠𝑖 = 𝑋𝑖 + 𝜆1 ∗ (𝑏𝑇 − 𝑎𝑇)𝑔𝑒𝑛 (6)

where gen is the number of iteration,𝑋𝑖 is the offspring from
crossover, 𝑋󸀠𝑖 is the offspring from mutation, vectors a and b
are the lower and upper limits of variables, and 𝜆1∗(bT-aT) is
the product bymultiplying𝜆1with the corresponding element
of bT-aT at the same position, 𝜆1=(𝜆11,𝜆12,. . .,𝜆1𝑚), in which𝜆11,𝜆12,⋅ ⋅ ⋅ ,𝜆1m are uniformly distributed randomnumbers in[−1, 1].

𝑋󸀠𝑖 = 𝑋𝑖 + 𝑋𝑖 ∗ 𝐶𝑎𝑢𝑐ℎ𝑦 (0, 1) (7)

where Cauchy (0, 1) is standard Cauchy distribution,𝑋𝑖 is an
individual to mutate, and𝑋󸀠𝑖 is an individual after mutation.

𝑋󸀠𝑖 = 𝑁(𝑋𝑖, 𝛿2) (8)

where𝑋𝑖 is the mean of the normal distribution and 𝛿2 is the
variance of the normal distribution.𝛿2 of (8) is given by

𝛿2 = 󵄨󵄨󵄨󵄨󵄨𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖󵄨󵄨󵄨󵄨󵄨6 (9)

where Xbest is the optimal individual in population.
The global search ability of the first mutation operator

at the beginning of the iterations is strong, but when the
number of iterations increases above a certain value, the first
mutation operator almost loses mutation ability. The second
mutation operator is Cauchy mutation, which can generate
a larger mutation step compared to the normal mutation
operator, giving the algorithm better global search ability.The
third mutation operator is normal mutation, which focuses
on searching for a local region near the mean with better
local search ability, but the ability to guide the individual to
jump out of the local optimal solution is weak, which is not
conducive to global convergence.Therefore, the combination
mutation operator takes into account both global exploration
and local search, which makes GA converge quickly to the
global optimal solution.

3.5. Evolutionary Strategy (ES). The evolutionary strategy of
the IRCGA proposed in this paper is as follows:

(1) The initial population is randomly generated as par-
ents, the population size is n, and the mutation
probability is pm.
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Generate initial population of size n
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End
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No

Select s elitist individuals from parents

Mutation

Figure 4: The evolutionary strategy flow diagram of IRCGA.

(2) Sorting operation is performed; that is to say, all
individuals in the population are sorted in descending
order according to their objective function values and
s elitist individuals are selected with best ranking
among n parents.

(3) Selection and crossover operations are carried out
according to the sorting results with crossover prob-
ability equal to 1.

(4) Substitution operation is performed with cross-
generated n offsprings and s elitist individuals.

(5) All individuals in the population are sorted in
descending order according to their objective func-
tion values after substitution operation.

(6) If the population size is n1less than 𝑛+𝑠 now, ran-
domly generate 𝑛+𝑠-𝑛1 individuals.

(7) Repeat the above sorting operation, get new popula-
tion, and select s elitist individuals and n individuals
with best ranking in the new population.

(8) Using the mutation operator, modify the 𝑛 individu-
als.

(9) Regenerate the new population consisting of the npm
mutated individuals, 𝑛(1-𝑝𝑚) unmutated individuals
and s elitist individuals chosen in Step (7).

(10) Sort the individuals of the regenerated new popula-
tion in descending order according to their objective
function values.

(11) If the stop condition is met, output the optimal
solution and optimal value;

(12) Otherwise select s elitist individuals and n individuals
with best ranking within the last population. Go to
Step (3) to start the next loop.

The evolutionary strategy flow diagram for IRCGA is
shown in Figure 4.

4. Algorithmic Testing and Analysis

Below RCGA proposed in [24] is abbreviated as IRCGA-
1, and IRCGA proposed in this paper is abbreviated as
IRCGA-2; IRCGA-2 that removes the substitution operation
is abbreviated as IRCGA-3; RCGA proposed in [49, 50] is
abbreviated, respectively, as IRCGA-4 and IRCGA-5.
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In order to verify the validity and feasibility of IRCGA-2,
it is to be compared with the existing RCGA. Among the
existing references of RCGA, [24] was published in 2016
with a great amount of comparative studies of the RCGA;
therefore, IRCGA-2 will be compared with IRCGA-1. In
addition, the IRCGA-2 will also be compared with IRCGA-
4 and IRCGA-5.

4.1. Iteration Termination Condition. The iteration termina-
tion condition for the RCGA can be defined as󵄨󵄨󵄨󵄨𝑓𝑖 − 𝑓∗𝑖 󵄨󵄨󵄨󵄨 ≤ 𝜀𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑝 (10)

where 𝑓∗𝑖 is the globally optimal value of the ith test function
in theory, f i is the optimal value of the ith test function
obtained by RCGA, and 𝜀i is the precision for the ith test
function.

4.2. Diversity of Population. If the individuals in the tth
populationX(t) areX1(t),X2(t),⋅ ⋅ ⋅ ,Xn(t), respectively and the
ith individual is Xi(t)=(xi1(t),xi2(t),. . .,xim(t)), the population
center𝑋(𝑡)=(𝑥1(t),𝑥2(t),⋅ ⋅ ⋅ ,𝑥𝑚(t)) is calculated as follows:

𝑋 (𝑡) = (𝑥1 (𝑡) , 𝑥2 (𝑡) , ⋅ ⋅ ⋅ , 𝑥𝑚 (𝑡))
= 𝑋1 (𝑡) + 𝑋2 (𝑡) + ⋅ ⋅ ⋅ + 𝑋𝑛 (𝑡)𝑛
= (∑𝑛𝑖=1 𝑥𝑖1, ∑𝑛𝑖=1 𝑥𝑖2, ⋅ ⋅ ⋅ , ∑𝑛𝑖=1 𝑥𝑖𝑚)𝑛

(11)

The average value of the sum of the variance of each
individual to the population center in a population is D(t)
calculated by

𝐷 (𝑡) = √ 1𝑛
𝑛∑
𝑖=1

𝑚∑
𝑗=1

(𝑥𝑖𝑗 − 𝑥𝑗)2 (12)

The D value can reflect the degree of dispersion of the
individual in the population.The larger theD value, the better
the diversity of the population; the smaller the D value, the
poorer the diversity of the population; when D value is equal
to 0, the population diversity is completely lost. That is, all
individuals in the population are the same.

4.3. Test Functions. In order to verify the validity and feasibil-
ity of IRCGA-2, nine frequently used test functions of certain
complexity are selected. They are discussed below:

(1) Needle-in-a-haystack function to be maximized

𝑓1 (𝑥) = [ 30.05 + 𝑥21 + 𝑥22 ]
2 + (𝑥21 + 𝑥22)2

−5.12 ≤ 𝑥1, 𝑥2 ≤ 5.12
(13)

The optimal solution of f 1 is located at 𝑥∗ = (0,0) with
f 1(𝑥∗) =3600.

(2) Schaffer function to be maximized

𝑓2 (𝑥) = 0.5 − sin2√𝑥21 + 𝑥22 − 0.5
(1 + 0.001 (𝑥21 + 𝑥22))2−10 < 𝑥1, 𝑥2 < 10

(14)

The optimal solution of f 2 is located at 𝑥∗ = (0,0) with
f 2(𝑥∗) =1.(3) Six-hump Camel Back function to be minimized

𝑓3 (𝑥) = (4 − 2.1𝑥21 + 𝑥413 )𝑥21 + 𝑥1𝑥2
+ (−4 + 4𝑥22) 𝑥22 − 10 < 𝑥1, 𝑥2 < 10

(15)

The optimal solution of f 3 is located at 𝑥∗ = (-0.0898,
0.7126) and (0.0898,-0.7126) with 𝑓3(𝑥∗) =-1.031628.(4) Shubert function to be minimized

𝑓4 (𝑥) = ( 5∑
𝑖=1

𝑖 cos ((𝑖 + 1) 𝑥1 + 𝑖))
⋅ ( 5∑
𝑖=1

𝑖 cos ((𝑖 + 1) 𝑥2 + 𝑖)) − 10 ≤ 𝑥𝑖 ≤ 10
(16)

The optimal solution of f 4 is located at 𝑥∗ = (-1.42513,
0.80032) with 𝑓4(𝑥∗) =-186.7309.(5) Rosenbrock function to be minimized

𝑓5 (𝑥) = 100 (𝑥2 − 𝑥21)2 + (𝑥1 − 1)2
−10 < 𝑥1, 𝑥2 < 10 (17)

The optimal solution of f 5 is located at 𝑥∗ = (1,1) with
f 5(𝑥∗) =0.

(6) Michalewiczs function to be minimized

𝑓6 (𝑥) = − sin (𝑥1) [sin(𝑥21𝜋 )]20

− sin (𝑥2) [sin(2𝑥22𝜋 )]20 0 ≤ 𝑥1, 𝑥2 ≤ 𝜋
(18)

The optimal solution of f 6 is located at 𝑥∗ = (2.0230,
2.0230) with f 6(𝑥∗) =-1.80130.(7) G08 function to be minimized

𝑓7 (𝑥) = − sin3 (2𝜋𝑥1) sin (2𝜋𝑥2)𝑥31 (𝑥1 + 𝑥2)
𝑠.𝑡. 𝑔1 (𝑥) = 𝑥21 − 𝑥2 + 1 ≤ 0

𝑔2 (𝑥) = 1 − 𝑥1 + (𝑥2 − 4)2 ≤ 0
0 ≤ 𝑥1, 𝑥2 ≤ 10

(19)
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The optimal solution of f 7 is located at 𝑥∗ = (1.2279723,
4.2453733) with f 7(𝑥∗) =-0.095825.(8) Easom function to be minimized

𝑓8 (𝑥)
= −cos (𝑥1) cos (𝑥2) exp (− (𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2)

−100 ≤ 𝑥1, 𝑥2 ≤ 100
(20)

The optimal solution of f 8 is located at 𝑥∗ = (𝜋,𝜋) with
f 8(𝑥∗) =-1.(9) Generalized Rastrigin function to be minimized

𝑓9 (𝑥) = 𝑥21 − 10 cos (2𝜋𝑥1) + 𝑥22 − 10 cos (2𝜋𝑥2) + 20
0 ≤ 𝑥1, 𝑥2 ≤ 𝜋 (21)

The optimal solution of f 8 is located at 𝑥∗ = (0,0) with
f 8(𝑥∗) =0.
4.4. Parameter Settings. In order to obtain a fair performance
comparison, the parameters related to IRCGA proposed in
this paper are set as follows:(1) The computing precision of various test functions𝜀1=𝜀2=𝜀3=𝜀4=𝜀5=𝜀6=𝜀7=𝜀8=𝜀9=10−4; (2) the population size
n=100; (3) M1=107 and M2=107 in the penalty function;(4) in IRCGA-2, the mutation probability pm=0.5 and the
crossover probability pc=1. In IRCGA-1, the mutation prob-
ability pm=0.05 and the crossover probability pc=0.9; (5)
Reserve 50 elite individuals; (6) in IRCGA-4 and IRCGA-5,
the population size n=100 and the remaining parameters are
the same as in [50, 51].

4.5. Limitations of IRCGA-1

Definition 1. When all the individuals in the population are
the same, the individuals in population are called the losing
population diversity.

For the optimization problem with more local extreme
points, ICRGA-1 has great possibility of falling into local
extreme points. For example, consider that the first test
function in Section 4.3. With IRCGA-1, the evolution of
population as a function of number of iterations is shown in
Figure 5.The corresponding results with IRCGA-2 are shown
in Figure 6.

It can be seen from Figure 5 that the diversity of the
population tends to become poor with the increase of the
number of iterations. When the number of iterations is 160,
all the individuals in the population are the same and the
value of the objective function is 2978.2275. The population
has lost its diversity, and the global optimal solution cannot
be obtained. It can be seen from Figure 6 that the population
diversity of IRCGA-2 tends to become poor with the increase
of the number of iterations but the diversity of the population
is significantly superior to that of IRCGA-1. In order to
compare the population diversities of IRCGA-1 and IRCGA-2

further, consider the needle-in-a-haystack function discussed
in Section 4.2. The IRCGA-1 and IRCGA-2 programs were
run 1000 times, respectively. With IRCGA-1, the number of
loss of population diversity was 697 times and the probability
of losing population diversity was 69.7%; with IRCGA-2,
the number of loss of population diversity was 0 times and
the probability of losing population diversity was 0%. These
results indicate that IRCGA-1 ismore likely to lose population
diversity for the problem of optimizing with many local
optima.

In summary, IRCGA-1 has great limitations in solving the
optimization problemwithmany local optima. Inmany cases,
the global optimal solution cannot be obtained.

4.6. Test Results. In order to obtain a fair performance
comparison, the 9 test functions were used as examples
and each test function was run on the same computer for
1000 times.The computational results of IRCGA-1, IRCGA-2,
IRCGA-3, IRCGA-4, and IRCGA-5 are shown in Table 2.

The average running time, the average number of itera-
tions, and the average value of population diversitywhen con-
verging to the optimal solution in Table 2 were calculated as
follows: when the iteration termination condition is satisfied,
the numbers of iterations, time, and population diversity of
processing at the ith run are, respectively, niter(i), t(i), and
div(i), i= 1, 2,⋅ ⋅ ⋅ , k, where k is the number of runs used in each
experiment.Then, the average running time, average number
of iterations, and average value of population diversity are
computed by

𝑡𝑎V = 1𝑘
𝑘∑
𝑖=1

𝑡 (𝑖) (22)

𝑛𝑖𝑡𝑒𝑟𝑎V = 1𝑘
𝑘∑
𝑖=1

𝑛𝑖𝑡𝑒𝑟 (𝑖) (23)

𝑑𝑖V𝑎V = 1𝑘
𝑘∑
𝑖=1

𝑑𝑖V (𝑖) (24)

where tav is the average running time, niterav is the average
number of iterations, and divav is the average value of
population diversity.

When the average running time of ICRGA-1 is t1, the
average running time of ICRGA-2 is t2, IRCGA-2 reduces
the average running time by x% for ith test function f i in
comparison to IRCGA-1, and, then, x% is computed by

𝑡1 (1 − 𝑥%) = 𝑡2 (25)

𝑥 = 100 (1 − 𝑡2𝑡1) (26)

The computational method of x% is the same as (25) and
(26) for IRCGA-2, IRCGA-3, IRCGA-4, and IRCGA-5.

As can be observed in Table 2, the average running
time, average number of iterations, and average value of
population diversity of IRCGA-2 are significantly superior
to those of IRCGA-1, IRCGA-3, IRCGA-4, and IRCGA-5.
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Figure 5: The evolution of population in IRCGA-1 as a function of the number of iterations.

IRCGA-2 reduces the average running time by 96.7328%,
17.3913%, 96.9867%, and 96.4353% for f 1, 96.8280%,
49.8113%, 97.8737%, and 73.0223% for f 2, 77.6050%, 47.2527%,
89.0327%, and 54.5731% for f 3, 98.5534%, 9.3625%, 98.2681%,
and 72.8908% for f 4, 72.2076%, 21.9753%, 93.1557%, and
75.6923% f 5, 61.9744%, 33.3333%, 88.6401%, and 83.7500%
for f 6, 65.1568%, 37.5000%, 58.2463%, and 45.6522% for
f 7, 81.0282%, 20.1220%, 82.1038%, and 82.0320% for f 8,
91.9857%, and 50.9375%, 71.9643%, and 60.3535 for f 9in
comparison to IRCGA-1, IRCGA-3, IRCGA-4, and IRCGA-5.
Similarly, the numbers of iterations are reduced by 88.2454%,

20.2076%, 89.6488%, and 87.7177% for f 1, 88.6364%,
48.9817%, 93.6805%, and 84.6963% for f 2, 24.5985%,
11.7893%, 73.8572%, and 33.5144% for f 3, 95.2673%,
19.4441%, 95.0346%, and 82.6697% for f 4, 14.2070%,
4.7474%, 80.2807%, and 78.6939% for f 5, 11.0402%, 6.7012%,
93.6547%, and 92.0071% for f 6, 15.8179%, 6.1513%, 41.0115%,
and 47.6137% for f 7, 34.9704%, 11.2156%, 40.9364%, and
42.8695% for f 8, and 73.1850%, 23.1377%, 38.9808%, and
30.6282% for f 9. Thus, IRCGA-2 is observed to be superior
to IRCGA-1, IRCGA-3, IRCGA-4, and IRCGA-5 in terms of
all the measures utilized.
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Figure 6: The evolution of population in IRCGA-2 as a function of the number of iterations.

5. Parameter Optimization of Vehicle Steering
Trapezoid Mechanism

In the autosteering process, the difference between the actual
movement trajectory and the theoretical movement trajec-
tory of the vehicle steering mechanism results in the motion
error, which increases the tire wear and destroys the safety
and stability of steering. Through the optimization of the
size and positioning parameters of the steering mechanism,
the error can be effectively reduced, thereby improving the
vehicle handling performance and improving the steering
safety. Here the weighted sum of the relative error of the
theoretical rotation angle and the actual rotation angle of
the external front steering wheel is chosen as the objective
function to be minimized. When the inside front wheel
turning angle of the vehicle is 𝛼, the schematic diagram of the
vehicle ideal steering process and the actual steering process
are shown in Figures 7 and 8.

Note that 𝛼 is actual rotational angle of inside front
steering wheel, 𝛽 is theoretical rotational angle of external
front steering wheel, M is the distance between the left and
right vertical shafts, L is the distance of rear and front axle
of vehicle wheel, R is the steering radius of external front
steering wheel, 𝜃 is the bottom angle of steering trapezoid
mechanism, and a is the distance of wheel and steering pin.

C D

E
F

R

P

L

M

a







Figure 7: Theoretical steering process schematic.

Note that 𝛼 is the actual rotational angle of inside front
steering wheel, 𝛽 is the theoretical rotational angle of external
front steering wheel, M is the distance between the left and
right vertical shafts, L is the distance of rear and front axles
of the vehicle wheel, 𝜃 is the bottom angle of the steering
trapezoid mechanism, 𝛽󸀠 is the ideal rotational angle of the
external front steering wheel, m is the steering arm length
of the steering trapezoid mechanism, N is the length of the
auxiliary line, and 𝛿1 and 𝛿2are the interior angles of auxiliary
calculation.
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Table 2: The computational results of five ICRGAs.

function Algorithm Average running time (s) Average number of
iterations (times)

The average value of population diversity
when converging to the optimal solution

f 1

IRCGA-1 0.6397 205.3840 28.6652
IRCGA-2 0.0209 24.1420 50.2294
IRCGA-3 0.0253 30.2560 30.6849
IRCGA-4 0.6936 233.2300 11.2693
IRCGA-5 0.5863 196.5600 27.2.46

f 2

IRCGA-1 0.4193 115.0780 5.9865
IRCGA-2 0.0133 13.0770 10.2328
IRCGA-3 0.0265 25.6320 6.9731
IRCGA-4 0.6255 206.9300 1.7962
IRCGA-5 0.0493 85.4500 7.3493

f 3

IRCGA-1 0.0643 18.9930 3.4109
IRCGA-2 0.0144 14.3210 5.8449
IRCGA-3 0.0273 16.2350 4.7633
IRCGA-4 0.1313 54.7800 1.4526
IRCGA-5 0.0317 21.5400 2.8277

f 4

IRCGA-1 15.7263 4630.9300 3.2163
IRCGA-2 0.2275 219.1660 11.0648
IRCGA-3 0.2510 272.0670 3.4109
IRCGA-4 13.1359 4413.9000 2.0108
IRCGA-5 0.8392 1264.6400 4.4617

f 5

IRCGA-1 0.1137 36.1090 3.9642
IRCGA-2 0.0316 30.9790 6.2602
IRCGA-3 0.0405 32.5230 4.0683
IRCGA-4 0.4617 157.1000 2.1785
IRCGA-5 0.1300 145.4000 3.5308

f 6

IRCGA-1 0.0547 22.0830 3.6838
IRCGA-2 0.0208 19.6450 5.2457
IRCGA-3 0.0312 21.0560 4.0133
IRCGA-4 0.1831 309.6000 2.1494
IRCGA-5 0.1280 245.7800 3.4931

f 7

IRCGA-1 0.0574 18.3590 5.8063
IRCGA-2 0.0200 15.4550 10.0381
IRCGA-3 0.0320 16.4680 7.8151
IRCGA-4 0.0479 26.2000 5.1667
IRCGA-5 0.0368 29.5020 6.4071

f 8

IRCGA-1 0.1381 42.6790 78.8050
IRCGA-2 0.0262 27.7540 127.9265
IRCGA-3 0.0328 31.2600 86.3403
IRCGA-4 0.1464 46.9900 75.9938
IRCGA-5 0.1458 48.5800 74.1084

f 9

IRCGA-1 0.1959 60.9510 7.2904
IRCGA-2 0.0157 16.3440 13.5928
IRCGA-3 0.0320 21.2640 10.6016
IRCGA-4 0.0560 26.7850 4.2582
IRCGA-5 0.0396 23.5600 7.5200
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Figure 8: Schematic of vehicle actual steering process when the
rotational angle of the inside steering wheel is 𝛼.
5.1. Optimization Model of the Vehicle Steering Trapezoid
Mechanism. Using the geometry in Figure 6, we get

𝛽 = arccot(𝑀𝐿 + cot𝛼) (27)

where𝛼 is the rotational angle of inside front steeringwheel,𝛽
is the theoretical rotational angle of the external front steering
wheel, M is the distance between the left and right vertical
shafts, and L is the distance of rear and front axles of the
vehicle wheel.

In the process of vehicle swerve, when the turning radius
reaches the minimum, the rotational angle of inside front
steering wheel reaches the maximum; that is,

𝛼max = arctan 𝐿
√(𝑅min − 𝑎)2 − 𝐿2 −𝑀 (28)

where Rmin is the minimum turning radius and 𝛼max is the
maximum rotational angle of the inside front steering wheel.

Figure 7 shows that schematic of the vehicle actual
steering process when the rotational angle of the inside
steering wheel is 𝛼. The dotted line represents the positional
relationship of the steering trapezium mechanism when the
steering is not started. Using the geometry in Figure 7, we get

𝑁2 = 𝑀2 + 𝑚2 − 2𝑚𝑀 cos (𝜃 − 𝛼) (29)

where 𝛼 is the rotational angle of the inside front steering
wheel, M is the distance between the left and right vertical
shafts, m is the steering arm length of the steering trapezoid
mechanism, 𝜃 is the bottom angle of the steering trapezoid
mechanism, and N is the length of the auxiliary line. We also
have

𝑆2 = 𝑁2 + 𝑚2 − 2𝑚𝑁 cos 𝛿1 (30)

where S is the length of the tie rod and 𝛿1 and 𝛿2 are the
interior angles of auxiliary calculation.

Using (29), (30), and Figure 5, we get

𝛽󸀠 = 𝛿1 − (𝜃 − 𝛿2) = 𝛿1 + 𝛿2 − 𝜃 (31)

𝛿2 = arcsin𝐺𝐸3𝑁 = arcsin𝑚 sin (𝜃 − 𝛼)𝑁 (32)

where 𝛽 is the theoretical rotational angle of the external
front steering wheel and 𝛽󸀠 is the ideal rotational angle of the
external front steering wheel.

We find

𝛽󸀠 = arccos

⋅ 𝑀2 + 2𝑚2 − (𝑀 − 2𝑚 cos 𝜃)2 − 2𝑀𝑚 cos (𝜃 − 𝛼)2𝑚√𝑚2 +𝑀2 − 2𝑀𝑚 cos (𝜃 − 𝛼)
+ arcsin 𝑚 sin (𝜃 − 𝛼)√𝑚2 +𝑀2 − 2𝑀𝑚 cos (𝜃 − 𝛼) − 𝜃

(33)

In order to ensure the steering performance of the vehicle,
the actual rotational angle function of external front steering
wheel should be as close as possible to the ideal rotational
angle in the process of vehicle swerve. Hence, the optimiza-
tion problem of vehicle steering trapezoidal structure can be
written as

min (𝐹 (𝑋)) = min(𝛼max∑
𝛼𝑖=1

󵄨󵄨󵄨󵄨󵄨𝛽 − 𝛽󸀠󵄨󵄨󵄨󵄨󵄨 𝜔 (𝛼𝑖)) (34)

where 𝛼 is the rotational angle of the inside front steering
wheel, 𝛼max is the maximum rotational angle of the inside
front steering wheel, 𝛼I is the angle number corresponding to
the rotational angle of the inside front steering wheel, and is a
natural number between 1 and 𝛼max, which is dimensionless;𝜔(𝛼i) is a weighting function.

The computational method is as follows:

𝜔 (𝛼𝑖) = {{{{{{{
1.25,0.90,0.45,

1 ≤ 𝛼𝑖 ≤ 1010 < 𝛼𝑖 ≤ 20𝛼𝑖 > 20 (35)

The design variables selected by the objective function are
the steering trapezoidal bottom angle 𝜃 and the trapezoidal
arm length m, to be represented by X=[m,𝜃]. According to
the design information in the literature [51, 52], the constraint
condition of vehicle steering trapezium mechanism is given
by

0.11𝑀 ≤ 𝑚 ≤ 0.15𝑀 (36)

arctan 1.2𝐿𝑀 ≤ 𝜃 ≤ 4𝜋9 (37)

(𝑀 − 2𝑚 ⋅ cos 𝜃)2 −𝑀2 + 2𝑀𝑚 cos (𝜃 + arcsin (𝐿/ (𝑅min − 𝑎)))2𝑚 ⋅ (𝑀 − 2𝑚 ⋅ cos 𝜃) − cos(7𝜋9 ) ≤ 0 (38)
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Table 3: Parameters of the vehicles.

Models Distance of rear and
front axle/m

Center distance of two
main axles/m

Distance of wheel and
steering pin/m

Min radius of vehicles
steering/m

Patrol GRX 2.9 1.605 0.4 6.1
Patrol GL 2.9 1.555 0.4 6.1
Nissan Duke 2.9 1.500 0.5 5.5

Table 4: Optimization results with the three vehicles.

Models
Optimal value
of Steering arm
length (m)

Ideal value of
Steering arm
length (m)

Optimal value of
trapezoid bottom

angle (rad)

Ideal value of
trapezoid bottom

angle (rad)

Optimal value of
objective function

(rad)

Ideal value of
objective function

(rad)
Patrol GRX 0.1770 0.1771 1.2781 1.2780 0.1873 0.1872
Patrol GL 0.1712 0.1711 1.2911 1.2900 0.1866 0.1864
Nissan Duke 0.1711 0.1713 1.2903 1.2902 0.1868 0.1867

5.2. Optimization Results. We experimented with Patrol
GRX, Patrol GL, andNissanDuke data.The parameters of the
vehicles are shown in Table 3. IRCGA-2 is used to optimize
the parameters of the steering trapezium mechanism.

The population size and the maximum number of itera-
tionswere chosen as 100 and 5000, respectively.Theoptimiza-
tion results are shown in Table 4.

It can be seen fromTable 4 that the absolute error between
the optimal value of the trapezoidal arm length and the ideal
value is within 0.0001 m, the relative error being within 0.1%.
The absolute error value of the steering trapezoidal bottom
angle is within 0.0005 rad, the relative error being within
0.1%. The errors between the optimal and ideal values of the
objective function are thus within 0.1%.

6. Conclusions

ICRGA-2 to solve constrained global optimization problems
is proposed. The improvements of IRCGA-2 are mainly in
four categories: the selection operator, the crossover operator,
the substitution operator, and the mutation operator.

When methods such as roulette wheel selection, tour-
nament selection, and local selection are used to compute
the individual’s fitness function, inferior population diversity
is developed at later stages of iterations. ICRGA-2 improves
performance by incorporating a number of novelties as
summarized below.

ICRGA-2 uses the SGS method, which does not need
compute the fitness value, achieves superior population
diversity, and is easy to realize.

AHNDXoperator is developed. Compared with theDBX
operator in [24], the HNDX operator can guarantee that the
cross-generated offsprings are located near the better one
among the two parents and that crossover direction is very
close to the optimal crossover direction or consistent with
the optimal crossover direction.Thus, HNDX can ensure that
there is a great chance of generating better offsprings and
thereby improving the convergence speed of IRCGA-2.

In most previous GA algorithms, as iterations increase,
the same individuals are likely to appear in the population,

making the population diversity worse. To avoid this prob-
lem, the substitution operation is added after the crossover
so that there is no duplication of the same individual in the
population.

The local search ability and the global search ability of
different mutation operators are different. Some mutation
operators have strong local search ability, and some have
strong global search ability. A single mutation operator is
difficult to take into account both local search and global
search. This paper proposes a combined mutation method
which makes the mutation operation not only take into
account the local search ability but also the global search
ability.

In the optimization problems with many local optima,
ICRGA-1 is likely to lose population diversity after many
iterations and converges thereby to a local optimum instead
of the global optimum. In such problems, the population
diversity of IRCGA-2 remains superior to that of IRCGA-1.

The computational results with nine examples show that
IRCGA-2 has better performance than the other IRCGA
methods with respect to all the measures of performance
considered.

As an example application, the optimizationmodel of the
steering mechanism of vehicles is formulated and IRCGA-2
is used to optimize the parameters of the steering trapezoidal
mechanism of three kind of vehicle types. Better results are
obtained with IRCGA-2 as compared to other methods.
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