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Circular Error Probability (CEP) is defined as the radius of a circle where the probability of an impact point being inside is 50%,
which is also widely used as a measure of the guidance weapon systems’ precision. In order to achieve a fusion of various test
information, Bayesianmethods and improved Bayesianmethods have been extensively studied in calculating theCEP.Nevertheless,
these methods could fail when there exists unknown systematic bias in the prior information. Therefore, a novel method called
Bayesian estimation based on representative points (BERP) with an optimization procedure for determining the optimal number
of representative points is proposed in this paper. Explicit theoretical analyses demonstrate that the BERP outperforms the classical
Bayesian methods when fusing the slightly biased prior information and also give the bound of the systematic bias for stopping
using the heavily biased prior information. Moreover, when the systematic bias is within the bound, simulation results indicate that
our method is credible and outperforms the classical Bayesian method in calculating the CEP of guidance weapon systems.

1. Introduction

Performance evaluation of complex equipment, such as the
guidance weapon systems, is very important before applica-
tion. In the assessment of impact accuracy of the guidance
weapon systems, CEP is the most commonly used as a
measure, which can integrate the precision and dispersion
to assess the impact accuracy [1–3]. Usually, the tighter the
pattern of impact point errors, the smaller the CEP we
can get; i.e., there is higher impact accuracy of guidance
weapon systems. Let (𝑋, 𝑍) be the impact point errors of the
projectile, where 𝑋 and 𝑍 are downrange and cross-range
misses, respectively; then the CEP can be defined as follows
[4, 5]:

P (𝑋2 + 𝑍2 ≤ CEP2) = ∬
𝑥2+𝑧2≤CEP2

𝑓 (𝑥, 𝑧) 𝑑𝑥𝑑𝑧
= 0.5

(1)

It is shown in the above equation that the CEP can be
calculated by numerical integrations when giving the proba-
bility density function 𝑓(𝑥, 𝑧). In practice, (𝑋, 𝑍) are usually

assumed to follow the bivariate normal distribution, i.e.,(𝑋, 𝑍) ∼ 𝑁(𝜇,Σ),where 𝜇 and Σ are the mean and the
covariance, respectively.Then the problemof calculatingCEP
rests on estimating 𝜇 and Σ, whose accuracy will determine
the precision of the CEP calculation.

In the performance evaluation of guidance weapon
systems, the impact points used to calculate the CEP are
collected from various tests. The realistic tests of guidance
weapon systems are usually extremely expensive and time-
consuming, so generally the sample size of impact points
is very small. Moreover, the calculation of CEP based on
the small sized data would lead to unreliable results, so it
is reasonable to introduce the prior information to refine
the results. Therefore, Bayesian estimation is widely used to
achieve the fusion of the prior information and the realistic
test information [6, 7] and hence to increase the reliability
and the accuracy of the estimation of (𝜇,Σ), as well as
the CEP. In fact, the most important prior information is
provided by the substitute tests in the development processes.
The performance evaluation is a sequential process, so the
data collected from substitute tests are usually regarded as
prior samples. In order to use the prior information more
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reasonably, several strategies are introduced in bringing the
credibility of the prior information into Bayesian estimation,
such as data compatibility tests, the information divergence,
and the theory of fuzzy operators [8, 9]. In the CEP cal-
culation, Huang comes up with a measure of credibility
from physics resources of data [10], which has a good
estimation accuracy if we have a clear understanding of the
physical background. Duan suggested amethodwith all prior
information normalized into one test sample [11], which can
reduce the deviation when prior information got distorted,
but more theoretical discussion is needed for this method
when considering the information loss and fusion efficiency
of the normalization.

However, the substitute tests for the guidance weapon
systems may be systematically biased compared with realistic
tests. Since the pattern of systematic bias is unknown, we
cannot estimate the bias but can only give a rough range of it.
Simulation results demonstrate that the systematically biased
prior information will cause serious impact on the mean
estimation 𝜇 when applying classical Bayesian estimation
directly.The estimation of the parameter Σ is slightly affected
by the unknown systematic bias because of the same guidance
system of these tests. The improved methods considering the
normalization of prior information could reduce the estimate
bias of 𝜇, but this will cause much loss of prior information
and inevitably leads to an unreliable calculation of CEP. One
possible way to solve the problem is by choosing appropriate
samples, such as representative points to generate new prior
information.

Representative points (RPs), also known as Principal
Points [12], are a group of points that could represent a
distribution with the least mean squared error (MSE). RPs’
theory is brought up in 1990s and now widely applied in
clustering analyses [13], statistical simulations [14], image
processing [15], and so on. In this paper, we resample samples
from the systematically biased data to get the RPs which are
regarded as the new prior information, expecting to reduce
the estimate bias of 𝜇 substantially. This new estimation
method is called Bayesian estimation based on representative
points (BERP). Meanwhile, we propose an optimization
procedure which balances the effects of estimate bias and
information loss to determine the optimal number of RPs.
In addition, two theorems are proposed to prove that the
estimate bias and MSE of 𝜇 with RPs are smaller than those
with the raw data. Furthermore, we also analyze the bound
of the systematic bias for stopping using the heavily biased
prior information. Within the bound, both the simulations
and authentic experiments show that our BERP outperforms
the classical Bayesian methods in estimating the parameters.
In the performance evaluation of guidance weapon systems,
via BERP it is better to choose RPs from the raw prior samples
as new prior information when calculating the CEP. On the
whole, by using the theory of RPs, our works enrich the
Bayesian methods especially on the prior information fusion
patterns theoretically and provide a possible way to solve the
engineering problem in performance evaluation of guidance
weapon systems.

The rest of this paper is organized as follows. Section 2
introduces the classical Bayesian estimation applied in CEP

calculation. Section 3 describes some notations and prelim-
inaries of RPs, the process of BERP, and the optimization
procedure for determining the optimal number of RPs. In
Section 4, we propose two theorems to compare the estima-
tion performances by BERP and classical Bayesian estimation
and analyze the bound of systematic bias for stopping using
the biased prior information. Section 5 shows three numerical
experiments about our new method. The conclusion is given
in Section 6.

2. Bayesian Estimation in CEP Calculation

2.1. Calculation of CEP. Suppose that (𝑋, 𝑍) follows the
bivariate normal distribution𝑁(𝜇,Σ), where

𝜇 = (𝜇𝑥, 𝜇𝑧)𝑇 ,
Σ = ( 𝜎2𝑥 𝜌𝜎𝑥𝜎𝑧

𝜌𝜎𝑥𝜎𝑧 𝜎2𝑧 ) (2)

The parameters 𝜎𝑥, 𝜎𝑧 are standard deviations of impact point
errors for downrange direction and cross-range direction,
respectively; 𝜇𝑥, 𝜇𝑧 are means of impact point errors for each
direction; 𝜌 (0 ≤ |𝜌| < 1) is the correlation coefficient of𝑋 and 𝑍. In most cases, 𝑋 and 𝑍 are independent of each
other. Nevertheless, even if 𝜌 ̸= 0, we can use the orthogonal
transformation to achieve the decorrelation of 𝑋,𝑍. So we
assume that 𝜌 = 0 in the rest of the paper. Under the assump-
tion that 𝜌 = 0, the CEP 𝑅 satisfies the equation

∬
𝑥2+𝑧2⩽𝑅2

12𝜋𝜎𝑥𝜎𝑧 exp{−
(𝑥 − 𝜇𝑥)22𝜎2𝑥

− (𝑧 − 𝜇𝑧)22𝜎2𝑧 }𝑑𝑥𝑑𝑧 = 0.5
(3)

After estimating the parameters 𝜇𝑥, 𝜇𝑧, 𝜎𝑥, and 𝜎𝑧, the
CEP 𝑅 can be calculated by numerical integrations. More
details about calculating CEP are given in [16].

2.2. Classical Bayesian Estimation. As described in the Intro-
duction, the performance evaluation of guidance weapon
systems is a sequential process; the distribution parameters
would change when fusing test data from different stage. The
realistic tests are conducted to refine the previous evaluation
results based on the substitute tests. Therefore, the data
collected from substitute tests are usually regarded as prior
samples.

Because the procedures of estimating the parameters(𝜇𝑥, 𝜎𝑥) and (𝜇𝑧, 𝜎𝑧) are similar, we take the downrange
direction of impact point errors as an example to intro-
duce the classical Bayesian estimation, where 𝑋 follows the
normal distribution 𝑁(𝜇𝑥, 𝜎𝑥2). For convenience, we drop
the subscripts of (𝜇𝑥, 𝜎𝑥2) as (𝜇, 𝜎2) and let 𝜋1(𝜇, 𝜎2) be
the joint prior distribution of (𝜇, 𝜎2). In Bayesian theory,
the conjugate prior distributions of 𝜇 and 𝜎2 are normal
distribution 𝑁(𝜇1, 𝜎2/𝑘1) and inverse Gamma distribution
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𝐼𝐺𝑎(𝛼1, 𝛽1), respectively. As for the distribution parameters𝜇1, 𝑘1, 𝛼1, and 𝛽1, they are determined by (7).The probability
density function of 𝐼𝐺𝑎(𝛼1, 𝛽1) is

𝑓 (𝜎2) = 𝛽1𝛼1Γ (𝛼1) (
1𝜎2 )
𝛼1+1 𝑒−𝛽1/𝜎2 (4)

where Γ(⋅) means the Gamma function. Moreover, the joint
prior distribution 𝜋1(𝜇, 𝜎2) is the normal-inverse Gamma
distribution, so we have

𝜋1 (𝜇, 𝜎2) = 𝜋1 (𝜇 | 𝜎2) ⋅ 𝜋1 (𝜎2)
∝ 𝑁(𝜇1, 𝜎2𝑘1 ) ⋅ 𝐼𝐺𝑎 (𝛼1, 𝛽1) (5)

Suppose the prior samples for downrange direction areX(1) ={𝑥(1)1 , 𝑥(1)2 ⋅ ⋅ ⋅ , 𝑥(1)𝑛1 }, 𝑛1 is the size of the samples; let

𝑋(1) = 1𝑛1
𝑛1∑
𝑖=1

𝑥(1)𝑖
𝑆21 = 1𝑛1

𝑛1∑
𝑖=1

(𝑥(1)𝑖 − 𝑋(1))2
(6)

Then the estimates of the parameters of the joint prior distri-
bution are

𝛼1 = 12
𝑛1∑
𝑖=1

(𝑥(1)𝑖 − 𝑋(1))2 = 𝑛1𝑆212
𝛽1 = 12 (𝑛1 − 1)
𝜇1 = 𝑋(1)
𝑘1 = 𝑛1

(7)

Similarly, when the realistic test samples X(2) = {𝑥(2)1 , 𝑥(2)2 ,⋅ ⋅ ⋅ , 𝑥(2)𝑛2 } are obtained, 𝑛2 is the size of the samples; let

𝑋(2) = 1𝑛2
𝑛2∑
𝑖=1

𝑥𝑖(2)

𝑆22 = 1𝑛2
𝑛2∑
𝑖=1

(𝑥𝑖(2) − 𝑋(2))2
(8)

Because of the property of conjugate prior distribution, the
posterior distribution of (𝜇, 𝜎2) is also a normal-inverse
Gamma distribution:

𝜋2 (𝜇, 𝜎2 | 𝑋(2), 𝑆22) ∝ 𝑁(𝜇2, 𝜎2𝑘2 ) ⋅ 𝐼𝐺𝑎 (𝛼2, 𝛽2) (9)

where 𝜇2, 𝑘2, 𝛼2, and 𝛽2 are the parameters of the normal-
inverse Gamma distribution, and the estimates of the param-
eters are

𝛼2 = 𝛼1 + 𝑛2𝑆222 + 𝑛1𝑛2 (𝑋(2) − 𝜇1)2
2 (𝑛1 + 𝑛2)

𝛽2 = 𝛽1 + 𝑛22
𝜇2 = 𝑛1𝜇1 + 𝑛2𝑋(2)𝑛1 + 𝑛2
𝑘2 = 𝑛1 + 𝑛2

(10)

So the estimates of (𝜇, 𝜎2) by classical Bayesian estimation are

𝜇Bayes = 𝜇2
�̂�2Bayes = 𝛼2𝛽2 − 1

(11)

As for the cross-range direction of impact point errors,
the estimates of 𝜇𝑧 and 𝜎𝑧 can also be calculated by (11). After
obtaining the estimates of 𝜇𝑥, 𝜇𝑧, 𝜎𝑥, and 𝜎𝑧, we can calculate
the CEP of impact points by (3).

3. Bayesian Estimation Based on
Representative Points

In this section, we propose the novel method Bayesian
estimation based on representative points and the procedure
of determining the optimal number of RPs. RPs can not
only optimally represent the distribution of prior information
in terms of MSE principle, but also have smaller sample
size compared with raw prior samples. Therefore, RPs can
retain the useful information of prior samples and reduce
the estimate bias of 𝜇𝑥, 𝜇𝑧. If we search RPs as new prior
information, we may get more accurate and reliable CEP of
guidance weapon systems.

3.1. Methods for Searching Representative Points. In this sub-
section, we will give a brief introduction of RPs and methods
for searching RPs. Assume that X ∈ 𝑅𝑝 is a 𝑝 dimensional
random vector, and the probability density function of X
is 𝑓(𝑥). Define the mean squared error for a set of points{𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑘} ⊆ 𝑅𝑝 of the random vector X as follows:

MSE (𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑘) = E( min
𝑖=1,⋅⋅⋅ ,𝑘

𝑥 − 𝑟𝑖2)
= ∫
𝑅𝑝

min
𝑖=1,⋅⋅⋅ ,𝑘

𝑥 − 𝑟𝑖2 𝑓 (𝑥) 𝑑𝑥
(12)

where ‖ ⋅ ‖ stands for 𝐿2 -norm. The vectors {𝑟1, ⋅ ⋅ ⋅ 𝑟𝑘} ∈ 𝑅𝑝
are called 𝑘 representative points of a random vector X if

MSE (𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑘) ≤ MSE (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑘) (13)

for all sets {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑘} ⊆ 𝑅𝑝.
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From the definition above, it is obvious that when 𝑘 = 1,
the single RP is themean ofX. Searching the RPs equals doing
the optimal grouping [17]; it is difficult to derive the concrete
RPs theoretically even if the number of RPs is given. Flury
has proved that there is no theoretical derivation of RPs when𝑘 > 2 [18]. So some approximation algorithms have been
proposed to search RPs including k-means methods [19],
parametric k-meansmethods [20], and nonparametricmeth-
ods [21]. The k-means methods are searching the clustering
centers as the RPs. Moreover, the parametric k-means meth-
ods resample large samples from a specific distributionwhose
parameters are estimated by maximum likelihood, then
searching the RPs from the resampled samples by k-means
methods.Themain idea of nonparametricmethods is to build
the empirical distribution function of X and resample large
samples from this empirical function, after which the RPs
are chosen from the resampled samples. In most cases, non-
parametric methods have better performance to represent a
distribution in terms of MSE than the k-means methods and
parametric k-meansmethods.Themain steps of the nonpara-
metric method introduced in [21] are shown as follows:

(i) Step1. For original samples X(0) = {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛},
use k-means algorithm to obtain 𝑘 points P(1) ={𝑃(1)1 , 𝑃(1)2 , ⋅ ⋅ ⋅ , 𝑃(1)

𝑘
} from X(0) as an initial solution.

(ii) Step2. Use the kernel estimation method to estimate
the density function of original samples, denoted as𝑓(𝑥).

(iii) Step3. Use the Randomized Likelihood Sampling
method to generate 𝑁(𝑁 ≫ 𝑛) samples Z ={𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑁} from the density function 𝑓(𝑥) as the
training data.

(iv) Step4. Based on the 𝑁 training data Z and the 𝑘
starting points P(1), use k-means algorithm to obtain𝑘 RPs P(2) = {𝑃(2)1 , 𝑃(2)2 ⋅ ⋅ ⋅ , 𝑃(2)

𝑘
}.

Following the four steps above, we can get the RPs from
prior samples. After that, we can use the RPs as new prior
information to estimate the population parameters. More
details about BERP will be introduced in the next subsection.

3.2. The Procedure of BERP. In this subsection, we will intro-
duce the procedure of BERP which is similar to the clas-
sical Bayesian estimation in Section 2.2. We also take the
downrange direction of impact point errors as an example,
suppose the original prior samples are X(1) = {𝑥(1)1 , 𝑥(1)2 , ⋅ ⋅ ⋅ ,𝑥(1)𝑛1 }. Choose 𝑛𝑟 RPs fromX(1) by the nonparametric method
introduced in Section 3.1 and denote X(𝑟𝑝) = {𝑥(𝑟𝑝)1 , 𝑥(𝑟𝑝)2 ,⋅ ⋅ ⋅ , 𝑥(𝑟𝑝)𝑛𝑟 }, and let

𝑋(𝑟𝑝) = 1𝑛𝑟
𝑛𝑟∑
𝑖=1

𝑥𝑖(𝑟𝑝)

𝑆2𝑟𝑝 = 1𝑛𝑟
𝑛𝑟∑
𝑖=1

(𝑥𝑖(𝑟𝑝) − 𝑋(𝑟𝑝))2
(14)

Similar to Section 2.2, let 𝛼𝑟𝑝, 𝛽𝑟𝑝, 𝜇𝑟𝑝, and 𝑘𝑟𝑝 be the
parameters of the joint prior distribution. By searching RPs
as new prior information, the estimates of these parameters
are

𝛼𝑟𝑝 = 𝑛𝑟𝑆2𝑟𝑝2
𝛽𝑟𝑝 = (𝑛𝑟 − 1)

2
𝜇𝑟𝑝 = 𝑋(𝑟𝑝)
𝑘𝑟𝑝 = 𝑛𝑟

(15)

Moreover, let 𝜇2𝑟, 𝑘2𝑟, 𝛼2𝑟, and 𝛽2𝑟 be the parameters of
posterior distribution. So the estimates of these parameters
are

𝛼2𝑟 = 𝛼𝑟𝑝 + 𝑛2𝑆222 + 𝑛𝑟𝑛2 (𝑋(2) − 𝜇𝑟𝑝)2
2 (𝑛𝑟 + 𝑛2)

𝛽2𝑟 = 𝛽𝑟𝑝 + 𝑛22
𝜇2𝑟 = 𝑛𝑟𝜇𝑟𝑝 + 𝑛2𝑋(2)𝑛𝑟 + 𝑛2
𝑘2𝑟 = 𝑛𝑟 + 𝑛2

(16)

where 𝑋(2) and 𝑆22 are calculated by (8). So the estimates of(𝜇, 𝜎2) by BERP are

𝜇BERP = 𝜇2𝑟
�̂�2BERP = 𝛼2𝑟𝛽2𝑟 − 1

(17)

If we know the exact number of RPs, it is easy to estimate
the parameters 𝜇𝑥, 𝜇𝑧, 𝜎𝑥, and 𝜎𝑧 by (17). However, it is
difficult to determine the optimal number of RPs because
there are no theoretical methods about this. Therefore, we
propose an optimization procedure to determine the optimal
number of RPs when there exists unknown systematic bias in
prior samples.

3.3. Optimal Number of Representative Points. The approach
to determining the optimal number of RPs varies with the
background of practical problem. On the one hand, the RPs
are closer to the original prior samples as the number grows.
Therefore, the more the RPs chosen, the larger bias they
may bring to the estimate of 𝜇, which will also be validated
in Theorem 1, Section 4. On the other hand, similar to the
methods of normalizing prior information, choosing small
number of RPs will cause great information loss. Therefore,
we consider two factors when determining the optimal
number of RPs: the estimate bias and the information loss.
We still take the downrange direction of the impact point
errors as an example to describe the optimization procedure.𝐵𝑛𝑟 and 𝐿𝑛𝑟 stand for the estimate bias and the information
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Define𝑁 : Predetermined maximum number of RPs 𝑛𝑟 :The current number of RPs𝑛∗𝑟 : Optimal number of RPs 𝐵𝑛𝑟 : Estimate bias 𝐿𝑛𝑟 : Information loss
for 1 ⩽ 𝑛𝑟 ⩽ 𝑁 do

Choose 𝑛𝑟 RPs from the prior samples and calculate 𝐵𝑛𝑟 and 𝐿𝑛𝑟
Update 𝑛𝑟 = 𝑛𝑟 + 1

end for𝑛∗𝑟 = argmin(𝐵𝑛𝑟 + 𝐿𝑛𝑟 )
return 𝑛∗𝑟

Algorithm 1: The optimization procedure.

loss, respectively, where 𝑛𝑟 stands for the number of RPs.The
objective function 𝐹𝑛𝑟 is to achieve a balance between 𝐵𝑛𝑟 and𝐿𝑛𝑟 . So we have

𝐹𝑛𝑟 = 𝐵𝑛𝑟 + 𝐿𝑛𝑟 (18)

In fact, it is hard to quantify the estimate bias 𝐵𝑛𝑟 without
the true values of the population parameters. But there is a
principle in the performance evaluation of guidance weapon
systems that every realistic test sample should be used. So we
can use the mean of realistic test samples to approximate the
true value of parameter 𝜇, denoted as 𝜇true. The estimate of 𝜇
by BERP is denoted as 𝜇BERP. So the approximated 𝐵𝑛𝑟 is

𝐵𝑛𝑟 = 𝜇BERP − 𝜇true (19)

As for 𝐿𝑛𝑟 , the information loss could be estimated by Cox
(1957) [17]:

𝐿𝑛𝑟 = 𝐸 [𝑋 − 𝜉𝑛𝑟 (𝑋)]2
𝜎2 = 𝑛𝑟∑

𝑖=1

𝜎2𝑖𝜎2 (20)

where 𝜎2 is the variance of all prior samples; 𝜎2𝑖 is the
variance of samples in 𝑖𝑡ℎ class which is classified in Step 4 for
searching RPs. As the number of RPs increases, the estimate
bias would increase and the information loss would decrease.
The optimal number of RPs is determined by the minimal
value of the objective function

min
𝑛𝑟

[𝜇BERP − 𝜇true +
𝑛𝑟∑
𝑖=1

𝜎2𝑖𝜎2] (21)

Algorithm 1 describes the optimization procedure of deter-
mining the optimal number of RPs.

4. Theoretical Analysis of BERP

Estimate bias andMSE are the commonmeasures to evaluate
the quality of an estimator. So we will use them to analyse
the theoretical performance of BERP and classical Bayesian
estimation in this section. Suppose the posterior distribution
of parameter 𝜃 is 𝑓(𝜃 | X), 𝜃 is the posterior expectation of 𝜃,

and 𝜃true is the true value of 𝜃. The estimate bias and MSE of
the estimator 𝜃 are

Bias (𝜃, 𝜃true | 𝑋) = 𝜃 − 𝜃true (22)

MSE (𝜃 | 𝑋) = E𝜃|𝑋 (𝜃 − 𝜃true)2
= E𝜃|𝑋 (𝜃 − 𝜃 + 𝜃 − 𝜃true)2
= Var (𝜃 | 𝑋) + (𝜃 − 𝜃true)2
= Var (𝜃 | 𝑋)

+ (Bias (𝜃, 𝜃true | 𝑋))2

(23)

where Var(𝜃 | 𝑋) is the variance of 𝜃.
Let realistic test samples follow the normal distribution𝑁(𝜇, 𝜎2), and the prior samples follow the normal distribu-

tion 𝑁(𝜇 + 𝜂, 𝜎2), where 𝜂 is the systematic bias. Let 𝑛1,𝑛2 be the sample sizes of prior samples and realistic test
samples, respectively. Suppose the posterior estimate of 𝜇 by
classical Bayesian estimation is 𝜇Bayes, 𝜇Bayes is its posterior
expectation. The posterior estimate of 𝜇 by BERP is 𝜇BERP,𝜇BERP is its posterior expectation, and 𝑛𝑟 is the number of
RPs. Let 𝜇true be the true value of parameter 𝜇. There are two
theorems to compare the estimate bias and MSE of the two
estimators 𝜇Bayes and 𝜇BERP.
Theorem 1. In the case that there exists systematic bias in prior
samples, one has

Bias (𝜇BERP, 𝜇true | 𝑋) ≤ Bias (𝜇Bayes, 𝜇true | 𝑋) (24)

Proof. From (11) and (17), the estimate bias of 𝜇BERP and 𝜇Bayes
is

Bias (𝜇BERP, 𝜇true | 𝑋) = 𝜇BERP − 𝜇true = 𝑛𝑟𝜂𝑛𝑟 + 𝑛2 (25)

Bias (𝜇Bayes, 𝜇true |𝑋) = 𝜇Bayes − 𝜇true = 𝑛1𝜂𝑛1 + 𝑛2 (26)

The estimate bias of 𝜇𝐵𝐸𝑅𝑃 increases with the number of RPs.
Since the size of prior samples is much larger than the size of
RPs, we have 𝑛1 ≫ 𝑛𝑟. Therefore there is

𝑛𝑟𝑛𝑟 + 𝑛2 <
𝑛1𝑛1 + 𝑛2 (27)
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So

Bias (𝜇BERP, 𝜇true | 𝑋) ≤ Bias (𝜇Bayes, 𝜇true | 𝑋) (28)

Theorem 2. In the case that 𝜂2 ⩾ 𝜎2/𝑛2, one has
MSE (𝜇BERP | 𝑋) ≤ MSE (𝜇Bayes | 𝑋) (29)

Proof. TheMSE of 𝜇Bayes and 𝜇BERP are
MSE (𝜇Bayes | 𝑋) = Var (𝜇Bayes | 𝑋)

+ (Bias (𝜇Bayes, 𝜇true | 𝑋))2 (30)

MSE (𝜇BERP | 𝑋) = Var (𝜇BERP | 𝑋)
+ (Bias (𝜇BERP, 𝜇true | 𝑋))2 (31)

where

Var (𝜇Bayes | 𝑋) = 𝛼2𝑘2 (𝛽2 − 1)

= 𝑘2 ⋅ (𝑛1 ⋅ 𝑆21 + 𝑛2 ⋅ 𝑆22) + 𝑛1 ⋅ 𝑛2 ⋅ (𝑋(2) − 𝑋(1))2
𝑘22 ⋅ (𝑘2 − 3)

Var (𝜇BERP | 𝑋) = 𝛼2𝑟𝑘2𝑟 (𝛽2𝑟 − 1)

= 𝑘2𝑟 ⋅ (𝑛𝑟 ⋅ 𝑆2𝑟𝑝 + 𝑛2 ⋅ 𝑆22) + 𝑛𝑟 ⋅ 𝑛2 ⋅ (𝑋(2) − 𝑋(𝑟𝑝))2
𝑘2𝑟2 ⋅ (𝑘2𝑟 − 3)

(32)

Because prior samples and realistic test samples both
follow the normal distribution 𝑁(𝜇, 𝜎2) and there exists
systematic bias 𝜂 in prior samples, we have the approximated
results:

𝑆21 ≈ 𝑆22 ≈ 𝑆2𝑟𝑝 ≈ 𝜎2
(𝑋(2) − 𝑋(1))2 ≈ (𝑋(2) − 𝑋(𝑟𝑝))2 ≈ 𝜂2 (33)

Let 𝜆1 = 𝑛1 + 𝑛2 and 𝜆𝑟 = 𝑛𝑟 + 𝑛2, and Δ 1 is determined
as follows:

Δ 1 = 𝜆12𝜆𝑟2(𝜆1 − 3) (𝜆𝑟 − 3) (𝑛1𝜆𝑟 + 𝑛𝑟𝜆1) − 𝑛1𝑛𝑟 (𝜆1 + 𝜆𝑟 + 𝑛2 − 3) + 𝑛32 − 3𝑛22 (34)

when MSE(𝜇BERP | 𝑋) ≤ MSE(𝜇Bayes | 𝑋), if and only if𝜂2 ⩾ 𝜎2/𝑛2 ⋅Δ 1. Because 𝑛1 ≫ 𝑛2, 𝑛1 ≫ 𝑛𝑟, we can getΔ 1 < 1.
To sum up, when 𝜂2 ≥ 𝜎2/𝑛2, there is

MSE (𝜇BERP | 𝑋) ≤ MSE (𝜇Bayes | 𝑋) (35)

The estimate bias of 𝜇BERP is smaller than that of 𝜇Bayes
when there exists unknown systematic bias in prior samples.
Moreover, the MSE of 𝜇BERP is also smaller than that of 𝜇Bayes
when 𝜂2 ≥ 𝜎2/𝑛2. In most cases, 𝜎2/𝑛2 is smaller than 𝜂2.
Therefore, it can be concluded that BERP has better accuracy
for estimating the parameter 𝜇 of normal distribution than
classical Bayesian estimation when there exists unknown
systematic bias in prior samples.

However, when the systematic bias is beyond a certain
bound, itmay be better to stop fusing the biased prior samples
even if they may provide some useful information. Suppose𝜇𝑀𝐿𝐸 is estimated by maximum likelihood estimation with-
out using the prior information, it is obviously an unbiased
estimate. The MSE of 𝜇𝑀𝐿𝐸 is

MSE (𝜇MLE | 𝑋) = Var (𝜇MLE | 𝑋) = 𝜎2𝑛2 (36)

when MSE(𝜇MLE | 𝑋) ≤ MSE(𝜇BERP | 𝑋), if and only if𝜂2 ⩾ 𝜎2/𝑛2 ⋅ Δ 2, where

Δ 2 = (𝑛𝑟 − 3) (𝑛𝑟 + 𝑛2)2𝑛𝑟𝑛2 + 𝑛𝑟2 (𝑛2 + 𝑛𝑟 − 3) (37)

Moreover, compared with (34), there is Δ 1 < Δ 2, which
means that when 𝜂2 ⩾ 𝜎2/𝑛2 ⋅ Δ 2, MSE(𝜇MLE | 𝑋) is
also smaller than MSE(𝜇Bayes | 𝑋). Therefore, if 𝜂2 is larger
than 𝜎2/𝑛2 ⋅ Δ 2, we should stop using the prior information;
√𝜎2/𝑛2 ⋅ Δ 2 is the bound of the systematic bias.

5. Numerical Experiments

In this section, three numerical experiments are provided
to validate that BERP can help to get more accurate and
reliable calculation of CEP when the systematic bias is
within the bound. The first one is to show the performance
of optimization procedure when determining the optimal
number of RPs; the second one is to compare the estimation
accuracy of BERP with that of classical Bayesian estimation;
the third one is to compare the calculation of CEP based on
BERP with classical Bayesian estimation.

Example 1. In this example, we will analyze the optimization
procedure for determining the optimal number of RPs. Let𝑛1 = 200 be the sample size of the prior samples and𝑛2 = 5 be the sample size of realistic test samples. The prior
samples and the realistic test samples are generated from
normal distributions𝑁(𝜇 + 𝜂, 𝜎2) and𝑁(𝜇, 𝜎2), respectively,
where 𝜇 = 0, 𝜂2 = 10, 𝜎2 = 50. The RPs are searched by
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Figure 1: Performance for different representative points.

the nonparametric method. In order to reduce the influence
of random factors on simulation result, resample samples
100 times under the same circumstance and get the average
results. Figure 1 shows the variation of the information loss,
the estimate bias, and the objective function for different
numbers of RPs, where the estimate bias and information loss
are both calculated after normalization.

As displayed in Figure 1, the estimate bias approximated
by (19) is very close to the theoretical one, which means that
using 𝐵𝑛𝑟 to quantify the estimate bias is reasonable. In addi-
tion, when the number of RPs increases, the information loss
decreases while the estimate bias increases, so the objective
function can balance the two factors well when determining
the optimal number of RPs. From Figure 1(b), when the num-
ber of RPs is 9, the objective function reaches the minimal
value, so the optimal number of RPs is 9 in this example.

Example 2. In this example, we will compare the estimation
performance of the two methods. Let 𝑛1 = 200 be the sample
size of the prior samples, 𝑛2 = 5 be the sample size of the
realistic test samples, and 𝑁 = 20 be the predetermined
maximum number of RPs. The prior samples and realistic
test samples are generated from normal distributions 𝑁(𝜇 +𝜂, 𝜎2) and 𝑁(𝜇, 𝜎2), respectively, where 𝜇 = 0 and 𝜂 is the
systematic bias in prior samples. We set different values for 𝜂
in the simulations to investigate the estimation performance
when estimating the parameter 𝜇. Similar to Example 1, we
resample samples 100 times under the same circumstance and
get the average results in order to reduce the influence of
random factors. Table 1 shows the simulation results.

From Table 1, we can summarize two conclusions. (1)
Within the bound of the systematic bias shown in Section 4,
if there exists slight systematic bias in prior samples, 𝜇BERP is
much more closer to the true value of the parameter 𝜇 than𝜇Bayes, and MSE(𝜇BERP) is also smaller than MSE(𝜇Bayes) in

most cases. Therefore, BERP has higher accuracy to estimate
the parameter 𝜇 than classical Bayesian estimation when
there exists slight systematic bias in prior information. (2)
If there is no systematic bias in prior samples, 𝜇BERP is
very close to 𝜇Bayes, and MSE(𝜇BERP) is a little larger than
MSE(𝜇Bayes). There is no obvious difference between the
estimation accuracies of the twomethods. Moreover, without
the systematic bias in prior samples, the optimal number of
RPs is close to the predetermined maximum number 20. In
this case, BERP is degenerated into the classical Bayesian
estimation to some extent.

Example 3. When there is systematic bias in prior infor-
mation, the CEP calculation based on BERP and classical
Bayesian estimation is discussed in this example.We simulate𝑛1 = 200 prior samples (X(1),Z(1))𝑇 from the bivariate normal
distribution 𝑁(𝜇 + 𝜂,Σ) and 𝑛2 = 5 realistic test samples(X(2),Z(2))𝑇 from the bivariate normal distribution 𝑁(𝜇,Σ),
where 𝜂 = (√10,√10)𝑇,𝜇 = (0, 0)𝑇, and Σ = diag(40, 40).
The parameters 𝜇𝑥, 𝜇𝑧, 𝜎𝑥, and 𝜎𝑧 are estimated by BERP
and classical Bayesian estimation, respectively. Based on the
estimates of the population parameters, we use the numerical
integration to get the CEP. Figure 2 shows the simulation
results about CEP calculation.

As shown in Figure 2, the true CEP is CEPtrue = 7.4466,
the CEP calculation based on BERP is CEPBERP = 7.6532, and
the CEP calculation based on classical Bayesian estimation
is CEPBayes = 8.4402. It is easy to conclude that the CEP
calculation based on BERP is much closer to the true CEP
when the systematic bias is within the bound. In addition,
the CEP calculation without using the prior information is
defined as CEPnoprior. If the prior informationwere effectively
ignored, the CEPnoprior would be unreliable and unstable
because of the large MSE of the estimation of 𝜇 without
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Table 1: Comparison of the simulation result of the two methods.

𝜎2 𝜂2 𝜇Bayes 𝜇BERP MSE(𝜇Bayes) MSE(𝜇BERP) Opt𝑁𝑅𝑝𝑠
40 0 0.0071 0.0419 0.1985 1.6958 19
50 0 -0.0185 -0.0720 0.2482 2.1204 19
60 0 -0.0178 -0.0796 0.2979 2.5442 19
40 5 2.1657 0.1930 4.9576 4.8515 14
50 5 2.1885 0.3104 5.0081 5.4469 13
60 5 2.1661 0.3347 5.0574 6.0391 13
40 10 3.0963 0.8185 9.7162 7.032 9
50 10 3.0684 1.0232 9.7688 7.7469 9
60 10 3.0920 1.0394 9.8186 8.4485 8
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Figure 2: CEP calculated by different methods.

using prior information. Therefore, using BERP to estimate
the parameters 𝜇𝑥, 𝜇𝑧 will get more accurate calculation
of CEP than classical Bayesian estimation when there is
slight systematic bias in prior information. In addition, CEP
calculation by BERP also outperforms the method with the
prior information ignored.

6. Conclusions

In this paper, we have investigated the methods for perfor-
mance evaluation of guidance weapon systems. Because of
the small sample size of the realistic test data, we would fuse
the prior information in the evaluation. However, by classical
Bayesian estimation, the unknown systematic bias in prior
information may cause large deviation for CEP calculation.
For purpose of addressing it, a novel Bayesian method called
BERP is proposed in this paper, and the corresponding
optimization procedure is designed. In addition, we also give
the bound of systematic bias for stopping using the heavily
biased prior information.

Within the bound of the systematic bias, theoretical
analysis and simulation results prove that our new method
has smaller estimate bias andMSE for estimating themean of
normal distribution than classical Bayesian estimation when
there exists slight systematic bias in prior information. As for
CEP calculation, the simulation results also validate that the
CEP calculated by BERP is more accurate and reliable than
the CEP calculated by classical Bayesian estimation. It can
be concluded that a more accurate and reliable estimation of
the CEP can be obtained via the BERP when the unknown
systematic bias is within the bound.

There is no obvious difference of the estimation accu-
racy between the two methods; BERP also has a good
estimation performance when there is no systematic bias.
Therefore, in order to get accurate and reliable evaluation
results of guidance weapon systems, it is better to calculate
the CEP via BERP than classical Bayesian estimation if
the systematic bias is within the bound. In contrast, if the
systematic bias is beyond the bound, we should stop fusing
the biased prior information and evaluate the performance
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only by realistic test samples even if the sample size is
small.
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