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The perspective 3-point (P3P) problem, also known as pose estimation, has its origins in camera calibration and is of importance
in many fields: for example, computer animation, automation, image analysis, and robotics. One possibility is to formulate it
mathematically in terms of finding the solution to a quartic equation. However, there is yet no quantitative knowledge as to how
control-point spacing affects the solution structure—in particular, the multisolution phenomenon. Here, we consider this problem
through an algebraic analysis of the quartic’s coefficients and its discriminant and find that there are significant variations in the
likelihood of two or four solutions, depending on how the spacing is chosen.The analysis indicates that although it is never possible
to remove the occurrence of the four-solution case completely, it could be possible to choose spacings that would maximize the
occurrence of two real solutions. Moreover, control-point spacing is found to impact significantly on the reality conditions for the
solution of the quartic equation.

1. Introduction

The perspective 3-point (P3P) problem, also known as pose
estimation, has its roots in camera calibration and is of
importance inmany fields: for example, computer animation,
automation, image analysis, and robotics. It can be stated
as follows: given the perspective projection of three points
constituting the vertices of a known triangle in 3D space, it
is possible to determine the position of each of the vertices.
One way it can be formulated mathematically is in terms
of finding the solution to a quartic equation. However, in
general, the equation does not have a unique solution, and
in some situations there are no solutions at all. A review of
work on the problem up until 1994 is given by Haralick et
al. [1]; by that stage, there were six different algorithms for
the P3P problem, given by Grunert [2], Finsterwalder and
Scheufele [3], Merritt [4], Smith [5], Fischler and Bolles [6],
Linnainmaa et al. [7], and Grafarend et al. [8].

Thus, an important area of research on the P3P problem
is its multisolution phenomenon. Fischler and Bolles [6]

showed that up to four solutions would be present for the
problem of matching three model points to three image
points, and they gave a procedure for identifying each of
these solutions. A necessary condition for the existence of
the solution was given for the first time by Yuan [9]. Wolfe
et al. [10] gave a geometric explanation to this multisolution
phenomenon in the image plane under the assumption of
“canonical view”. Su et al. [11] applied the Wu-Ritt zero
decomposition method to find the main solution branch
and some nondegenerate branches for the P3P problem,
although a complete decomposition was not given; in [12],
the same authors used the Sturm sequence to give some
conditions to determine the number of solutions. Yang
[13] gave partial solution classifications of the P3P problem
under some nondegenerate conditions. Gao et al. [14] have
given a complete classification, although the procedure is
lengthy, mainly as they try to solve two quadratic equations
simultaneously, rather than the single quartic equation. Even
more recent are the papers by Zhang and Hu [15–17], Hu et
al. [18], and Rieck [19–22]; in particular, Rieck [20] focused
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on the multisolution phenomenon. An alternative approach
is that of Vynnycky and Kanev [23], who analyzed in
detail the behaviour of coefficients of the quartic polynomial
derived by Linnainmaa et al. [7]; this enabled them to draw
conclusions on the comparative likelihoods of obtaining
different numbers of solutions, albeit only for the case of
equidistant spacing between the vertices, constituting an
isosceles triangle. Moreover, it should be noted that there
exist other ways to formulate the problem: for example,
Finsterwalder and Scheufele [3] formulate it in terms of
finding a root of a cubic polynomial and the roots of two
quadratic polynomials, rather than finding all the roots of a
fourth-order polynomial.

The purpose of this contribution is to extend themethod-
ology of Vynnycky and Kanev [23] with a view to obtaining
a better quantitative understanding of the multisolution
phenomenon of the P3P problem; in contrast to other
activities that seek to determine solutions to the problem
numerically or to provide a geometrical interpretation of
the problem [24], here we focus on analyzing the actual
numbers of solutions that the problem has as a function of
the properties of the known triangle in 3D space. Moreover,
although such solutions can be computed numerically these
days in microseconds, this ought not to preclude seeking a
better analytical understanding of the underlying equations.

Although lengthy, the analysis in [23] was only for one of
the four different formulations that result in a quartic poly-
nomial [2, 4, 6, 7]; moreover, it was mostly only for the case
when the known triangle in 3D space was isosceles. It should
be noted, however, that different algebraic manipulations of
the equations lead to different quartic polynomials, and a
preliminary issue concerns how this will affect the solution
structure; although one might expect it to be invariant, we
demonstrate that there exist situations where the structure
is different. The analysis here will be based on the polyno-
mial obtained by Grunert [2], although we will also obtain
new insight on the formulation of Linnainmaa et al. [7].
Moreover, we will go as far as considering arbitrary triangles
in 3D space, corresponding to nonequidistant vertices, to
determine whether it would be possible to remove the four-
solution case completely through a prudent choice of triangle;
if so, and the answer at the outset is far from obvious, this
could help to reduce the complexity of numerical algorithms
that seek to solve the P3P problem in real-time applications.

The layout of the paper is as follows. In Section 2, the
P3P problem is stated and the formulation due to Grunert
[2] is presented. In Section 3, some preliminary analysis
is presented regarding the properties of the polynomial,
while Section 4 considers in detail the solutions for the
case of equidistant control points. The main results, for
nonequidistant control points, are given in Section 5, and
conclusions are drawn in Section 6.

2. Statement of Problem

The P3P problem amounts to determining the distances
from a camera’s focal point, or centre of perspective, to
three known control points. These control points are actual

Figure 1:Theperspective projection of a triangle on the image plane.

points that are attached to an object that is free to move
in space and whose images in the camera’s image plane can
be identified. This is achieved by performing computations
based on image measurements, intrinsic camera properties,
and the known physical distances between the control points.
In what follows, the camera is assumed to be calibrated.

Let 𝑃 be the centre of perspective, and𝐴, 𝐵, 𝐶 the control
points, and 𝐴󸀠, 𝐵󸀠, 𝐶󸀠 the image points, as shown in Figure 1.
Let

𝜆1 = |𝑃𝐴| ,
𝜆2 = |𝑃𝐵| ,
𝜆3 = |𝑃𝐶| ,
𝑑12 = |𝐴𝐵| ,
𝑑13 = |𝐴𝐶| ,
𝑑23 = |𝐵𝐶| ,
𝛼 = ∡𝐵𝑃𝐴,
𝛽 = ∡𝐴𝑃𝐶,
𝛾 = ∡𝐵𝑃𝐶,

(1)

and then

𝑝1 = cos𝛼,
𝑝2 = cos𝛽,
𝑝3 = cos 𝛾,

(2)

with −1 < 𝑝1, 𝑝2, 𝑝3 < 1. From triangles𝑃𝐴𝐵, 𝑃𝐴𝐶, and𝑃𝐵𝐶,
we obtain the P3P equation system:

𝜆21 − 2𝑝1𝜆1𝜆2 + 𝜆22 = 𝑑212, (3)

𝜆21 − 2𝑝2𝜆1𝜆3 + 𝜆23 = 𝑑213, (4)

𝜆22 − 2𝑝3𝜆2𝜆3 + 𝜆23 = 𝑑223. (5)

Since we are interested only in physical solutions, we assume
the following reality conditions:
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(1) 𝜆1 > 0, 𝜆2 > 0, 𝜆3 > 0;
(2) 𝑑12 > 0, 𝑑13 > 0, 𝑑23 > 0;
(3) 𝑑12 + 𝑑23 > 𝑑13, 𝑑12 + 𝑑13 > 𝑑23, 𝑑13 + 𝑑23 > 𝑑12;
(4) 0 < 𝛼, 𝛽, 𝛾 < 𝜋, 0 < 𝛼 + 𝛽 + 𝛾 < 2𝜋, 𝛾 + 𝛽 > 𝛼, 𝛼 +
𝛾 > 𝛽, 𝛼 + 𝛽 > 𝛾, the last three of which can also be
expressed as

𝑝1 > 𝑝2𝑝3 − (1 − 𝑝22)
1/2 (1 − 𝑝23)

1/2 , (6)

𝑝2 > 𝑝1𝑝3 − (1 − 𝑝21)
1/2 (1 − 𝑝23)

1/2 , (7)

𝑝3 > 𝑝2𝑝1 − (1 − 𝑝22)
1/2 (1 − 𝑝21)

1/2 , (8)

respectively, and, as demonstrated by [23], can be
reduced to

𝑝21 + 𝑝22 + 𝑝23 − 2𝑝1𝑝2𝑝3 − 1 < 0, (9)

termed as the tetrahedron of reality.

Without loss of generality, we take 𝑑12 ≥ 𝑑13, 𝑑23. Setting
𝜆1 = 𝑑12𝑋,
𝜆2 = 𝑑12𝑌,
𝜆3 = 𝑑12𝑍,

(10)

(3)-(5) become

𝑋2 − 2𝑝1𝑋𝑌 + 𝑌2 = 1, (11)

𝑋2 − 2𝑝2𝑋𝑍 + 𝑍2 = 𝑑22, (12)

𝑌2 − 2𝑝3𝑌𝑍 + 𝑍2 = 𝑑23, (13)

where

𝑑2 =
𝑑13
𝑑12
,

𝑑3 =
𝑑23
𝑑12
.

(14)

Hence, in the most general case, there will be 5 distinct
parameters—𝑝1, 𝑝2, 𝑝3, 𝑑2, 𝑑3—with

−1 < 𝑝1, 𝑝2, 𝑝3 < 1,
0 < 𝑑2, 𝑑3 ≤ 1.

(15)

Now, it is clear that

0 < 𝛼 + 𝛽 + 𝛾 < 2𝜋,
𝛾 + 𝛽 > 𝛼,
𝛼 + 𝛾 > 𝛽,
𝛼 + 𝛽 > 𝛾

(16)

constitute four planes that make up a tetrahedron with
vertices in (𝛼, 𝛽, 𝛾)-space at

(0, 0, 0) ,
(𝜋, 𝜋, 0) ,
(𝜋, 0, 𝜋) ,
(0, 𝜋, 𝜋) ;

(17)

in (𝑝1, 𝑝2, 𝑝3)-space, this implies an inflated tetrahedron,
given by (9), with vertices at

(1, 1, 1) ,
(−1, −1, 1) ,
(−1, 1, −1) ,
(1, −1, −1) ,

(18)

respectively.
Here, we follow the formulation given by Grunert [2].

Setting

𝑌 = 𝑢𝑋,
𝑍 = V𝑋,

(19)

(11)-(13) become

𝑋2 (1 + 𝑢2 − 2𝑝1𝑢) = 1, (20)

𝑋2 (1 + V2 − 2𝑝2V) = 𝑑22, (21)

𝑋2 (𝑢2 + V2 − 2𝑝3𝑢V) = 𝑑23, (22)

whence we obtain

𝑋2 = 1
1 + 𝑢2 − 2𝑝1𝑢

, (23)

𝑋2 = 𝑑22
1 + V2 − 2𝑝2V

, (24)

𝑋2 = 𝑑23
𝑢2 + V2 − 2𝑝3𝑢V

, (25)

respectively. Equating (23) and (25) and making 𝑢2 the
subject of the resulting equation give

𝑢2 = V2 − 2𝑝3𝑢V + 𝑑23 (2𝑝1𝑢 − 1)
𝑑23 − 1

; (26)

using (24) and (25) instead gives

𝑢2 = 𝑑
2
3

𝑑22
(1 + V2 − 2𝑝2V) − (V2 − 2𝑝3𝑢V) . (27)

Setting these two expressions for 𝑢2 equal to each other and
making 𝑢 the subject of the resulting equation, we obtain

𝑢 = (1 + 𝑑
2
2 − 𝑑23) V2 + 2𝑝2V (𝑑23 − 1) − 𝑑22 − 𝑑23 + 1

2𝑑22 (V𝑝3 − 𝑝1)
. (28)
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Note that (26) appears to have a singularity if 𝑑3 = 1; details
of the alternativemanipulation that is required in this case are
given in Appendix A. Substituting (28) into (26) then leads to

𝑠1V4 + 𝑠2V3 + 𝑠3V2 + 𝑠4V + 𝑠5 = 0, (29)

where

𝑠1 = (𝑑22 + 2𝑑2𝑝3 − 𝑑23 + 1) (𝑑22 − 2𝑑2𝑝3 − 𝑑23 + 1) , (30)

𝑠2 = −4𝑑42𝑝1𝑝3 + 4𝑑22𝑑23𝑝1𝑝3 + 4𝑑22𝑑23𝑝2 + 8𝑑22𝑝2𝑝23
− 4𝑑43𝑝2 + 4𝑑22𝑝1𝑝3 − 4𝑑22𝑝2 + 8𝑑23𝑝2 − 4𝑝2,

(31)

𝑠3 = −8𝑑22𝑑23𝑝1𝑝2𝑝3 + 4𝑑42𝑝21 + 4𝑑42𝑝23 − 4𝑑22𝑑23𝑝21
+ 4𝑑43𝑝22 − 8𝑑22𝑝1𝑝2𝑝3 − 2𝑑42 − 4𝑑22𝑝23 + 2𝑑43
− 8𝑑23𝑝22 − 4𝑑23 + 4𝑝22 + 2,

(32)

𝑠4 = 8𝑑22𝑑23𝑝21𝑝2 − 4𝑑42𝑝1𝑝3 + 4𝑑22𝑑23𝑝1𝑝3 − 4𝑑22𝑑23𝑝2
+ 4𝑑22𝑝1𝑝3 + 4𝑑22𝑝2 − 4𝑑43𝑝2 + 8𝑑23𝑝2 − 4𝑝2,

(33)

𝑠5 = (−2𝑑2𝑑3𝑝1 + 𝑑22 + 𝑑23 − 1)

⋅ (2𝑑2𝑑3𝑝1 + 𝑑22 + 𝑑23 − 1) .
(34)

3. Preliminary Analysis

Prior to finding solutions to (29), it is worth analyzing it first.
Consider the case when 𝑠1, 𝑠5 ̸= 0. If 𝑠1𝑠5 > 0, we set V = 𝜇+𝑉
with 𝜇+ = (𝑠5/𝑠1)1/4 to obtain

𝜑+ (𝑉) fl 𝑉4 + 𝜎2𝑉3 + 𝜎3𝑉2 + 𝜎4𝑉 + 1 = 0, (35)

where

𝜎2 =
𝑠2
𝑠1𝜇+
,

𝜎3 =
𝑠3
𝑠1𝜇2+
,

𝜎4 =
𝑠4
𝑠1𝜇3+
.

(36)

Since 𝜑+(0) = 1 and 𝜑+ → +∞ as𝑉 → +∞, it is evident that,
in general, (35) can only have 0,2, or 4 positive solutions. So,
if 𝑠1 > 0, 𝑠5 > 0, i.e.,

(𝑑22 − 𝑑23 + 1)
2 − 4𝑑22𝑝23 > 0,

(𝑑22 + 𝑑23 − 1)
2 − 4𝑑22𝑑23𝑝21 > 0,

(37)

respectively, we have

− (𝑑22 − 𝑑23 + 1) < 2𝑑2𝑝3 < 𝑑22 − 𝑑23 + 1,

− (𝑑22 + 𝑑23 − 1) < 2𝑑2𝑑3𝑝1 < 𝑑22 + 𝑑23 − 1,
(38)

respectively, or

−2𝑑2𝑝3 < 𝑑22 − 𝑑23 + 1 < 2𝑑2𝑝3,
−2𝑑2𝑑3𝑝1 < 𝑑22 + 𝑑23 − 1 < 2𝑑2𝑑3𝑝1,

(39)

i.e.,

󵄨󵄨󵄨󵄨𝑝1󵄨󵄨󵄨󵄨 >
󵄨󵄨󵄨󵄨󵄨1 − 𝑑

2
2 − 𝑑23

󵄨󵄨󵄨󵄨󵄨
2𝑑2𝑑3

and 󵄨󵄨󵄨󵄨𝑝3󵄨󵄨󵄨󵄨 >
𝑑22 − 𝑑23 + 1
2𝑑2

. (40)

Alternatively, if 𝑠1 < 0, 𝑠5 < 0, we have

󵄨󵄨󵄨󵄨𝑝1󵄨󵄨󵄨󵄨 <
󵄨󵄨󵄨󵄨󵄨1 − 𝑑

2
2 − 𝑑23

󵄨󵄨󵄨󵄨󵄨
2𝑑2𝑑3

and 󵄨󵄨󵄨󵄨𝑝3󵄨󵄨󵄨󵄨 <
𝑑22 − 𝑑23 + 1
2𝑑2

. (41)

On the other hand, if 𝑠1𝑠5 < 0, we set V = 𝜇−𝑉 with 𝜇− =
(−𝑠5/𝑠1)1/4 to obtain

𝜑− (𝑉) fl 𝑉4 + 𝜎2𝑉3 + 𝜎3𝑉2 + 𝜎4𝑉 − 1 = 0, (42)

where

𝜎2 =
𝑠2
𝑠1𝜇−
,

𝜎3 =
𝑠3
𝑠1𝜇2−
,

𝜎4 =
𝑠4
𝑠1𝜇3−
.

(43)

Since 𝜑−(0) = −1 and 𝜑− → +∞ as 𝑉 → +∞, it is evident
that, in general, (42) can only have 1 or 3 positive solutions.
This occurs if

󵄨󵄨󵄨󵄨𝑝1󵄨󵄨󵄨󵄨 <
󵄨󵄨󵄨󵄨󵄨1 − 𝑑

2
2 − 𝑑23

󵄨󵄨󵄨󵄨󵄨
2𝑑2𝑑3

and 󵄨󵄨󵄨󵄨𝑝3󵄨󵄨󵄨󵄨 >
𝑑22 − 𝑑23 + 1
2𝑑2

, (44)

corresponding to 𝑠1 < 0 and 𝑠5 > 0, or

󵄨󵄨󵄨󵄨𝑝1󵄨󵄨󵄨󵄨 >
󵄨󵄨󵄨󵄨󵄨1 − 𝑑

2
2 − 𝑑23

󵄨󵄨󵄨󵄨󵄨
2𝑑2𝑑3

and 󵄨󵄨󵄨󵄨𝑝3󵄨󵄨󵄨󵄨 <
𝑑22 − 𝑑23 + 1
2𝑑2

, (45)

corresponding to 𝑠1 > 0 and 𝑠5 < 0.
It is worth comparing the coefficients 𝑠1, . . . 𝑠5 obtained

via this approach and those obtained by Linnainmaa et al.
[7]. Expressions (30)-(34) are certainly more compact than
those of the other approach, which will be recapped later
in Section 5.2, but have a significant disadvantage: 𝑠1 and 𝑠5
change sign depending on the values of 𝑝1 and 𝑝3, which can
then lead to 0,1,2,3, or 4 positive solutions. On the other hand,
𝑠1 and 𝑠5 in the other approach are always positive, and hence
there can only be 0,2, or 4 positive solutions. Nevertheless,
a strong reason for pursuing the Grunert approach is that it
provides an independent way to check the correctness of the
other approach, and viceversa.
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4. The Case of Equidistant Control Points:
𝑑2=𝑑3=1

We now consider the case when 𝑑2 = 𝑑3 = 1, corresponding
to the case where the control points are equidistant; this
allows to make a direct comparison with the corresponding
result in [23]. Equations (30)-(34) give

𝑠1 = 1 − 4𝑝23 , (46)

𝑠2 = 4𝑝3 (2𝑝2𝑝3 + 𝑝1) , (47)

𝑠3 = −2 (8𝑝1𝑝2𝑝3 + 1) , (48)

𝑠4 = 4𝑝1 (2𝑝1𝑝2 + 𝑝3) , (49)

𝑠5 = 1 − 4𝑝21 . (50)

A particular case of this, which allows comparison with the
results in [14, 23], is when 𝑝2 = 𝑝3; this is an instructive case
to consider, since the resulting algebra is straightforward and
also illustrates that two different quartic polynomials derived
from the same set of quadratic equations, (11)-(13), can lead
to a different solution structure.

4.1. 𝑝2 = 𝑝3. Using (46)-(50), polynomial (29) can be
factorized as

(V2 − 2𝑝2V + 2𝑝1 − 1)

⋅ ((4𝑝22 − 1) V2 − 2𝑝2 (2𝑝1 + 1) V + 2𝑝1 + 1) = 0,
(51)

giving the solutions

V1,± = 𝑝2 ± √𝑝22 − 2𝑝1 + 1 (52)

and

V2,± =
{{{{
{{{{
{

(2𝑝1 + 1) 𝑝2 ± √(2𝑝1 + 1) (2𝑝1𝑝22 − 3𝑝22 + 1)
4𝑝22 − 1

, if 𝑝2 ̸= ±12
±1, if 𝑝2 = ±12 .

(53)

Although (52) and (53) give all of the solutions to (29), the
only ones of interest are those which are real and positive and
lie within the tetrahedron of reality, which is given for this
plane by

(𝑝1 − 1) (𝑝1 − 2𝑝22 + 1) < 0; (54)

the positivity requirement is evident because𝑋,𝑌, 𝑍 > 0 from
(10), whence V > 0 from (19).We analyze (52) and (53) in turn.

For (52), we see that there will be no real solutions 𝑝1 >
(𝑝22 +1)/2 and two otherwise; however, V1,− will be negative if

0 < 𝑝2 < √𝑝22 − 2𝑝1 + 1, (55)

i.e., 𝑝1 < 1/2, or
−√𝑝22 − 2𝑝1 + 1 < 𝑝2 < 0, (56)

i.e., 𝑝1 < 1/2. In addition, we see that both solutions will be
negative if 𝑝2 < 0 and 1/2 < 𝑝1 < (𝑝22 + 1)/2.

For (53), there will be two real solutions if

𝑝1 > −12 ,

𝑝1 > 32 −
1
2𝑝22
,

(57)

or

𝑝1 < −12 ,

𝑝1 < 32 −
1
2𝑝22
.

(58)

The latter is not possible, and we focus on whether V2,± are
positive in the case of the former. If |𝑝2| > 1/2, V2,± > 0 if

(2𝑝1 + 1) 𝑝2 ± √(2𝑝1 + 1) (2𝑝1𝑝22 − 3𝑝22 + 1) > 0. (59)

So

(i) if 𝑝2 > 1/2, then V2,± > 0 if

(2𝑝1 + 1) 𝑝2 > √(2𝑝1 + 1) (2𝑝1𝑝22 − 3𝑝22 + 1), (60)

i.e., |𝑝2| > 1/2, and hence there are two positive roots;
(ii) if 𝑝2 < −1/2, then V2,− < 0 and V2,+ > 0 if

√(2𝑝1 + 1) (2𝑝1𝑝22 − 3𝑝22 + 1) > − (2𝑝1 + 1) 𝑝2, (61)

i.e., |𝑝2| < 1/2; hence, V2,+ < 0, and there are no
positive roots.

On the other hand, if |𝑝2| < 1/2, V2,± > 0 if

(2𝑝1 + 1) 𝑝2 ± √(2𝑝1 + 1) (2𝑝1𝑝22 − 3𝑝22 + 1) < 0. (62)

So

(i) if 0 < 𝑝2 < 1/2, V2,+ < 0, whereas V2,− > 0 if

(2𝑝1 + 1) 𝑝2 < √(2𝑝1 + 1) (2𝑝1𝑝22 − 3𝑝22 + 1), (63)

i.e., 𝑝2 < 1/2; hence, V2,− > 0, and so there is only one
positive root;
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Figure 2: The solution structure for Grunert’s polynomial when
𝑑2 = 𝑑3 = 1 in the plane𝑝2 = 𝑝3.The integers indicate the number of
positive solutions within each enclosed region.There are no positive
solutions on the solid lines, one positive solution on the dashed lines,
two positive solutions on the dashed-dotted lines, and three positive
solutions on the dotted lines.There are zero positive solutions at the
point marked ⧫, one positive solution at the point marked ∙, and two
positive solutions at the points marked ◼.

(ii) if −1/2 < 𝑝2 < 0, V2,− > 0 and V2,+ > 0 only if 𝑝22 >1/4; hence, V2,+ < 0, and so there is only one positive
root.

The overall solution structure based on the above analysis
is shown in Figure 2; note that it is consistent with the
preliminary analysis in Section 3 since, with 𝑑2 = 𝑑3 = 1
and 𝑝2 = 𝑝3, we should expect 0,2, or 4 positive solutions
if |𝑝1| > 1/2 and |𝑝2| > 1/2 or |𝑝1| < 1/2 and |𝑝2| < 1/2,
and 1 or 3 positive solutions if |𝑝1| < 1/2 and |𝑝2| > 1/2 or
|𝑝1| > 1/2 and |𝑝2| < 1/2. For comparison, we also show
in Figure 3 the distribution of solutions that was calculated
in [23] using the polynomial of Linnainmaa et al. [7]. It is
clear that while there are some similarities, the results are far
from identical. For example, for the polynomial used in [23],
there were mostly one or three positive solutions in the plane
𝑝2 = 𝑝3, whereas, for Grunert’s polynomial, 0,1,2,3, and 4 are
possible. It is therefore worth exploring why the differences
arise, and how the two sets of results can be reconciled.

The common quantity in both approaches is the solution
𝑋. With the Grunert polynomial, we find from (21) that

𝑋 = 1
(1 + V2 − 2𝑝2V)1/2

, (64)

where V is given by (52) and (53). With the Linnainmaa et al.
polynomial,

𝑋 = 𝜉1/2, (65)
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Figure 3: The solution structure for the polynomial of Linnainmaa
et al. [7] when 𝑑2 = 𝑑3 = 1 in the plane 𝑝2 = 𝑝3. The integers
indicate the number of real strictly positive solutions within the
enclosed region. On the dashed lines, there are two real strictly
positive solutions and there is one real strictly positive solution at
(0,0), marked ∘.

where

𝜉 = 1
2 (1 − 𝑝1) (66)

or
𝜉

=
(4𝑝1𝑝22 + 1 − 2𝑝22) ± 2√𝑝22 (1 + 2𝑝1) (2𝑝1𝑝22 − 3𝑝22 + 1)

2 (1 + 𝑝1 − 2𝑝22)
;
(67)

note that (66) gives a double root. It is now far from obvious
that inserting (52) and (53) into (64) will lead to the same
solutions as inserting (66) and (67) into (65), particularly as
the approaches seem to lead to different numbers of solutions.
Although this can be shown rigorously, the necessary algebra
is rather lengthy, and we instead adopt an alternative way to
see what is happening. As shown in Figure 4, we superpose
Figures 2 and 3, which indicates that there are sixteen differ-
ent regions to consider when comparing solutions obtained
via the two methods. Then, we pick a point at random from
each region and calculate all of the possible solutions for 𝑋,
real as well as complex; these are documented in Table 1.

Several points are worthy of note. Even though Figures 2
and 3 are rather different to each other, the solutions for 𝑋
in Table 1 are identical. Even in regions where the Grunert
polynomial gives no real positive solutions, i.e., regions 1 and
2, insertion of the complex solutions into (64) nevertheless
leads to positive solutions for𝑋. Moreover, although Figure 2
resembles Figure 2 from [14] more than Figure 3, it turns
out that Figure 3 is in fact more reflective of the number of
positive solutions as 𝑝1 and 𝑝2 are varied.
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Table 1: Comparison of solutions obtained using the polynomials of Grunert [2] and Linnainmaa et al. [7] (∗double root). Note that for
(0.6,0.6) in region 7, a double root numerically coincides with a single root for the Linnainmaa et al. polynomial because of the values of 𝑝1
and 𝑝2 chosen.
REGION 𝑝1 𝑝2 Grunert [2] Linnainmaa et al. [7]
1 0.6 −0.83 1.1180, 1.1180, 1.8467 ± 0.7349i 1.1180, 1.8467 ± 0.7349i
2 −0.75 −0.7 0.4771, 1.3067, 1.4142, 1.4142 0.4771, 1.3067, 1.4142∗
3 0.75 −0.25 0.3088, 0.7473, 1.4142, 1.4142 0.3088, 0.7473, 1.4142∗
4 0.75 0.25 0.3088, 0.7473, 1.4142, 1.4142 0.3088, 0.7473, 1.4142∗
5 0.85 0.6 0.1706, 1.1410, 1.8257, 1.8257 0.1706, 1.1410, 1.8257∗
6 0.55 0.43 0.1186, 0.9298, 1.0541, 1.0541 0.1186, 0.9298, 1.0541∗
7 0.6 0.6 0.2236, 1.1180, 1.1180, 1.1180 0.2236, 1.1180,∗1.1180
8 0.6 0.8 1.1180, 1.1180, 1.4832 ± 0.4873i 1.1180,∗1.4832 ± 0.4873i
9 0.3 −0.75 0.8452, 0.8452, 1.6036 ± 1.0000i 0.8452,∗1.6036 ± 1.0000i
10 0.3 −0.6 0.3623, 0.8452, 0.8452, 1.0471 0.3623, 0.8452,∗1.0471
11 0 −0.25 0.4924, 0.7071, 0.7071, 0.8704 0.4924, 0.7071,∗0.8704
12 0 0.25 0.4924, 0.7071, 0.7071, 0.8704 0.4924, 0.7071,∗0.8704
13 0.3 0.53 0.0820, 0.8452, 0.8452, 1.0215 0.0820, 0.8452,∗1.0215
14 0.3 0.7 0.8452, 0.8452, 1.1068 ± 0.5244i 0.8452,∗1.1068 ± 0.5244i
15 −0.75 −0.2 0.5345, 0.5345, 1.5530 ± 0.2425i 0.5345,∗1.5530 ± 0.2425i
16 −0.75 0.2 0.5345, 0.5345, 1.5530 ± 0.2425i 0.5345,∗1.5530 ± 0.2425i

4.2. 𝑝21 + 𝑝22 + 𝑝23 − 2𝑝1𝑝2𝑝3 − 1 < 0. In [23], much
of the analysis of the resulting polynomial centred on the
signs of the coefficients (𝑠𝑖)𝑖=1,...,5. In particular, 𝑠1 and 𝑠5 were
found to be positive within the inflated tetrahedron given
by 𝑝21 + 𝑝22 + 𝑝23 − 2𝑝1𝑝2𝑝3 − 1 < 0; moreover, the fact
that the roots that were of interest had to be strictly positive
gave further scope for limiting the number of possibilities.
Here, however, the coefficients are much simpler and 𝑠1 and
𝑠5 both change sign within the tetrahedron, as do 𝑠2, 𝑠3, and
𝑠4; also, both positive and negative roots of the polynomial are
permissible. Hence, there is no scope to perform the detailed
analysis of the coefficients, andwe turn instead to considering
the discriminant of the polynomial.

Recapping from [23], the discriminant, Δ𝑊, of (29) is
given by

Δ𝑊 = 256𝑠31𝑠35 − 192𝑠21𝑠2𝑠4𝑠25 − 128𝑠21𝑠23𝑠25
+ 144𝑠21𝑠3𝑠24𝑠5 − 27𝑠21𝑠44 + 144𝑠1𝑠22𝑠3𝑠25
− 6𝑠1𝑠22𝑠24𝑠5 − 80𝑠1𝑠2𝑠23𝑠4𝑠5 + 18𝑠1𝑠2𝑠3𝑠34
+ 16𝑠1𝑠43𝑠5 − 4𝑠1𝑠33𝑠24 − 27𝑠32𝑠35 + 18𝑠32𝑠3𝑠4𝑠5
− 4𝑠32𝑠34 − 4𝑠22𝑠33𝑠5 + 𝑠22𝑠23𝑠24.

(68)

The number of real roots that the polynomial will have will
be determined by the sign of Δ𝑊 and the signs of three other
polynomials:

(1)

𝑃 = 8𝑠1𝑠3 − 3𝑠22, (69)

such that 𝑃/8𝑠21 is the second-degree coefficient of the
depressed quartic associated with (29);
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Figure 4: Superposition of Figures 2 and 3, indicating that there are
sixteen different regions to consider when comparing solutions.

(2)

Δ 0 = 𝑠23 − 3𝑠2𝑠4 + 12𝑠1𝑠5, (70)

which is zero if the quartic has a triple root;
(3)

𝐷 = 64𝑠31𝑠5 − 16𝑠21𝑠23 + 16𝑠1𝑠22𝑠3 − 16𝑠21𝑠2𝑠4 − 3𝑠42, (71)

which is zero if the quartic has two double roots.
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The possible cases for the nature of the roots are then as
follows [25]:

(i) If Δ𝑊 < 0, then the equation has two real roots and
two complex conjugate roots.

(ii) If Δ𝑊 > 0, then the equation’s four roots are either all
real or all complex.

(a) If 𝑃 < 0 and 𝐷 < 0, then all four roots are real
and distinct.

(b) If 𝑃 > 0 or 𝐷 > 0, then there are two pairs of
complex conjugate roots [26].

(iii) If Δ𝑊 = 0, then either the polynomial has a multiple
root, or it is the square of a quadratic polynomial.
Here are the different cases that can occur:

(a) If 𝑃 < 0, 𝐷 < 0, and Δ 0 ̸= 0, there are a real
double root and two real simple roots.

(b) If 𝑃 > 0 or 𝐷 > 0, there are a real double root
and two complex conjugate roots.

(c) If Δ 0 = 0 and 𝐷 ̸= 0, there are a triple root and
a simple root, all real.

(d) If𝐷 = 0, then one has the following:
(1) If 𝑃 < 0, there are two real double roots.
(2) If 𝑃 > 0, there are two complex conjugate

double roots.
(3) IfΔ 0 = 0, all four roots are equal to−𝑠2/4𝑠1.

Using a symbolic manipulator, Maple�, to process (46)-
(50) and (68)-(71), we obtain Δ𝑊, 𝑃, and 𝑄 as given in
(B.1)-(B.4) in Appendix B. Comparing with (61), (62), (63),
and (65) in [23], we see that whereas (B.3) and (B.4) bear
no resemblance to (63) and (65), respectively, expression
(B.1) in this paper and expression (61) in [23] share a
common factor, 𝑓1. Furthermore, since the remainder of
both expressions for Δ𝑊 is negative, it is clear that it is the
factor 𝑓1 which determines the sign of Δ𝑊 in both cases and
hence determines the number of roots that the respective
polynomials will have.

It is now evident that whenever Grunert’s polynomial has
two real roots, so will the polynomial of Linnainmaa et al.
[7]. However, the disparity in the two sets of expressions for
𝑃 and 𝐷 means that it is not entirely obvious that when one
polynomial has four real roots, the other one will also. To
verify this, there seems to be no choice other than to perform
a numerical sweep over all (𝑝1, 𝑝2, 𝑝3)-combinations lying
within the inflated tetrahedron, in order to determine the
signs of 𝑃 and 𝐷; it turns out that 𝑃 < 0,𝐷 < 0, implying
that all four roots are real and distinct in both cases. Although
sweeping is perhaps not entirely satisfactory from the point of
view of rigour, there are a number of mitigating factors. First
of all, we may vary the number of (𝑝1, 𝑝2, 𝑝3)-combinations
that we sweep over; if the results obtained are independent
of this number, then we may be more certain that the result
is correct. Moreover, and as we show below, the fact that
sweeping carried out for two different polynomials leads to
the same result is further evidence that the results are correct.
More details on the sweeping are given in Section 5.

A consequence of the above is that, for both polynomials,
there are four relevant solutions to the problem at 25% of all
available spatial locations for the control-point combinations,
and two positive solutions at the remaining 75%. This result
extends the conclusion in [23] to Grunert’s polynomial, but it
is nevertheless only for the case when 𝑑2 = 𝑑3 = 1. It is now
of interest to see how this result changes for both polynomials
if 𝑑2, 𝑑3 ̸= 1.

5. 𝑑2,𝑑3 ≠ 1
In this section, we consider first, in Section 5.1, all of the
roots of the quartic polynomial; then, in Section 5.2, having
established beyond doubt that the Grunert and Linnainmaa
et al. formulations give the same results, we consider the
positive roots only, which is the case of direct relevance to
the P3P problem.

5.1. All Solutions. For the general case when 𝑑2, 𝑑3 ̸= 1, we
recall first that we need only consider 𝑑2 + 𝑑3 > 1, 0 < 𝑑2 ≤
1, 0 < 𝑑3 ≤ 1. In what follows, we seek to determine what
fraction of the inflated tetrahedron consists of (𝑝1, 𝑝2, 𝑝3)-
combinations that lead to two or four solutions, as a function
of𝑑2 and𝑑3. To do this requires us to use theMaple-generated
expressions forΔ𝑊, 𝑃, and𝐷 to perform the requisite volume
integrals over the inflated tetrahedron, restricted to where
each of these is of one sign. The volume integrals were
computed via a rather unusual use of the finite-element
software Comsol Multiphysics. Although this software is
more often used for solving partial differential equations,
the fact that it is able to discretize a given geometry into
elements can be exploited to evaluate the required integrals;
in particular, we discretized the (𝑝1, 𝑝2, 𝑝3)-space, −1 <
𝑝1, 𝑝2, 𝑝3 < 1, using first-order tetrahedral elements. Note
also that we use the software to calculate the quadratures,
i.e., volume integrals, of known functions—Δ𝑊, 𝑃, and𝐷—of
three variables (𝑝1, 𝑝2, 𝑝3); thus, no initial conditions are
required.

Prior to the full computations, we tested that the results
obtained were mesh-independent. Within the software, it is
straightforward to refine the mesh, and benchmark results
were generated for 𝑑2 = 1/3 and 2/3 as a function of 𝑑3 for
meshes having 17090, 60643, and 188936 elements. Figure 5
shows the percentage, Π, of (𝑝1, 𝑝2, 𝑝3)-combinations for
which Δ𝑊 > 0 as a function of 𝑑3. For both values of 𝑑2, the
results for each mesh are literally on top of each other, and
hence the results are indeed independent of the mesh used;
subsequent calculations were then carried out using themesh
with 60643 elements.

Figures 6 and 7 show Π as a function of 𝑑3 for 𝑑2 =
0.25, 0.5, 0.75, 1 using the formulations of Grunert [2] and
Linnainmaa et al. [7], respectively. Also, denoting by Δ𝐺𝑊 and
Δ𝐿𝑊 the discriminant of the polynomials arising from the
Grunert and Linnainmaa et al. formulations, respectively, we
find that

Δ𝐺𝑊 = 4096𝑑82Δ213Δ𝑊, (72)
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Figure 5: Percentage, Π, of (𝑝1, 𝑝2, 𝑝3)-combinations for which
Δ𝑊 > 0, as a function of 𝑑3 for 𝑑2 = 1/3 and 2/3, as calculated
using three different meshes and the formulation of Grunert [2].

whereas

Δ𝐿𝑊 = 16777216Δ2𝑇Δ212Δ213Δ223Δ𝑊, (73)

where

Δ𝑇 = 𝑝21 + 𝑝22 + 𝑝23 − 2𝑝1𝑝2𝑝3 − 1,
Δ 12 = 2 (1 − 𝑑22) 𝑝1𝑝2𝑝3 + (𝑑22 − 𝑑23 − 1) 𝑝21

+ (𝑑23 + 𝑑22 − 1) 𝑝22 ,

Δ 13 = 2 (𝑑23 − 1) 𝑝1𝑝2𝑝3 + 𝑝23 (1 − 𝑑22 − 𝑑23)

+ (1 + 𝑑22 − 𝑑23) 𝑝21 ,

Δ 23 = 2 (𝑑22 − 𝑑23) 𝑝1𝑝2𝑝3 − (1 + 𝑑22 − 𝑑23) 𝑝22
+ (1 + 𝑑23 − 𝑑22) 𝑝23 ,

(74)

withΔ𝑊 being a lengthy expression, which we omit here, that
contains 𝑝1, 𝑝2, 𝑝3, 𝑑2, and 𝑑3 and satisfies

Δ𝑊 (𝑝1, 𝑝2, 𝑝3, 𝑑2, 𝑑3) = Δ𝑊 (𝑝1, 𝑝3, 𝑝2, 𝑑3, 𝑑2) ; (75)

hence, in Figures 6 and 7,

Π(𝑑2, 𝑑3) = Π (𝑑3, 𝑑2) . (76)

Moreover, when 𝑑2 = 𝑑3 = 1, Δ𝑊 reduces to 𝑓1, which is
given in (B.2). It is clear that although Δ𝐺𝑊 ̸= Δ𝐿𝑊, it is their
common factor Δ𝑊 which explains the similarity between
Figures 6 and 7.

However, Figures 6 and 7 only consider the sign of Δ𝑊,
without considering the signs of 𝑃 and 𝐷; in the analysis in
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Figure 6: Percentage, Π, of (𝑝1, 𝑝2, 𝑝3)-combinations for which
Δ𝑊 > 0, as a function of 𝑑3 for 𝑑2 = 0.25, 0.5, 0.75, 1, using the
formulation of Grunert [2].
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Figure 7: Percentage, Π, of (𝑝1, 𝑝2, 𝑝3)-combinations for which
Δ𝑊 > 0, as a function of 𝑑3 for 𝑑2 = 0.25, 0.5, 0.75, 1, using the
formulation of Linnainmaa et al. [7].

[23] for 𝑑2 = 𝑑3 = 1, it turned out that whenever Δ𝑊 < 0,
then𝑃,𝐷 > 0, whichmeant that the sign alone was enough to
indicate four real solutions. In this context, consider Figure 8
which shows Π,Π𝐷, Π𝑃, and Π𝐷,𝑃, where

(i) Π𝐷 is the percentage of (𝑝1, 𝑝2, 𝑝3)-combinations for
which Δ𝑊 > 0 and𝐷 < 0;

(ii) Π𝑃 is the percentage for which Δ𝑊 > 0 and 𝑃 < 0;
(iii) Π𝐷,𝑃 is the percentage for which Δ𝑊 > 0 and 𝐷,𝑃 <
0.
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Figure 8: Π,Π𝐷, Π𝑃, Π𝐷,𝑃 as functions of 𝑑3 for 𝑑2 = 0.6, using the
formulation of [2].
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Figure 9: Π,Π𝐷, Π𝑃, Π𝐷,𝑃 as functions of 𝑑3 for 𝑑2 = 0.6, using the
formulation of [7].

This figure is for the case when 𝑑2 = 0.6 and is computed
using Grunert’s polynomial, but qualitatively similar results
were obtained for other values of 𝑑2. Similarly, Figure 9 shows
the corresponding result when using the polynomial of [7];
hence, although we were not able analytically to reconcile
the two forms for 𝐷 and 𝑃 obtained here and in [23], the
behaviour for Π and Π𝐷,𝑃 appears to be nevertheless the
same.

5.2. Solutions to the P3PProblem. From the previous sections,
it has become apparent that the formulation of Linnainmaa
et al. provides the solution structure more transparently

than the formulation of Grunert. For example, it pro-
vides zero, two, or four positive solutions for all values of
𝑝1, 𝑝2, 𝑝3, 𝑑2, 𝑑3, whereas the Grunert polynomial gives 0,2,
or 4 for some values, and 1 and 3 for others. Thus, in order to
consider the positive solutions, rather than just the real ones,
we revert to the formulation of Linnainmaa et al.; the relevant
polynomial coefficients are now, as in [7, 23],

𝑠1 = 16 (𝑝21 + 𝑝22 + 𝑝23 − 2𝑝1𝑝2𝑝3 − 1)
2 , (77)

𝑠2 = −32 (𝑝21 + 𝑝22 + 𝑝23 − 2𝑝1𝑝2𝑝3 − 1) {(1 + 𝑑22) 𝑝23
− (𝑑22 + 𝑑23 + 1) 𝑝1𝑝2𝑝3 + 2𝑑23𝑝21𝑝22 + (𝑑22 − 𝑑23)

⋅ 𝑝21 + (1 − 𝑑23) 𝑝22 + 𝑑23 − 𝑑22 − 1} ,

(78)

𝑠3 = 16 (𝑑22 − 𝑑23)
2 𝑝41 + 2 (𝑑23 − 1)

2 𝑝42 + 2 (1 + 4𝑑22
+ 𝑑42) 𝑝43 − 8 (𝑑22 + 1 − 𝑑23) {(5𝑑22 + 1 − 5𝑑23) 𝑝21
− (𝑑22 + 5 − 5𝑑23) 𝑝22} + 8 (6𝑑23𝑑22 − 5𝑑42 − 𝑑43 − 5

− 14𝑑22 + 6𝑑23) 𝑝23 + 32 {(2𝑑22𝑑23 − 𝑑43 − 𝑑42 − 𝑑23
− 𝑑22) 𝑝21 − (𝑑23𝑑22 + 1 − 2𝑑23 + 𝑑22 + 𝑑43) 𝑝22 − (𝑑23𝑑22
+ 1 + 4𝑑22 + 𝑑23 + 𝑑42) 𝑝33𝑝1𝑝2} + 64 (𝑑22𝑑23 + 𝑑22
+ 𝑑23) 𝑝21𝑝22𝑝23 + 16 {(3𝑑43 + 𝑑42 − 4𝑑23 − 4𝑑22𝑑23 + 1)

⋅ 𝑝21𝑝22 + (1 + 2𝑑22 + 𝑑43 − 4𝑑23𝑑22 + 3𝑑42) 𝑝31𝑝23 + (3

+ 2𝑑22 − 4𝑑23 + 𝑑42 + 𝑑43) 𝑝23𝑝22 + (1 + 𝑑43 + 𝑑42
+ 10𝑑22 − 2𝑑23 − 2𝑑22𝑑23) 𝑝1𝑝2𝑝3} + 24 (𝑑22 + 1

− 𝑑23)
2 ,

(79)

𝑠4 = 8 {(2𝑑22 [2𝑑22𝑑23 − 𝑑43 − 1 − 𝑑42] 𝑝23

+ (𝑑22 − 𝑑23) (1 + 𝑑22 − 𝑑23)
2) 𝑝21

+ (2 [2𝑑23 − 𝑑42 − 𝑑43 − 1] 𝑝23

+ (1 − 𝑑23) (1 + 𝑑22 − 𝑑23)
2) 𝑝22

+ (4𝑑22 [𝑑22 + 𝑑23 + 1] 𝑝23
+ (1 + 𝑑22 − 𝑑23) (𝑑42 − 6𝑑22 + 1 − 𝑑43)) 𝑝1𝑝2𝑝3

− (4𝑝23𝑑22 − (1 + 𝑑22 − 𝑑23)
2) ([1 + 𝑑22] 𝑝23 − 1 − 𝑑22

+ 𝑑23)} ,

(80)

𝑠5 = (1 + 𝑑22 − 𝑑23 + 2𝑑2𝑝3)
2 (1 + 𝑑22 − 𝑑23 − 2𝑑2𝑝3)

2 . (81)
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A further advantage of this formulation is that 𝑠1 > 0
and 𝑠5 > 0 for all values of 𝑝1, 𝑝2, 𝑝3, 𝑑2, 𝑑3. Consequently,
we note that if Δ𝑊 > 0, 𝑃 < 0,𝐷 < 0, 𝑠2 < 0, 𝑠3 > 0, 𝑠4 <
0, then there cannot be any negative solutions. Indeed, in
[23], this was found to be the case when 𝑑2 = 𝑑3 = 1,
which suggests exploring this possibility when 𝑑2, 𝑑3 ̸= 1.
While it is not possible to verify analytically whether these six
inequalities are always satisfied simultaneously, it is possible
to carry out a numerical sweep over (𝑝1, 𝑝2, 𝑝3) for different
(𝑑2, 𝑑3)-combinations. First of all, Figure 10 shows Π𝐷,𝑃 for
𝑑2 = 0.25, 0.5, 0.75, 1, whereas Figure 11 shows Π𝐷,𝑃,+ for
𝑑2 = 0.25, 0.5, 0.75, 1, where Π𝐷,𝑃,+ denotes the percentage
of (𝑝1, 𝑝2, 𝑝3)-combinations for which there are four real
solutions and 𝑠2 < 0, 𝑠3 > 0, 𝑠4 < 0. It is clear that
there is no difference between the two plots for the values
of 𝑑2 chosen, which strongly indicates that when there are
four real solutions, they are all positive for all values of
𝑑2.

In fact, Figure 11 indicates that, for each value of 𝑑2,
there exists a range in 𝑑3 for which the possibility of four
positive solutions is practically zero; roughly speaking, 1 −
𝑑2 < 𝑑3 < 1.15 − 𝑑2. However, as 𝑑3 approaches 1 −
𝑑2 the possibility of four complex solutions rises rapidly;
thus, a plausible compromise for achieving the situation
of two real solutions is to employ a value of 𝑑3 that is
not too close to 1 − 𝑑2. It is also evident that choosing
a value of 𝑑2 that is small will lower this possibility still
further.

6. Conclusions

In this paper, we have analyzed the effect of control-point
spacing on solutions to the quartic equation that arises in
the P3P problem; as a diagnostic to verify the analysis, the
formulations due to Grunert [2] and Linnainmaa et al. [7]
were considered. Although both polynomials come from
the original set of three quadratic equations, (3)-(5), their
coefficients are completely different. Through analysis of
solutions for the particular case when 𝑑2 = 𝑑3 = 1 and
𝑝2 = 𝑝3, it is evident that the polynomials will not necessarily
have the same number of solutions at all values of (𝑝1, 𝑝2, 𝑝3);
however, we were subsequently able to show how the two
solution structures could be reconciled. Moreover, through
symbolic manipulation, we are able to determine that, for a
given combination (𝑑2, 𝑑3), the polynomials have the same
percentage of all possible (𝑝1, 𝑝2, 𝑝3)-combinations which
have four positive solutions; when 𝑑2 = 𝑑3 = 1, this is 25%.

Moreover, a sweep over all admissible combinations of
(𝑑2, 𝑑3) enables us to explore whether it might be possible to
choose 𝑑2 and 𝑑3 so that the case of four positive solutions
can be avoided completely, since it may be computationally
advantageous to only have to choose from two positive
solutions, rather than four. It turns out that, for all admissible
(𝑑2, 𝑑3)-combinations, there will always be some (𝑝1, 𝑝2, 𝑝3)-
combinations which give four positive solutions. Neverthe-
less, prudent choice of 𝑑2 and 𝑑3 can reduce the percentage
of (𝑝1, 𝑝2, 𝑝3)-combinations giving four positive solutions to
practically zero. To achieve this, it is necessary to take either
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Figure 10: Percentage, Π𝐷,𝑃, of (𝑝1, 𝑝2, 𝑝3)-combinations for which
there are four real solutions, as a function of 𝑑3 for 𝑑2 =
0.25, 0.5, 0.75, 1.
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Figure 11: Percentage,Π𝐷,𝑃,+, of (𝑝1, 𝑝2, 𝑝3)-combinations for which
there are four real solutions and 𝑠3 > 0, 𝑠2 < 0, 𝑠4 < 0, as a function
of 𝑑3 for 𝑑2 = 0.25, 0.5, 0.75, 1.

𝑑2 or 𝑑3 close to 1, and then to take the other one greater
than around 0.15. In addition, it ensures that all (𝑝1, 𝑝2, 𝑝3)-
combinations within the so-called inflated tetrahedron of
reality are used, something which is not the case if 𝑑2 + 𝑑3
is too close to one; an interpretation of this situation is that
the solution becomes less sensitive to the displacement of the
control points.
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Appendix

A. Derivation of (29) when 𝑑3=1
In this case, we have

𝑋2 = 1
1 + 𝑢2 − 2𝑝1𝑢

, (A.1)

𝑋2 = 𝑑22
1 + V2 − 2𝑝2V

, (A.2)

𝑋2 = 1
𝑢2 + V2 − 2𝑝3𝑢V

. (A.3)

Using (A.1) and (A.3) gives

𝑢 = 1 − V2
2 (𝑝1 − 𝑝3V)

, (A.4)

whereas (A.2) and (A.3) give

V = 1 − 𝑢2
2 (𝑝2 − 𝑝3𝑢)

. (A.5)

Substituting (A.4) into (A.5) andmanipulating give (29), with

𝑠1 = 𝑑22 (𝑑2 + 2𝑝3) (𝑑2 − 2𝑑2𝑝3) , (A.6)

𝑠2 = 4𝑝3𝑑22 (2𝑝1 − 𝑑22𝑝1 + 2𝑝2𝑝3) , (A.7)

𝑠3 = 2𝑑22 (−8𝑝1𝑝2𝑝3 + 2𝑑22𝑝21 + 2𝑑22𝑝23 − 2𝑝21 − 𝑑22
− 2𝑝23) ,

(A.8)

𝑠4 = 4𝑝1𝑑22 (2𝑝1𝑝2 − 𝑑22𝑝3 + 2𝑝3) , (A.9)

𝑠5 = 𝑑22 (−2𝑝1 + 𝑑2) (2𝑝1 + 𝑑2) . (A.10)

These expressions are the same as if we had simply substituted
𝑑3 = 1 into (30)-(34) first.

B. Δ𝑊,𝑃,𝐷 when 𝑑2=𝑑3=1
We find that Δ𝑊 can be factorized as

Δ𝑊 = −4096 (𝑝21 − 𝑝23)
2 𝑓1 (𝑝1, 𝑝2, 𝑝3) , (B.1)

where

𝑓1 (𝑝1, 𝑝2, 𝑝3) = −16𝑝41𝑝42𝑝43
+ 32𝑝31𝑝32𝑝33 (𝑝21 + 𝑝22 + 𝑝23)

− 72𝑝21𝑝22𝑝23 (𝑝21 + 𝑝22 + 𝑝23)

+ 184𝑝31𝑝32𝑝33
+ 27 (𝑝41𝑝42 + 𝑝41𝑝43 + 𝑝42𝑝43)

− 6𝑝21𝑝22𝑝23 (𝑝21 + 𝑝22 + 𝑝23)

− 72𝑝1𝑝2𝑝3 (𝑝21𝑝22 + 𝑝21𝑝23 + 𝑝22𝑝23)

+ 84𝑝21𝑝22𝑝23
+ 24𝑝1𝑝2𝑝3 (𝑝21 + 𝑝22 + 𝑝23)

− 18 (𝑝21𝑝22 + 𝑝21𝑝23 + 𝑝22𝑝23)

− 8𝑝1𝑝2𝑝3 + 4 (𝑝21 + 𝑝22 + 𝑝23) − 1.

(B.2)

Also,

𝑃 = 16 (−12𝑝22𝑝43 + 20𝑝1𝑝2𝑝33 − 3𝑝21𝑝23 − 8𝑝1𝑝2𝑝3
+ 4𝑝23 − 1)

(B.3)

and

𝐷 = 256 (−48𝑝42𝑝83 + 160𝑝1𝑝32𝑝73 − 136𝑝21𝑝22𝑝63
+ 8𝑝31𝑝2𝑝53 − 64𝑝1𝑝32𝑝53 − 32𝑝1𝑝2𝑝73 − 3𝑝41𝑝43
+ 96𝑝21𝑝22𝑝43 + 48𝑝21𝑝63 + 32𝑝22𝑝63 − 16𝑝1𝑝2𝑝53
− 20𝑝21𝑝22𝑝23 − 32𝑝21𝑝43 − 8𝑝22𝑝43 − 16𝑝63
− 2𝑝31𝑝2𝑝3 + 22𝑝1𝑝2𝑝33 + 9𝑝21𝑝23 + 8𝑝43
− 4𝑝1𝑝2𝑝3 − 𝑝21 − 𝑝23) .

(B.4)
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