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A novel fifth-degree strong tracking cubature Kalman filter is put forward to improve the two-dimensional maneuvering target
tracking accuracy. First, a new fifth-degree cubature rule, with only one point more than the theoretical lower bound, is used to
approximate the intractable nonlinear Gaussian weighted integral in the nonlinear Kalman filtering framework, and a novel fifth-
degree cubature Kalman filter is proposed. Then, the suboptimal fading factor is designed for the filter to adjust the filtering gain
matrix online and force the residual sequences mutually orthogonal, thus improving the ability of the filter to track the mutation
state, and the fifth-degree strong tracking cubature Kalman filter is derived. The suboptimal fading factor is calculated in a new
method, which reduces the number of calculations for the cubature points from three times to twicewithout calculating the Jacobian
matrix. The simulation results indicate that the proposed filter has the ability to track the maneuvering target and achieve higher
target tracking accuracy and thus verifies the effectiveness of the proposed filter.

1. Introduction

For the last several decades, the target tracking has momen-
tous applications in many fields, such as navigation guidance,
military application, and sensor networks [1]. In target track-
ing problem, the process model is generally linear, while the
measurement model, mainly including the measured range
and bearing angle, is nonlinear [2, 3].The essence of the target
tracking is to use a series of measured ranges and bearing
angle information to estimate the position and velocity of
the target in real time; hence, it belongs to the nonlinear
filtering problem, which has always been dealt with using the
nonlinear Kalman filters [4].

In nonlinear Kalman filters, the extended Kalman filter
(EKF) [5] is the most widely used one. In EKF, the nonlinear
function is approximated using the first-order Taylor series
expansion and, then, the standard Kalman filter is applied
[6]. EKF is simple in principle; however, its filtering accuracy
and stability may reduce for the strong nonlinear system,
and it needs to calculate the Jacobian matrix, which is
difficult to accomplish at times. Julier [7] adopts a set of
sigma points to approximate the posterior probability density

function (PDF) and proposes the unscented Kalman filter
(UKF). UKF is a derivative-free filter and can achieve third-
degree filtering accuracy [8, 9]. However, there exist some
tunable parameters in the selection of sigma points, and the
inappropriate selection may reduce the filtering accuracy. In
addition, the weight on the center point may be negative
for the high-dimensional system, which may degrade the
numerical stability of the filter [10, 11]. Arasaratnam [12, 13]
puts forward the cubature Kalman filter (CKF), where the
intractable integral in nonlinear Kalman filter is decomposed
into the spherical integral and the radial integral, which are
approximated using different numerical integration rules.
CKF contains a set of cubature points with equal weights;
thus the numerical stability is guaranteed [14–16]. CKF can
be regarded as a special case of UKF [17]; however, CKF gives
the rigorous reason for the selection of parameters for the first
time. In order to improve the accuracy of CKF, Jia [18] adopts
the symmetric spherical interpolation andmomentmatching
method to calculate the spherical integral and radial integral,
respectively, and proposes the fifth-degree CKF. And then,
Wang [19] employs the transformation group of the regular
simplex instead of the symmetric spherical interpolation to
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derive the fifth-degree spherical simplex-radial CKF. These
two filters improve the filtering accuracy effectively.

However, the conventional nonlinear Kalman filters can-
not achieve the effective tracking of the maneuvering target.
In order to improve the ability of the filter to fast track the
mutation state, Zhou [20] proposes the strong tracking filter
(STF) on the basis of EKF.The STFuses the suboptimal fading
factor to realize the real time adjustment of the gainmatrix to
force the residual sequences mutually orthogonal [21, 22]; it
has the ability to track the mutation state while inheriting the
inherent defects of EKF. Correspondingly, the strong tracking
UKF (STUKF) and strong tracking CKF (STCKF) are put
forward in succession. There are two methods to calculate
the suboptimal fading factor in these two types of filters.
On the one hand, the fading factor is still calculated using
the Jacobian matrix [23–25], which may bring some trouble
in strong nonlinear systems. On the other hand, the fading
factor is calculated using the equivalent expressions derived
by the statistical regression method [26, 27], in which the
predicted measurement covariance and the cross-covariance
are contained. It results in the nonlinear transformation
carried out for three times, which increases the amount of
calculation while loses a certain precision.

In this paper, a novel fifth-degree strong tracking cuba-
ture Kalman filter (5-STCKF) is proposed to further improve
the two-dimensional maneuvering target tracking accuracy.
A new fifth-degree cubature rule is utilized to approximate
the intractable nonlinear Gaussian weighted integral, and a
novel fifth-degree cubature Kalman filter is put forward. To
improve the ability of the filter to track the mutation state,
the suboptimal fading factor is designed to adjust the filtering
gain matrix online and force the residual sequences mutually
orthogonal and the 5-STCKF is derived. The suboptimal
fading factor is calculated in a new method, which reduces
the number of calculations for the cubature points from
three times to twice without calculating the Jacobian matrix.
The proposed 5-STCKF has the ability to track the mutation
state and can achieve better performance compared with
the 5-CKF and 5-SSRCKF in maneuvering target tracking
applications. In addition, the number of cubature points
needed in the 5-STCKF is less than those in the 5-CKF and 5-
SSRCKF.The simulation results verify the validity of the filter.

The rest of this paper is organized as follows: the novel
fifth-degree cubature Kalman filter is proposed in Section 2,
the novel fifth-degree strong tracking cubature Kalman filter
is derived in Section 3, the simulation results and analysis
are presented in Section 4, and the conclusion is given in
Section 5.

2. A Novel Fifth-Degree Cubature
Kalman Filter

The following discrete time nonlinear system is considered:
x𝑘 = f (x𝑘−1) + w𝑘−1

z𝑘 = h (x𝑘) + v𝑘
(1)

where x𝑘 ∈ R𝑛 denotes the state vector at time 𝑘, z𝑘 ∈ R𝑝
represents the measurement vector, and f(⋅) and h(⋅) denote

the known nonlinear process and measurement functions,
respectively. w𝑘 is the zero mean Gaussian white process
noise, with the covariance being Q𝑘, and k𝑘 is the zero mean
Gaussian white measurement noise, with the covariance
being R𝑘.

Given the measurements Z𝑘 = {z1, z2, ⋅ ⋅ ⋅ , z𝑘}, the mini-
mummean square error (MMSE) estimate of the state x𝑘 with
the estimate error covariance is given below:

x̂𝑀𝑀𝑆𝐸𝑘 = 𝐸 (x𝑘 | Z𝑘) = ∫ x𝑘𝑝 (x𝑘 | Z𝑘) 𝑑x𝑘 (2)

P𝑥 = ∫ (x𝑘 − x̂𝑀𝑀𝑆𝐸𝑘 ) (x𝑘 − x̂𝑀𝑀𝑆𝐸𝑘 )Τ 𝑝 (x𝑘 | Z𝑘) 𝑑x𝑘 (3)

where 𝑝(x𝑘 | Z𝑘) denotes the posterior PDF.
For nonlinear Kalman filters, the posterior PDF is

assumed to be Gaussian distribution and the following
five integrals in the filtering framework are required to be
calculated [12]:

x̂−𝑘 = ∫
R𝑛
f (x𝑘−1)𝑁 (x𝑘−1; x̂+𝑘−1,P+𝑘−1) 𝑑x𝑘−1 (4)

P−𝑘 = ∫
R𝑛
f (x𝑘−1) fΤ (x𝑘−1)𝑁 (x𝑘−1; x̂+𝑘−1,P+𝑘−1) 𝑑x𝑘−1

− x̂−𝑘 (x̂−𝑘 )Τ +Q𝑘

(5)

ẑ𝑘 = ∫
R𝑛
h (x𝑘)𝑁 (x𝑘; x̂−𝑘 ,P−𝑘 ) 𝑑x𝑘 (6)

P𝑧,𝑘 = ∫
R𝑛
h (x𝑘−1) hΤ (x𝑘−1)𝑁 (x𝑘; x̂−𝑘 ,P−𝑘 ) 𝑑x𝑘

− ẑ𝑘ẑ
Τ
𝑘 + R𝑘

(7)

P𝑥𝑧,𝑘 = ∫
R𝑛
x𝑘h
Τ (x𝑘)𝑁 (x𝑘; x̂−𝑘 ,P−𝑘 ) 𝑑x𝑘 − x̂−𝑘 ẑ𝑘 (8)

where 𝑁(x; x̂,P𝑥) denotes the Gaussian distribution with
mean x̂ and covariance P𝑥, x̂−𝑘 and P−𝑘 represent the prior
state estimate and estimate error covariance, respectively, ẑ𝑘
is the predicted measurement, and P𝑧,𝑘 and P𝑥𝑧,𝑘 denote the
measurement covariance and cross-covariance, respectively.

It can be seen from (4) to (8) that the key problem
in nonlinear Kalman filters is to calculate the intractable
integral in the form of 𝐼𝑁 = ∫R𝑛 g(x)𝑁(x; x̂,P𝑥)𝑑x, where
g(x) is arbitrary nonlinear function. In general, it is hard
to achieve the analytical solution of 𝐼𝑁, and the numerical
approximation should be considered. For this, the integral𝐼𝑒 = ∫R𝑛 g(x)exp(−xΤx)𝑑x is taken into account first.

There already exist some cubature rules, including the
third-degree spherical-radial cubature rule and fifth-degree
spherical-radial cubature rule, to calculate 𝐼𝑒, and it is
proved that the fifth-degree cubature rule can achieve higher
accuracy than the third-degree one. For more details, please
refer to [12, 18].

In this paper, through linear transformation, a novel fifth-
degree cubature rule for calculating the integral 𝐼𝑁 is given
below.
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It is pointed out in [28] that 𝐼𝑒 can be calculated approxi-
mately using the following fifth-degree cubature rule:𝐼𝑒 = 𝐴[𝑔 (𝜂, 𝜂, ⋅ ⋅ ⋅ , 𝜂) + 𝑔 (−𝜂, −𝜂, ⋅ ⋅ ⋅ , −𝜂)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2+ 𝐵 ∑
𝑝𝑒𝑟𝑚

[𝑔 (𝜆, 𝜉, ⋅ ⋅ ⋅ , 𝜉) + 𝑔 (−𝜆, −𝜉, ⋅ ⋅ ⋅ , −𝜉)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝐶1
𝑛+ 𝐶 ∑

𝑝𝑒𝑟𝑚

[𝑔 (𝜇, 𝜇, 𝛾, ⋅ ⋅ ⋅ , 𝛾) + 𝑔 (−𝜇, −𝜇, −𝛾, ⋅ ⋅ ⋅ , −𝛾)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝐶2
𝑛

(9)

where perm means all distinct permutations, 𝐶1𝑛 and 𝐶2𝑛
represent the binomial coefficients that equal to 𝑛 and 𝑛(𝑛 −1)/2, respectively, and the parameters 𝜂, 𝜇, and 𝛾 satisfy the
following equations. For more details, please refer to [28, 29].𝜇𝛾 = −3 ± √16 − 2𝑛 (10)

𝛾2 = 3 ± √7 − 𝑛2 (16 − 𝑛 ∓ 4√16 − 2𝑛) (11)

𝜂2 = 𝑛 (𝑛 − 7) ∓ (𝑛2 − 3𝑛 − 16)√7 − 𝑛2 (𝑛3 − 7𝑛2 − 16𝑛 + 128) (12)

However, (9) is not suitable for calculating 𝐼𝑁 in its
current form. In order to simplify (9), we define e as an n-
order identity matrix and the matrix subscript [⋅]𝑖 is utilized
to denote the ith column and, then, (9) can be written in the
following form:

𝐼𝑒 = 𝐴[g( 𝑛∑
𝑖=1

𝜂e𝑖) + g(− 𝑛∑
𝑖=1

𝜂e𝑖)]
+ 𝐵 𝑛∑
𝑖=1

[[g(𝜆e𝑖 + 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝜉e𝑗)
+ g(−𝜆e𝑖 − 𝑛∑

𝑗=1,𝑗 ̸=𝑖

𝜉e𝑗)]]
+ 𝐶𝐶2𝑛∑
𝑖=1

[[g(𝜇e𝑗 + 𝜇e𝑘 + 𝑛∑
𝑙=1,𝑙 ̸=𝑗,𝑙 ̸=𝑘

𝛾e𝑙)
+ g(−𝜇e𝑗 − 𝜇e𝑘 − 𝑛∑

𝑙=1,𝑙 ̸=𝑗,𝑙 ̸=𝑘

𝛾e𝑙)]] ,
𝑗 < 𝑘; 𝑗, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

(13)

Further, we define the following variables:

p = 𝑛∑
𝑖=1

𝜂e𝑖 (14)

q𝑖 = 𝜆e𝑖 + 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝜉e𝑗 (15)

s𝑖 = 𝜇e𝑗 + 𝜇e𝑘 + 𝑛∑
𝑙=1,𝑙 ̸=𝑗,𝑙 ̸=𝑘

𝛾e𝑙 (16)

Then, (13) is transformed into the following simplified
form:

𝐼𝑒 = 𝐴 [g (p) + g (−p)] + 𝐵 𝑛∑
𝑖=1

[g (q𝑖) + g (−q𝑖)]
+ 𝐶𝐶2𝑛∑
𝑖=1

[g (s𝑖) + g (−s𝑖)]
(17)

It can be proved that 𝐼𝑁 has the following equivalent form
[12]:

𝐼𝑁 = 1√𝜋𝑛 ∫R𝑛 g (√2P𝑥x + x̂) exp (−xΤx) 𝑑x (18)

such that 𝐼𝑁 can be approximated using the cubature rule
below:

𝐼𝑁
= 𝐴√𝜋𝑛 [g (√2P𝑥p + x̂) + g (−√2P𝑥p + x̂)]

+ 𝐵√𝜋𝑛
𝑛∑
𝑖=1

[g (√2P𝑥q𝑖 + x̂) + g (−√2P𝑥q𝑖 + x̂)]
+ 𝐶√𝜋𝑛

𝐶2
𝑛∑
𝑖=1

[g (√2P𝑥s𝑖 + x̂) + g (−√2P𝑥s𝑖 + x̂)]
= 𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖g (x̂(𝑖))

(19)

where the cubature points and corresponding weights are
given below and the specific values ofA, B, and C are given in
[29].

x̂(𝑖)

= {{{{{{{{{
√2P𝑥 [p, −p]𝑖 + x̂, 𝑖 = 1, 2
√2P𝑥 [q, −q]𝑖−2 + x̂, 𝑖 = 3, ⋅ ⋅ ⋅ , 2𝑛 + 2
√2P𝑥 [s, −s]𝑖−2𝑛−2 + x̂, 𝑖 = 2𝑛 + 3, ⋅ ⋅ ⋅ , 𝑛2 + 𝑛 + 2

(20)

𝜔𝑖 =
{{{{{{{{{{{{{{{

𝐴√𝜋𝑛 , 𝑖 = 1, 2
𝐵√𝜋𝑛 , 𝑖 = 3, ⋅ ⋅ ⋅ , 2𝑛 + 2
𝐶√𝜋𝑛 , 𝑖 = 2𝑛 + 3, ⋅ ⋅ ⋅ , 𝑛2 + 𝑛 + 2

(21)

where q = [q1, q2, ⋅ ⋅ ⋅ , q𝑛] and s = [s1, s2, ⋅ ⋅ ⋅ , s𝐶2
𝑛
] represent

the matrices constituted by q𝑖 and s𝑖, respectively.
Take 𝑛 = 6 as an example, which will be used in the

simulation section; the parameters in (19) are listed in Table 1.

Remark 1. The number of points needed in the fifth-degree
cubature rule proposed in [18] is 2𝑛2 + 1, and that in the
spherical simplex cubature rule proposed in [19] is 𝑛2 + 3𝑛 +3. However, the number of points needed in the proposed
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Table 1: Parameters of the cubature rule with n=6.

Parameters Values𝜂 1𝜆 √2𝜉 0𝜇 −1𝛾 1𝐴 0.0078125𝜋𝑛/2𝐵 0.0625𝜋𝑛/2𝐶 0.078125 𝜋𝑛/2

cubature rule (19) is 2 + 2𝐶1𝑛 + 2𝐶2𝑛 = 𝑛2 + 𝑛 + 2, which
is less than those of the aforementioned two filters and only
onemore than the theoretical lower bound of the fifth-degree
rules, that is, 𝑛2 + 𝑛 + 1 [29].
Remark 2. The cubature rule (19) can be applied in the
condition that 2 ≤ 𝑛 ≤ 7, and for the conventional
two-dimensional maneuvering target tracking problem, the
maximum state dimension is seven (including two position
variables, two velocity variables, two acceleration variables,
and an optional turn rate); hence, the proposed cubature rule
is suitable in the application of maneuvering target tracking.

Based on the cubature rule and the points and weights,
the novel fifth-degree cubature Kalman filter is proposed in
the nonlinear Kalman framework as follows.

Step 1 (filter initialization). Take the initial values x̂+0 and P+0
into consideration.

Cycle 𝑘 = 1, 2, ⋅ ⋅ ⋅ , and complete the following steps.

Step 2 (time update). The posterior state estimate x̂+𝑘−1 and
estimate error covariance P+𝑘−1 are used instead of x̂ and
P𝑥 in (20) to calculate the cubature points x̂(𝑖)

𝑘−1
, which are

propagated using the nonlinear process function f(⋅) to obtain
the following points X(𝑖)

𝑘
:

X(𝑖)𝑘 = f (x̂(𝑖)𝑘−1) (22)

The prior state estimate and the estimate error covariance
are calculated below:

x̂−𝑘 = 𝑛
2+𝑛+2∑
𝑖=1

𝜔𝑖X(𝑖)𝑘 (23)

P−𝑘 = 𝑛
2+𝑛+2∑
𝑖=1

𝜔𝑖 (X(𝑖)𝑘 − x̂−𝑘) (X(𝑖)𝑘 − x̂−𝑘)Τ +Q𝑘−1 (24)

where 𝜔𝑖 is given in (21).

Step 3 (measurement update). The prior state estimate x̂−𝑘
and estimate error covariance P−𝑘 are used instead of x̂ and
P𝑥 in (20) to calculate the cubature points x̂(𝑖)

𝑘
, which are

propagated using the nonlinear measurement function h(⋅)
to obtain the following points Z(𝑖)

𝑘
:

Z(𝑖)𝑘 = h (x̂(𝑖)𝑘 ) (25)

The predicted measurement ẑ𝑘, the predicted measure-
ment covariance P𝑧,𝑘 and the cross-covariance P𝑥𝑧,𝑘 are
calculated as follows, respectively:

ẑ𝑘 = 𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖Z(𝑖)𝑘 (26)

P𝑧,𝑘 = 𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖 (Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ + R𝑘 (27)

P𝑥𝑧,𝑘 = 𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖 (x̂(𝑖)𝑘 − x̂−𝑘 ) (Z(𝑖)𝑘 − ẑ𝑘)Τ (28)

The Kalman filtering gain K𝑘, the posterior state estimate
x̂+𝑘 , and the posterior estimate error covariance P+𝑘 are
calculated, respectively.

K𝑘 = P𝑥𝑧,𝑘P
−1
𝑧,𝑘 (29)

x̂+𝑘 = x̂−𝑘 + K𝑘 (z𝑘 − ẑ𝑘) (30)

P+𝑘 = P−𝑘 − K𝑘P𝑧,𝑘K
Τ
𝑘 (31)

3. A Novel Fifth-Degree Strong Tracking
Cubature Kalman Filter

Themaneuvering target tracking problem can be regarded as
a mutation state tracking problem. It can be seen from (30)
that once the state has an abrupt change, the residual 𝜀𝑘 =
z𝑘 − ẑ𝑘 may increase thereupon, and if K𝑘 remains minimum
as it tends to be as the filter is stable, the proposed fifth-
degree cubature Kalman filter may lose the ability to track
the mutation state. Therefore, we should adjust K𝑘 online to
satisfy the following two criterions:

(𝑎) 𝐸 [(x𝑘 − x̂+𝑘 ) (x𝑘 − x̂+𝑘 )Τ] = min (32)

(𝑏) 𝐸 (𝜀𝑘+𝑗𝜀Τ𝑘 ) = 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ (33)

The first criterion ensures the optimal filter, and the
second criterion, which is called the orthogonality principle
[20], plays a key role in tracking themutation state. It has been
proved that the residual series in Kalman filter are mutually
orthogonal, which can be regarded as metrics to evaluate the
performance of the filter. If we adjust K𝑘 online to force the
criterion (b) established once the state takes an abrupt change,
the filter has the ability to track the mutation state then and
is named strong tracking filter.

It has been proved that (33) has the following expression:

𝐸 (𝜀𝑘+𝑗𝜀Τ𝑘 )
= H𝑘+𝑗F𝑘+𝑗 [𝑘+𝑗−1∏

𝑖=𝑘+1

(I − K𝑖H𝑖) F𝑖] (P−𝑘HΤ𝑘 − K𝑘V𝑘) (34)
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where F𝑘 = 𝜕f/𝜕x|x=x̂+
𝑘−1

and H𝑘 = 𝜕h/𝜕x|x=x̂−
𝑘

denote the
Jacobian matrix and V𝑘 = 𝐸(𝜀𝑘𝜀Τ𝑘 ) represents the residual
covariance.

It can be seen from (34) that, in order to force𝐸(𝜀𝑘+𝑗𝜀Τ𝑘 ) =0, the following must hold:

P−𝑘H
Τ
𝑘 − K𝑘V𝑘 = 0 (35)

By using the statistical linear regression method, the
following can be achieved:

P𝑧,𝑘 = 𝐸 [(z𝑘 − ẑ𝑘) (z𝑘 − ẑ𝑘)Τ]
= 𝐸 [(H𝑘 (x𝑘 − x̂−𝑘 ) + v𝑘) ((x𝑘 − x̂−𝑘 )ΤHΤ𝑘 + vΤ𝑘 )]
= H𝑘𝐸 [(x𝑘 − x̂−𝑘 ) (x𝑘 − x̂−𝑘 )Τ]HΤ𝑘 + 𝐸 (v𝑘vΤ𝑘 )
= H𝑘P

−
𝑘H
Τ
𝑘 + R𝑘

(36)

P𝑥𝑧,𝑘 = 𝐸 [(x𝑘 − x̂−𝑘 ) (z𝑘 − ẑ𝑘)Τ]
= 𝐸 [(x𝑘 − x̂−𝑘 ) (H𝑘 (x𝑘 − x̂−𝑘 ) + v𝑘)Τ]
= 𝐸 [(x𝑘 − x̂−𝑘 ) (x𝑘 − x̂−𝑘 )Τ]HΤ𝑘 = P−𝑘H

Τ
𝑘

(37)

Combined with (37), (35) is transformed into the follow-
ing form:

P𝑥𝑧,𝑘 − K𝑘V𝑘 = 0 (38)

Then, by substituting (29) into (38), we have

P𝑥𝑧,𝑘 − K𝑘V𝑘 = K𝑘P𝑧,𝑘 − K𝑘V𝑘 = K𝑘 (P𝑧,𝑘 − V𝑘) = 0 (39)

On account of K𝑘 which is a nonzero matrix, (39) turns
into

P𝑧,𝑘 − V𝑘 = 0 (40)

In order to adjustK𝑘 online, the time-varying suboptimal
fading factor is introduced into the prior estimate error
covariance and (24) is modified as follows:

P−𝑘 = 𝜆𝑘 [[
𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖 (X(𝑖)𝑘 − x̂−𝑘 ) (X(𝑖)𝑘 − x̂−𝑘 )Τ +Q𝑘−1]] (41)

where 𝜆𝑘 ≥ 1 is the time-varying suboptimal fading factor.
Similarly, P𝑧,𝑘 and P𝑥𝑧,𝑘 are modified according to (36)

and (37) as below:

P𝑧,𝑘 = 𝜆𝑘𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖 (Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ + R𝑘 (42)

P𝑥𝑧,𝑘 = 𝜆𝑘𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖 (x̂(𝑖)𝑘 − x̂−𝑘 ) (Z(𝑖)𝑘 − ẑ𝑘)Τ (43)

By substituting (42) into (40), we obtain that

𝜆𝑘𝑛2+𝑛+2∑
𝑖=1

𝜔𝑖 (Z(𝑖)𝑘 − ẑ𝑘) (Z(𝑖)𝑘 − ẑ𝑘)Τ + R𝑘 − V𝑘 = 0 (44)

Define M𝑘 = ∑𝑛2+𝑛+2𝑖=1 𝜔𝑖(Z(𝑖)𝑘 − ẑ𝑘)(Z(𝑖)𝑘 − ẑ𝑘)Τ and N𝑘 =
V𝑘 − R𝑘, and (44) turns into

𝜆𝑘M𝑘 = N𝑘 (45)

By calculating the trace of both sides of (45), we achieve
the following suboptimal fading factor:

𝜆𝑘 = {{{
𝜆0, 𝜆0 ≥ 1
1, 𝜆0 < 1,

𝜆0 = tr (N𝑘)
tr (M𝑘)

(46)

The residual covarianceV𝑘 = 𝐸(𝜀𝑘𝜀Τ𝑘 ) can be estimated as
follows:

V𝑘 = {{{{{
𝜀1𝜀
Τ
1 , 𝑘 = 1𝜌V𝑘−1 + 𝜀𝑘𝜀Τ𝑘1 + 𝜌 , 𝑘 ≥ 2 (47)

where 𝜌 denotes the forgetting factor and is generally set to
be 0.95 ≤ 𝜌 ≤ 0.99.

In practical applications, N𝑘 is often modified as N𝑘 =
V𝑘−𝛽R𝑘, where 𝛽 ≥ 1 denotes the softening factor to smooth
the state estimate.

Thus, the novel fifth-degree strong tracking cubature
Kalman filter is derived by substituting (42), (43) instead of
(27), and (28) and (41) into (31), and the calculation process
is listed in Figure 1.

Remark 3. In the previous nonlinear strong tracking filters,
P𝑧,𝑘 and P𝑥𝑧,𝑘 are contained in the calculation of 𝜆𝑘 [26, 27]
and results in the cubature points being calculated three times
in a filtering cycle, which may reduce the filtering accuracy
due to the loss of the higher order moment information.
However, in the proposed 5-STCKF, M𝑘 and N𝑘 are calcu-
lated using a different method and the cubature points are
calculated only twice in a filtering cycle as the conventional
CKF, which may achieve more accuracy estimate and better
computational efficiency.

Remark 4. There is no need to calculate the Jacobian matrix;
thus, the proposed 5-STCKF is a derivative-free filter.

4. Simulation Results and Analysis

In this section, a maneuvering target tracking simulation is
taken to test the performance of the proposed filter

4.1. Maneuvering Target Tracking Models. The dynamic
model of the two-dimensional maneuvering target is given
below:

x𝑘 = Fx𝑘−1 + Γu𝑘−1 + Gw𝑘−1 (48)

where x𝑘 = (𝑥𝑘, �̇�𝑘, 𝑦𝑘, ̇𝑦𝑘)Τ denotes the target state, u𝑘 =(�̈�𝑘, ̈𝑦𝑘)Τ represents the control input, and w𝑘−1 is the zero
mean Gaussian process noise. F, Γ, and G denote the state
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Figure 1: The calculation process of the proposed 5-STCKF.

transformation matrix, the control input matrix, and the
noise input matrix, respectively, which are given below:

F = [[[[[[

1 𝑇 0 00 1 0 00 0 1 𝑇0 0 0 1
]]]]]]
,

Γ = G =
[[[[[[[[

𝑇22 0𝑇 0
0 𝑇220 𝑇

]]]]]]]]
(49)

where 𝑇 is the time interval.
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For the tracking system, the target state and the control
input are unknown; in this case, the target state and the
control input can be used to form the augmented state vector
x𝑎𝑘 = (xΤ𝑘 , uΤ𝑘 )Τ, and (48) is modified as follows:

x𝑎𝑘 = F𝑎x𝑎𝑘−1 + G𝑎w𝑘−1 (50)

where F𝑎 and G𝑎 denote the augmented state transformation
matrix and noise input matrix, respectively, which are given
below:

F𝑎 = [ F Γ
02×4 I2

] ,
G𝑎 = [ G

02×2
]

(51)

The measurement model is given as follows:

z𝑘 = [[
√𝑥2
𝑘
+ 𝑦2
𝑘

atan 2 (𝑦𝑘, 𝑥𝑘)]] + k𝑘 (52)

where atan 2 denotes the four-quadrant inverse tangent func-
tion and k𝑘 is the zero mean white Gaussian measurement
noise.

4.2. Simulation Results and Analysis. In this simulation, the
initial location of the target is (𝑥0, 𝑦0) = (100, 400) and the
initial velocity of the target is (�̇�0, ̇𝑦0) = (15, 20). The location
of the radar is (100, 0). The total simulation time is 400s, and
the target takes a high maneuvering with the acceleration
given below. The trajectory of the target and the location of
the radar is shown in Figure 2.

u𝑘 =
{{{{{{{{{{{{{{{{{

(0, 0)Τ , 0 < 𝑘 ≤ 40
(6, −8)Τ , 40 < 𝑘 ≤ 120
(−3, 7)Τ , 120 < 𝑘 ≤ 200
(5, 2)Τ , 200 < 𝑘 ≤ 400

(53)

The initial filtering state is x̂+0 = (100, 15, 400, 20, 0, 0)Τ,
and the initial covariance is P+0 = diag(2500, 400, 2500, 100,10, 10). The process noise covariance isQ𝑘 = 0.1 × diag(1, 1),
and the standard deviations of range measurement noise and
bearing measurement noise are 25m and 0.02∘, respectively.
The forgetting factor is 𝜌 = 0.98, and the softening factor is
set to be 𝛽 = 6.

The CKF, the proposed 5-CKF, the STCKF in [26]
(denoted as STCKF-1), the STCKF (CKF combined with the
new strong tracking filter structure in this paper), and the
proposed 5-STCKF are taken into account in this simulation.
The metrics used to compare the performance of various
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Figure 2: The trajectory of the target and the location of the radar.

filters are the root mean square error (RMSE) and average
RMSE (ARMSE), which are defined as follows:

𝑅𝑀𝑆𝐸𝑝𝑜𝑠 (𝑘)
= √ 1𝑀

𝑀∑
𝑚=1

((𝑥𝑘 − 𝑥+
𝑚,𝑘

)2 + (𝑦𝑘 − 𝑦+
𝑚,𝑘

)2) (54)

𝐴𝑅𝑀𝑆𝐸𝑝𝑜𝑠 = 1𝑁
𝑁∑
𝑘=1

𝑅𝑀𝑆𝐸𝑝𝑜𝑠 (𝑘) (55)

where 𝑀 denotes the number of Monte-Carlo runs, 𝑁
represents the total simulation times, 𝑥𝑘 and 𝑦𝑘 denote the
true position at time k, and𝑥+𝑚,𝑘 and𝑦+𝑚,𝑘 denote the estimated
position at time k in the mth Monte-Carlo simulation. The
velocity RMSE and velocity ARMSE are defined similarly.

The Monte-Carlo simulations are implemented 200
times, and the results are shown in Figures 3–6. It can be
seen from Figures 3 and 4 that the position RMSE and
velocity RMSE of all the filters have a sudden jump at
40s, 120s, and 200s on account of the maneuverings taken.
However, the RMSEs of the three strong tracking filters
achieve convergence after a short time, while those of the
CKFs achieve divergence, indicating that the three strong
tracking filters have the ability to track the maneuvering
target, while the CKF and 5-CKF cannot. The reason is that
the suboptimal fading factor in the strong tracking filters
can adjust the filtering gain matrix in real time to force the
residual sequences mutually orthogonal, thus to enhance the
ability of the filter to track the mutation state, while no fading
factor exists in the CKF and 5-CKF. From Figures 5 and
6, we see that the three strong tracking filters can estimate
the accelerations effectively, while CKF and 5-CKF cannot
achieve the estimations of the accelerations.
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Figure 3: Position RMSEs of the five filters.
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Figure 4: Velocity RMSEs of the five filters.

Table 2: Position ARMSEs and velocity ARMSEs of the five filters.

Filters Position ARMSE/m Velocity ARMSE/(m.s-1)
CKF 194.2629 36.4900
5-CKF 194.2501 36.4539
STCKF-1 12.1252 3.1578
STCKF 12.0985 3.1417
5-STCKF 11.9466 3.0843

The position ARMSE and velocity ARMSE are listed
in Table 2. As shown in the figures, the RMSEs of the
CKF and 5-CKF are significantly larger than those of the
other three strong tracking filters. The RMSEs of STCKF
are smaller than that of STCKF-1, indicating that the new
strong tracking filter structure proposed in this paper is
better than that in [26]; the reason is that the proposed
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Figure 5: Estimated acceleration 1 of the five filters.
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Figure 6: Estimated acceleration 2 of the five filters.

structure reduces the calculation for cubature points from
three times to twice, which reduces the loss of higher order
moment information. Compared with STCKF, the 5-STCKF
improves the position ARMSE and velocity ARMSE by 1.26%
and 1.83%, respectively, indicating that the novel fifth-degree
cubature rule ismore accurate in approximating theGaussian
weighted integral than conventional third-degree cubature
rule.

5. Conclusion

In this paper, a novel 5-STCKF is put forward to improve the
two-dimensional maneuvering target tracking accuracy. For
this, the intractable nonlinear Gaussian weighted integral is
approximated using a novel fifth-degree cubature rule, and
the suboptimal fading factor is designed in a new method
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to adjust the filtering gain matrix online and force the
residual sequences mutually orthogonal, thus to improve the
ability of the filter to track the mutation state. Simulation
results show that the conventional CKF cannot track the
maneuvering target, while the 5-STCKF has the ability to
track the maneuvering target, and compared with STCKF, 5-
STCKF can achieve higher target tracking accuracy.
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