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In this article, we investigate a joint pricing and inventory problem for a retailer selling fresh agriproducts (FAPs) with two-period
shelf lifetime in a dynamic stochastic setting, where new and old FAPs are on sale simultaneously. At the beginning of each period
the retailer makes ordering decision for new FAP and sets regular and discount price for new and old inventories, respectively.
After demand realization, the expired leftover is disposed and unexpired inventory is carried to the next period, continuing selling.
Unmet demand of all FAPs is backordered.The objective is to maximize the total expected discount profit over the whole planning
horizon.We present a price-dependent, stochastic dynamic programmingmodel taking into account zero lead time, linear ordering
costs, inventory holding, and backlogging costs, as well as disposal cost. Considering the influence of the perishability, we integrate
a Multinomial Logit (MNL) choice model to describe the consumer behavior on purchasing fresh or nonfresh product. By way of
the inverse of the price vector, the original formulation can be transferred to be jointly concave and tractable. Finally we characterize
the optimal policy and develop effective methods to solve the problem and conduct a simple numerical illustration.

1. Introduction

Motivated by local fresh agriproducts (FAPs) store retailing
issues in its operations management, this paper investigates
a revenue problem in a stochastic setting where a retailer
considers a jointly pricing and inventory control issue under
consumer choice. In retailing practice, FAPs, such as fresh
fruits or vegetables, are usually delivered to the store or
market every day in themorning based on the retailer’s order,
submitted in the previous evening, and to be selling at a
regular price in the following one or two more days. As the
perishability nature FAPs are always deteriorating along time
going, gradually being perceived nonfresh and less attractive
to customers, which weakens the demand and results in the
loss of revenue. To reduce the amount of mismatch between
supply and demand, the retailer always sets a discount price
for the nonfresh FAPs at a certain time point, which otherwise
are deposed if they remain unsold at the end of selling. In the
meantime the store shelf is replenished with a new batch of
FAPs, ordered by the seller and charged a regular price on
selling simultaneously with those unsold nonfresh products.

While the regular price and discount price are determined
centrally on a long-term basis, some fundamental decisions
are at the store manager’s discretion in such an environment,
including how much new FAPs to order and what pricing
policies to follow for selling. It is not a trivial problem for
the seller to sell deteriorated items on discount paralleled
with fresh products with regular price. As every coin has
two sides, on one hand, the price cutting sales can generate
some revenue for the otherwise disposed items since offering
a price discount on those items can induce purchasing, while,
on the other hand, in codisplay selling simultaneously mode,
discount policy results in competition among consumers to
purchase either fresh or nonfresh products on the basis of
its utility from combination of quality and price. Some of
the consumers who can afford the full price may be attracted
by the price discount to buy nonfresh products, which has a
negative impact on the revenue from selling at the full price.

In some form or other, jointly pricing and inventory
control problem arises in a lot of instances. For example,
Stater Bros, a well-known grocery store in America, always
sells nonfresh vegetables or meat at a discount along with
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fresh ones and disposes those unsold items at the end of their
shelf lifetime. That is, the Stater Brothers store’s manager
shouldmake optimal order policy for fresh vegetables ormeat
and charge for both fresh and nonfresh products differently
every day so that the inventory and demand can be extremely
matched. In essence, these examples exhibit one homogene-
ous competition issue which is an important concern and
common in retailing practice. Meanwhile, pricing is also a
double-edged sword in that pricing can not only influence
the demand but also have great impact on the sellers’ profit,
especially a poor pricing policy, which can easily damage the
seller’s benefit. For example, Tesco, the world’s third-biggest
supermarket chain, failed to revive its sales performance
despite spending m500 million on price cuts in Eurozone
(http://www.ft.com/intl/cms/s/0/dee4d20c-2172-11e1-a1d8-
00144feabdc0.html#axzz3Iua2R9jr). On the contrary, Stater
Bros. Markets reported its modest profit gains in appro-
priate price strategy in fiscal 2011 despite higher commodity
costs and competitive pressures (http://www.pe.com/articles/
million-634066-store-year.html). Therefore, instead of
simple pricing of changing prices dramatically, sellers should
be more prudent to adjust the price in a dynamic fashion,
which enable price change in line with the availability of
inventory and products residual shelf-life time. Nevertheless,
as consumers may pick any product available and selects his
preferred choice based on the utility of an appealing quality-
price combination due to the codisplaying mode on sale,
managers need to carefully take account of consumer
behavior when coordinating discount sales with inventory
ordering decisions.

In this study, we formulate a novel model in which
the retailer makes simultaneous decisions dynamically on
charging appropriate price and optimal inventory policy for
perishable products, in the presence of homogeneously sell-
ing cannibalization and demand uncertainty. The retail time
of any batch of FAPs is divided into two periods, a regular
sale period and a discount pricing period, which implies that
FAPs have two periods of shelf lifetime. At every period the
retailer starts with ordering new FAPs and charging price
policy for two different ages of FAPs which compete among
customers in their attributes of quality and price and ends
with disposing all unsold leftovers with zero shelf lifetime
and carrying the leftover inventory of unexpired products to
the next period for continuing selling. Generally, new FAPs
are perceived to have a higher quality than the old ones. The
utility for customers is mainly determined by quality-price
combination. Demand in each period is random and depends
on the current price, which takes a form of price function
plus an additive random perturbation. The seller’s objective
is to maximize the total expected discount profit over the
whole planning horizon. We formulate a stochastic, price-
dependent demand, dynamic programming model taking
into account zero lead time, linear ordering costs, inventory
holding, and backlogging costs. Our model assumes a pop-
ulation of homogeneous (statistically identical and indepen-
dent) customers makingmutually exclusive choices from two
different ages of FAPs.Meanwhile, we integrate aMultinomial
Logit Choice model to describe dynamic consumer behavior
on choosing new or old products available in inventory

and prices adjustment. The retailer, who should consider
both the influence of perishable nature of fresh agricultural
products and the homogeneous retailing cannibalization,
integrates inventory control and dynamic pricing policy to
maximize his profit on the whole planning horizon. To the
best of our knowledge, this is the first stochastic and dynamic
inventory model on perishable fresh agricultural products,
taking account of consumer behavior with joint ordering and
discount decisions. The problem is extremely complicated
even if the products are not perishable. Unlike standard
inventory models of general products with same attributes,
the perishable property plays an important role in driving the
dynamic pricing adjustments which affects the demand share
of new and old FAPs. Traditional dynamic inventory models
cannot be suitable to our problem in that even the single
period profit function is neither jointly convex nor concave in
the decision variables, therefore intractable. In addition, the
homogeneous competition results in interdependence across
the planning horizon, which leads to complicated dynamics
in how inventory is controlled over from one period to
another. To deal with the complexity, we work with the
transformation technique and exploiting specific properties
by way of the inverse of the price vector. We also conduct
numerical studies to further characterize the optimal policy.

The remainder of this paper is organized as follows. In
the next section, we provide a literature review and introduce
the model and formulate the problems a dynamic program
in Section 3. In Sections 4 and 5, we perform the structural
analysis and present an optimal pricing policy coordinated
with inventory control strategies, respectively. A numerical
study is conducted to show the policy efficiency in Section 6.
We conclude our work in Section 7.

2. Literature Review

Our research ismostly related to jointly pricing and inventory
control on perishable products, including three streams of
literatures: (1) dynamic inventory control for perishable prod-
ucts, (2) combined dynamic pricing and inventory control,
and (3) customer behavior in the context of dynamic pricing.

Firstly, our work is closely related to dynamic inventory
control for perishables. As far as we know, earliest work dates
back to Ghare & Schrader [1] who first considered inventory
control of exponential decay product and generalized an
EOQ model by assuming the lifetime of each product is
exponentially distributed. Other forms of random lifetime
models can be referred to Weibull distributed deterioration
[2], Gamma distributed decay [3], generalized exponen-
tial decay [4], etc. These works mainly focused on static
inventory control policies, instead of dynamic strategies. In
retailing, the perishable product lifetime was always known
deterministically. Fixed lifetime models are also concerned
and can be traced to Nahmias and Pierskalls [5] who first
explored the problem in a two-period lifetime setting with
zero lead time and demand uncertainty. On the basis of their
research framework, Nahmias [6] and Fries [7] extended
the work on the case with multiperiod lifetime in periodic-
review system, where only the excess inventory, expired at
the end of the current period, is disposed of. They probed
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the characteristic of optimal policy and pointed out that the
optimal order quantity was a decreasing function of on-hand
inventory of different ages. And a series of papers thereafter
focused on the similar topic, see Nahmias [8], Cohen [9],
Nandakumar and Morton [10], Liu and Lian [11], Lian and
Liu [12], Gurler and Ozkaya [13], Berk and Gurler [14], etc.
Note that a suitable model might vary even for the same
problem, analysis of which was lengthy and difficult to be
generalized. Due to the fact that complexity, the literature
thenceforward concentrates more on developing heuristics
except for model analysis. Nahmias [15, 16] and Karaesmen
et al. [17] have reviewed the early and lately developments.
Recently, Xue et al. [18], Li et al. 2013, and Li and Yu [19]
studied a perishable inventory model in a secondary market
setting where the excess inventory can be cleared with certain
salvage value. They provided some structure properties and
then brought about an effective heuristic. Recently, Chao et
al. [20], Zhang et al. [21], and Chao et al. [22] developed
approximation algorithms for perishable inventory systems.
Our study generalizes this literature to allow for consumer
choice on two different ages of FAPs in periodic-review
system. And we do focus on exploring optimal policy instead
of effective algorithms.

Secondly, in terms of jointly pricing and inventory
management, to the best of our knowledge, a mountain of
work contributes to model on nonperishable products in
recent decades, under the environment of from deterministic
periodic-review inventory and pricing models to stochastic
models with different cost structures, distinguishing between
single period and multiperiod. See, for example, Wagner
and Whitin [23], Kunreuther and Schrage [24], Zabel [25],
Thomas [26], Gilbert [27], Petruzzi and Dada [28], Feder-
gruen and Heching [29], Feng and Chen [30], Geunes et al.
[31], Chen and Simchi-Levi [32, 33], Raz and Porteus [34],
Huh and Janakiraman [35], Chen et al. ([36], 2010), Song
et al. [37], and Simchi-Levi [38]. Among them, there are
some recent surveys on different operations research and
management science perspective, which refer to Eliashberg
and Steinberg [39], Elmaghraby and Keskinocak [40], Yano
and Gilbert [41] and Chan et al. [42], and Chen and Simchi-
Levi [43]. This substantial body of literature illustrates that
the retailer can benefit great from the structures of optimal
policies and effective algorithms of integrated pricing and
inventory strategies. Dynamic pricing, supposed to be an
effective lever to manage the profitability of perishables
retailing, was firstly investigated together with inventory
control by Rajan et al. [4] who studied dynamic pricing and
ordering decisions for a certain product that experiences a
general exponential decaying under deterministic demand,
whereafter Abad [44] generalized this work by allowing for
partially backlogged demand with the same objective of
maximizing the long-run average profit. As Nahmias [15]
pointed out, developing pricing policies for perishable items
is very important in a demand uncertainty context. There are
a few studies pertaining to the case on perishables selling.
Among them, Ferguson and Koenigsberg [45] considered a
joint pricing and inventory control problem in a two-period
setting, addressing the competition impact between new and
old products inventory. They presented a stylized model

and concentrated on deriving managerial insights. With
the assumption of inventory depleted in a first-in-first-out
(FIFO) sequence, Li et al. [46] explored a dynamic joint pric-
ing and inventory control for a two-period lifetime perishable
product over an infinite horizon, taking into account linear
price-response demand, backlogging, and zero lead time.
And they also extended the problem to a stationary system
with multiperiod lifetime and developed a base-stock/list-
price (BSLP) heuristic policy. Then, Li et al. [47] continued
analyzing the infinite-horizon lost-sales case where new and
old inventory can not be simultaneously sold and sellers can
decide whether to dispose of or carry all ending inventory
until it expires at the end of each period. They proposed a
stationary structural policy consisting of an inventory order-
up-to level, state-dependent price, and inventory clearing
decisions and developed a fractional programming algorithm
to obtain the optimal policy among the class of proposed
structural policies. In another relevant work, Sainathan [48]
studied the two-period lifetime case where new and old
inventory can also be selling simultaneously, and the seller
makes decisions on price polices and how much to order at
the beginning of each period. Recognizing the influence of
perishability on demand, Sainathan modeled the consumer
choice and characterized the structure of the optimal pol-
icy under different demand context, including determinis-
tic demand, two-point demand, and substitution demand.
Extending the analysis and results to the case with arbitrary
period lifetime, Chen et al. [49] presented a significant
generalization of these papers by allowing for positive lead
time, both backlogging and lost-sales cases, and unrestricted
ordering decisions. They developed the structural results
of L#-concavity and generalize the regularity conditions of
demand functions for lost-sales inventory-pricing models of
setting a single price for inventories of different ages. Wu et
al. [50] study a problem that the seller dynamically makes
the joint pricing and inventory replenishment decisions over
multiple periods, where each periods consist of two stages
for ordering and markdown pricing, respectively. Chen &
Chu [51] and Chen & Cong (2018) integrated a strategic
customer’s behavior into joint pricing and inventory model
and derived an optimal joint pricing, delivery, and inventory
policy. Recently, Peng Hu et al. (2016) formulated a model
on a firm’s dynamic inventory and markdown decisions for
perishable goods where every period consists of regular
sales phase and clearance phase under strategic consumer
behavior. They showed that the seller should either put the
leftover inventory on discount or dispose all of them, and the
choice depends on the amount of leftover inventory from the
previous period.

Finally, our work involves modeling of consumer choice
behavior which is an important phenomenon within revenue
management system. The earliest study in the literature
related to this research is pioneered by Kincaid and Darling
[52], who described the probability of the charging price, by
which the expected demand can be calculated. This general
model has been extended by other authors, Bitran and
Mondschein [53], who concentrated on applications of the
model to the sale of fashion goods. van Ryzin and Mahajan
[54] firstly emploied the MNL model to describe the normal
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demand distribution for substitute products. Aydin and Ryan
[55] used theMNLmodel to study pricing problem assuming
the firm satisfies demand by make-to-order. Recent papers
related stream of literature include Aydin and Porteus (2005),
Zhang and Cooper [56], Xu andHopp [57], Perakis and Sood
[58], Lin and Sibdari [59], Song and Xue [60], and Mart́ınez-
de-Albéniz andTalluri [61]. In all those papers, customers can
decide which product to buy, based on prices and inventory
levels at time of purchase, with the MNL model for product
categories, assuming homogeneous product groups. Our
work is consistent with those characteristics above, demand
uncertainty, two-period shelf lifetime, codisplaying selling,
and homogeneous cannibalization. We use MNL model to
describe consumer discrete choice and present a jointly
dynamic pricing and inventory control policy to maximize
seller’s profit on the whole planning horizon.

In summary, our contribution to the literature is as
follows. Firstly, we generalize the perishable joint pricing and
inventory models for perishable products of two-period life-
time. After characterizing the structure of model, we present
an optimal solution to the dynamic pricing of perishable
products with consumers incurring dynamic substitutions
throughout the selling season. Second, we provide sorts
of insights on the behavior of the optimal dynamic prices
and highlight the complex interplay of inventory scarcity
and product quality difference. Thirdly, we generalize the
regularity conditions of demand functions for integration
of inventory-pricing models, using the concept of concavity,
and characterize the optimal policy and develop effective
methods.

3. The Problem Formulation and Model

3.1. Problem Formulation. Consider a periodic-review single
type of FAP inventory system over a finite planning horizon
of T periods.The product is perishable with two-period shelf
lifetime, fresh in the first period and nonfresh in the next
period. At the beginning of each period selling, the retailer
reviews the current inventories and decides simultaneously
on an order quantity for new FAP as well as charging prices
for both new delivery and old inventory. During the sale,
customers arrive at the store or market and make purchase
choices based on FAPs attributes of quality and price, which
causes a drop in the inventory level. The demand for the
current inventory depends on the newly charged prices,
and it is always met to the maximum extent with on-hand
inventories. At the end of the period, the leftover inventory
with one period lifetime is carried forward to next period,
becoming old products to sell while the unsold products with
zero shelf-life time have to be discarded.Then, the sale moves
to the next period and the above processes repeat.

For convenience and tractability, we assume that the
replenishment order, placed by the retailer, arrives immedi-
ately before the demand unfolds, that is to say, replenishment
is instantaneous with zero lead time. Meanwhile, there could
have chance to replenish fresh products during the sale from
second market since in retailing practice backorder policy is
prominent, which means unsatisfied demands of all products
during selling are to be backlogged. And there is neither

fixed ordering cost nor constraints on the supply capacity.
Demand at each period is uncertain and independent across
all periods, generally decreasing on current prices. In line
with Petruzzi & Dada [28] and Chen & Simchi-Levi [32] we
take a form of a function of prices charged at that period
multiplies a stochastic variable plus a random disturbance.
Nevertheless, customers are assumed to be homogeneous
and decide purchasing based on current prices and product
attributes alone, instead of acting strategically by adjusting
their buying behavior in response to the firm’s pricing policy.
In the whole horizon planning, although the retailer gets
revenue from selling new and old products, he bears some
costs incurred in the operations, such as order decision
for wholesale each order incurs a variable cost c for per
new FAP. And three more other costs are incurred: leftover
inventory carrying costs over from one period to the next,
backlogged costs for unmet demand fromon-hand inventory,
and disposal costs of leftovers with zero shelf-life time. The
objective is to dynamically determine ordering and pricing
decisions in all periods so as to maximize the total expected
discounted profit over the whole planning horizon.

3.2. Demand Model. During sales, the new and old products
compete among customers by combination of their attributes
and price. And each customer selects his preferred choice
based on his utility from purchasing a unit of product, new
or old, which is given by 𝑈𝑖 = 𝛼𝜃𝑖 − 𝑝𝑖 + 𝜉𝑖 (𝑖 = 1, 2),
where i=1 for the fresh product and i=2 for the nonfresh
product, respectively. In the formula, 𝜃𝑖 and p𝑖 are defined as
the average perceptive value and the charged price on product
i, respectively, while 𝜉𝑖 is a certain customer’s deviation from𝜃𝑖, which is influenced by unobservable characteristics. The
coefficient, 𝛼, is denoted as a customer’s quality sensitivity.
Note that, all consumers are statistically homogeneous and
have the same sensitivity to price. Generally, any customer
who visits the retailer has three choices: select one unit of new
or old FAP, or do nothing. Here we set a virtual product and
let i=3 with price zero for denoting no purchase choice. Let𝜉3 be a certain customer’s deviation from 𝜃3. Obviously 𝜉3= 0
and 𝑝3= 0. Therefore, under the assumption of rationality, a
customer will always purchase one product with the highest
utility among these three options, that is, a customer chooses
to buy product i, where 𝑖 = argmax𝑘=1,2,3{𝑈𝑘 = 𝛼𝜃𝑘−𝑝𝑘+𝜉𝑘}.
Suppose random variable 𝜉𝑖 be i.i.d. distributed with a double
exponential distribution, that is, Pr (𝜉𝑖 ≤ 𝛿) = 𝑒−𝑒−𝛿 , 𝛿 ∈(−∞, +∞), with mean zero and variance 𝜀𝛿. See Guadagni
and Little [62] and Anderson et al. [63]. Define 𝛽𝑖(𝑝1, 𝑝2) to
be the probability that an arriving customer in a period selects
fresh or nonfresh agriproduct in response to price (𝑝1, 𝑝2).
It can be shown that a consumer’s choice probability has a
simple form:

𝛽𝑖 (𝑝1, 𝑝2) = exp (𝛼𝜃𝑖 − 𝑝𝑖)1 + ∑𝑘=1,2 exp (𝛼𝜃𝑘 − 𝑝𝑘) , 𝑖 = 1, 2, (1)

which is anMNLmodel, often used to study a set of products
differentiated in either quality or style, a term coined in the
literature of MNL models (see [63]). Let (𝑝1𝑡, 𝑝2𝑡) be the
charged prices at any period 𝑡 ∈ {1, 2, . . . , 𝑇}. On the basis
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of analysis above, we denote 𝛽𝑖𝑡(𝑝1𝑡, 𝑝2𝑡) the market share of
product i at a certain period t, which is similar to equation (1)
and expressed as follows:

𝛽𝑖𝑡 (𝑝1𝑡, 𝑝2𝑡) = exp (𝛼𝜃𝑖 − 𝑝𝑖𝑡)1 + ∑𝑘=1,2 exp (𝛼𝜃𝑘 − 𝑝𝑘𝑡) , 𝑖 = 1, 2 (2)

Note that the total market share ∑𝑖=1,2 𝛽𝑖𝑡(𝑝1𝑡, 𝑝2𝑡) ≤ 1.
Denote 𝜔𝑡 to be the amount of arriving customers to buy

the products at period t, which is generally uncertain and
independently distributed with finitemean of 𝜇𝑡 and variance𝜏t across all time periods. Note that the expected demand
of new or old product is proportional to the market share𝛽𝑖𝑡(𝑝1𝑡, 𝑝2𝑡). So, provided with price (𝑝1𝑡, 𝑝2𝑡) as well as a
demand disturbance on product i at period t, 𝜀𝑖𝑡, we can write
out the demand function of product i, denoted as 𝐷𝑖𝑡 below,
an additive form which is commonly used in the literature
(see, e.g., [28, 32]).

𝐷𝑖𝑡 = 𝛽𝑖𝑡 (𝑝1𝑡, 𝑝2𝑡) 𝜔𝑡 + 𝜀𝑖𝑡, 𝑖 = 1, 2, (3)

where 𝜀𝑖𝑡 is assumed to be identically distributed over time
with zero mean and finite variance as well as c.d.f. 𝐹(⋅) and

p.d.f. 𝑓(⋅). Denote 𝑑𝑖𝑡(𝑝1𝑡, 𝑝2𝑡) as the expected demand level,
then 𝑑𝑖𝑡(𝑝1𝑡, 𝑝2𝑡) = 𝛽𝑖𝑡(𝑝1𝑡, 𝑝2𝑡)𝐸(𝜔𝑡)+𝐸(𝜀𝑖𝑡) = 𝛽𝑖𝑡(𝑝1𝑡, 𝑝2𝑡)𝜇𝑡.
The selling price is generally restricted to an interval [𝑝

𝑡
, 𝑝𝑡]

and 𝑝1𝑡 ≥ 𝑝2𝑡.
Note that the monotonicity of the expected demand

function implies a one-to-one correspondence between the
selling price and the expected demand. And we observe that
if we use the inverse of the market share function to express
the price variables as a function of the market share, then
the revenue function becomes jointly concave under some
certain condition, allowing us to analyze the structure of
model. Accordingly, we have the following.

Proposition 1. Under the MNL market share model, the price
function at period t is

𝑝𝑖𝑡 = 𝑃𝑖𝑡 (𝛽1𝑡, 𝛽2𝑡) = 𝛼𝜃𝑖 + ln((1 − ∑𝑖 𝛽𝑖𝑡)𝛽𝑖𝑡 ) ,
𝑖 = 1, 2.

(4)

	e corresponding market share space Ω𝑡 = {(𝛽1𝑡, 𝛽2𝑡) : 𝑝𝑡 ≤𝑃2𝑡(𝛽1𝑡, 𝛽2𝑡) ≤ 𝑃1𝑡(𝛽1𝑡, 𝛽2𝑡) ≤ 𝑝𝑡, 𝑖 = 1, 2} can be expressed as

Ω𝑡 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(𝛽1𝑡, 𝛽2𝑡) :

exp (𝛼𝜃1 − 𝑝𝑡)1 + exp (𝛼𝜃1 − 𝑝𝑡) ≤ 𝛽1𝑡 ≤
exp (𝛼𝜃1 − 𝑝𝑡)1 + exp (𝛼𝜃1 − 𝑝𝑡)∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡)1 + ∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡) ≤ 𝛽1𝑡 + 𝛽2𝑡 ≤
∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡)1 + ∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡)

exp (𝛼𝜃2 − 𝑝𝑡)1 + exp (𝛼𝜃2 − 𝑝𝑡) ≤ 𝛽2𝑡 ≤
exp (𝛼𝜃2 − 𝑝𝑡)1 + exp (𝛼𝜃2 − 𝑝𝑡)

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

, (5)

which is convex and compact.

Proof. Equation (4) comes from (2) by transforming and
taking ln operation on both sides. The range is derived from
the fact that the prices should be nonnegative. Consider any
product, new or old FAP. If we charge the lowest price, 𝑝

𝑡
,

for one product and the highest price, 𝑝𝑡, for the other, then
this product should occupy the highest possiblemarket share,(∑𝑖=1,2 exp(𝛼𝜃𝑖 − 𝑝𝑡))/(1 + ∑𝑖=1,2 exp(𝛼𝜃𝑖 − 𝑝𝑡)).
3.3. Dynamic Programming Formulation. Based on the de-
scription aforementioned, we define some other parameters
with respect to period t below.

𝐼𝑡 = initial inventory level of old FAP before ordering
at the beginning of period t.𝑄𝑡 = order quantity of new FAP at the beginning of
period t.𝑐𝑡 = unit procurement cost of new FAP.ℎ1𝑡 = unit holding cost for the excess inventory.

ℎ2𝑡 = unit disposal cost of remaining inventory with
zero shelf-life time.𝑙𝑖𝑡 = backordered cost for unit shortage of new and
old FAP, 𝑖 = 1, 2.𝛾 = profit discount factor, 𝛾 ∈ (0, 1].

Here, we do not factor dynamic demand substitution that
the customer may buy the other product type when his
preferred one is out of stock. At the beginning of period 𝑡, 𝑡 ∈{1, 2, ..., 𝑇}, the retailer reviews the current inventory 𝐼𝑡 of old
FAPwhich comes from the unsold inventory of new products
at the previous period and places replenishment order 𝑄𝑡 for
new FAP, as well as setting product prices, 𝑝1𝑡&𝑝2𝑡, for new
and old FAPs, respectively. Obviously, under zero lead time
assumption, the inventory of new FAPs is instantaneously
replenished to be 𝑄𝑡. After demand realization and the
retailer satisfies the demand to the maximum extent, the
remaining inventory levels of the new and old products are(𝑄𝑡 − 𝐷1𝑡)+ and (𝐼𝑡 − 𝐷2𝑡)+, respectively. The (𝑄𝑡 − 𝐷1𝑡)+
of leftover that remains one period of shelf-life time will be
carried to next period for sale as old FAP, incurring holding
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cost and becoming the initial inventory of nonfresh product,𝐼𝑡+1, at period t+1, while the (𝐼𝑡 − 𝐷2𝑡)+ of old products will
be disposed of on account of zero shelf-life time, incurring
disposal cost. Otherwise the relevant backordered amount
of new FAPs and old FAPs for period t is (𝑄𝑡 − 𝐷1𝑡)− and(𝐼𝑡−𝐷2𝑡)−, respectively, whendemand is greater than on-hand
inventories, where 𝑥+ = max(0, 𝑥) and 𝑥− = max(0, −𝑥).

At period t, the retailer revenue, �̂�𝑡((𝑝1𝑡, 𝑝2𝑡)), can be
calculated as follows:

�̂�𝑡 ((𝑝1𝑡, 𝑝2𝑡)) = (𝑝1𝑡, 𝑝2𝑡) (𝐷1𝑡, 𝐷2𝑡)𝑇 (6)

Substitute the price function (5) into (6), we can obtain the
expected revenue, 𝑅𝑡((𝛽1t, 𝛽2𝑡)).
𝑅𝑡 ((𝛽1t, 𝛽2𝑡)) = 𝐸 (�̂�𝑡 (𝑝1𝑡, 𝑝2𝑡))
= ∑
𝑖=1,2

(𝛼𝜃𝑖 + ln((1 − ∑𝑖 𝛽𝑖𝑡)𝛽𝑖𝑡 ))𝛽it (𝑝1𝑡, 𝑝2𝑡) 𝜇𝑡 (7)

After demand realization at period t, somemore costs incurs,
backordered cost of 𝑙1𝑡(𝑄𝑡 −𝐷1𝑡)− or holding cost of ℎ1𝑡(𝑄𝑡 −𝐷1𝑡)+ for new FAPs, and backlogged cost of 𝑙2𝑡(𝐼𝑡 − 𝐷2𝑡)− or
disposal cost of ℎ2𝑡(𝐼𝑡 −𝐷2𝑡)+ for old FAPs, totally denoted as�̂�𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)).
�̂�𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) = (ℎ1𝑡, ℎ2𝑡) ⋅ ((𝑄𝑡 − 𝛽1t𝜔𝑡 − 𝜀1𝑡)

+

(𝐼𝑡 − 𝛽2t𝜔𝑡 − 𝜀2𝑡)+)
+ (𝑙1𝑡, 𝑙1𝑡)
⋅ ((𝑄𝑡 − 𝛽1t𝜔𝑡 − 𝜀1𝑡)−(𝐼𝑡 − 𝛽2t𝜔𝑡 − 𝜀2𝑡)−)

(8)

And the corresponding expected function is 𝐻𝑡(𝑄𝑡, (𝛽1𝑡,𝛽2𝑡)) = 𝐸(�̂�𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡))).
Let 𝐺𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) be the profit of period t; we have

𝐺𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) = �̂�𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡))
− �̂�𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) − 𝑐𝑡𝑄𝑡 (9)

Accordingly, the expected profit function is as below.

𝐺𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) = 𝐸𝐺𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡))
= 𝑅𝑡 (𝛽1𝑡, 𝛽2𝑡) − 𝐻𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡))
− 𝑐𝑡𝑄𝑡

(10)

Denote 𝜋𝑡(𝐼𝑡) to be the maximum total expected profit-
to-go function from period t to T in state, 𝐼𝑡, with
a discount factor 𝛾. We have the recursive equation𝜋𝑡(𝐼𝑡) = max𝑄𝑡≥0,(𝛽1t ,𝛽2𝑡)∈Ω𝑡{𝐺𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) + 𝛾𝐸𝜋𝑡+1(𝐼𝑡+1)}.
With transfer function, 𝐼𝑡+1 = (𝑄𝑡 − 𝛽1𝑡𝜔𝑡)+, by definingΦ𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)),

Φ𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) = 𝐺𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡))
+ 𝛾𝐸𝜋𝑡+1 (𝐼𝑡+1) , (11)

we have the following dynamic programming model:

𝜋𝑡 (𝐼𝑡) = max
𝑄𝑡≥0,(𝛽1t ,𝛽2𝑡)∈Ω𝑡

Φ𝑡 (𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) (12)

𝑠.𝑡 𝜋𝑇+1 = −ℎ2,𝑇+1𝐼𝑇+1, (13)

where (13) is the boundary condition since all leftovers will be
disposed of at the end of horizon planning.That is to say, there
are no second markets where some unexpired inventory can
be cleared with some salvage value. On the contrary, the firm
needs to pay on deposing expired inventories, even unexpired
leftovers. Our analysis can be readily extended to address this
situation.

4. Analysis of Model Structure

To analyze the structure of the optimal policy, we need
to know the concavity property of Φ𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) which
is strictly relative to revenue function 𝑅𝑡((𝛽1t, 𝛽2𝑡)) and
inventory cost function𝐻𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)).
Lemma 2. 𝑅𝑡((𝛽1t, 𝛽2𝑡)) is continuously, twice differentiable,
and jointly concave in (𝛽1t, 𝛽2𝑡).
Proof. The continuity and twice differentiability of 𝑅𝑡((𝛽1t,𝛽2𝑡)) is quite intuitive since it is expressed by some elementary
operations of 𝛽1t and 𝛽2𝑡. To show the concavity, we need
to prove the negative semidefinite property of its Hessian
Matrix. Taking the second-order derivative with respect to𝛽1t yields 𝜕2𝑅𝑡/𝜕𝛽21t = −(1/(1 − 𝛽1𝑡 − 𝛽2𝑡) + 1/𝛽1𝑡 + 1/(1 −𝛽1𝑡 − 𝛽2𝑡)2)𝜇𝑡 ≤ 0. Thus 𝑅𝑡 is concave on 𝛽1t. Taking the
second-order derivative with respect to 𝛽2t yields 𝜕2𝑅𝑡/𝜕𝛽22t =−(1/(1 − 𝛽1𝑡 − 𝛽2𝑡) + 1/𝛽2𝑡 + 1/(1 − 𝛽1𝑡 − 𝛽2𝑡)2)𝜇𝑡 ≤ 0,
which implies the concavity of 𝑅𝑡 on 𝛽2t. And taking the
cross-partial derivative with respect to 𝛽1t and 𝛽2t yields𝜕2𝑅𝑡/(𝜕𝛽1t𝜕𝛽2t) = −(1/(1 − 𝛽1𝑡 − 𝛽2𝑡) + 1/(1 − 𝛽1𝑡 − 𝛽2𝑡)2)𝜇𝑡.
Pairing up the above terms leads to Hessian Matrix,

𝐻essian (𝑅𝑡) = [[[[[

𝜕2𝑅𝑡𝜕𝛽21t 𝜕2𝑅𝑡(𝜕𝛽1t𝜕𝛽2t)𝜕2𝑅𝑡(𝜕𝛽2t𝜕𝛽1t) 𝜕2𝑅𝑡𝜕𝛽22t
]]]]]
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= [[[[[[
−( 11 − 𝛽1𝑡 − 𝛽2𝑡 + 1𝛽1𝑡 + 1(1 − 𝛽1𝑡 − 𝛽2𝑡)2)𝜇𝑡 −( 11 − 𝛽1𝑡 − 𝛽2𝑡 + 1(1 − 𝛽1𝑡 − 𝛽2𝑡)2)𝜇𝑡
−( 11 − 𝛽1𝑡 − 𝛽2𝑡 + 1(1 − 𝛽1𝑡 − 𝛽2𝑡)2)𝜇𝑡 −( 11 − 𝛽1𝑡 − 𝛽2𝑡 + 1𝛽2𝑡 + 1(1 − 𝛽1𝑡 − 𝛽2𝑡)2)𝜇𝑡

]]]]]]
.

(14)

And the corresponding determinant is as follows:

𝐻 (𝑅𝑡) = 𝜕2𝑅𝑡𝜕𝛽21t ⋅ 𝜕
2𝑅𝑡𝜕𝛽22t − ( 𝜕2𝑅𝑡(𝜕𝛽1t𝜕𝛽2t))

2

= ( 11 − 𝛽1𝑡 − 𝛽2𝑡 + 1(1 − 𝛽1𝑡 − 𝛽2𝑡)2)(
1𝛽1𝑡 + 1𝛽2𝑡)

+ 1𝛽1𝑡𝛽2𝑡 > 0,
(15)

which implies that 𝐻𝑒𝑠𝑠𝑖𝑎𝑛 matrix is seminegative defi-
nite. On the basis of that, 𝑅𝑡 is jointly concave in (𝛽1t,𝛽2𝑡).
Lemma 3. 𝐻𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) is continuously twice differen-
tiable and jointly convex in (𝛽1t, 𝛽2𝑡) and 𝑄𝑡.
Proof. We observe that �̂�𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) is continuously and
twice differentiable for any realization of 𝜔𝑡 and 𝜀𝑖𝑡. And the
expectation, 𝐻𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)), is easily justified to be con-
tinuously twice differentiable using the canonical argument
(Durrett, 2010).

To show the convexity, we define some column vectors,
expressed by boldface lowercase letters, such as h𝑡 =(ℎ1𝑡 ℎ2𝑡)𝑇, l𝑡 = (𝑙1𝑡 𝑙2𝑡)𝑇, and 𝜀𝑡 = (𝜀1𝑡 𝜀2𝑡)𝑇. Then the
demand and cost function can be expressed of vector form
as follows:

D𝑡 = (𝐷1𝑡 𝐷2𝑡) = 𝛽𝑡𝜔𝑡 + 𝜀𝑡 (16)�̂�𝑡 (𝑄𝑡, (𝛽1t, 𝛽2𝑡)) = �̂�𝑡 (𝛽𝑡, 𝑄𝑡)= h𝑡 ((𝑄𝑡 𝐼𝑡)𝑇 −D𝑡)+
+ l𝑡 ((𝑄𝑡 𝐼𝑡)𝑇 −D𝑡)−

= h𝑡 ((𝑄𝑡 𝐼𝑡)𝑇 − 𝛽𝑡𝜔𝑡 − 𝜀𝑡)+
+ l𝑡 ((𝑄𝑡 𝐼𝑡)𝑇 − 𝛽𝑡𝜔𝑡 − 𝜀𝑡)−

(17)

Define a new vector variable 𝑢𝑡 = (𝑄𝑡 𝐼𝑡)𝑇 − 𝛽𝑡𝜔𝑡 − 𝜀𝑡, and
we can get �̂�𝑡(𝛽𝑡, 𝑄𝑡) = �̂�𝑡(u𝑡) = h𝑡(u𝑡)+ + l𝑡(u𝑡)−, which is
convex onu𝑡 (Sundaranm,R. K. 1996). Fix the randompart𝜔𝑡
to its realization and consider any pair (𝛽𝑡, 𝑄𝑡) and (𝛽𝑡, 𝑄𝑡),
with the convexity of �̂�𝑡(u𝑡); we have
�̂�𝑡 (𝛼 (𝛽𝑡, 𝑄𝑡) + (1 − 𝛼) (𝛽𝑡, 𝑄𝑡)) = �̂�𝑡 (𝛼𝛽𝑡+ (1 − 𝛼)𝛽𝑡, 𝛼𝑄𝑡 + (1 − 𝛼)𝑄𝑡)= h𝑡 ((𝛼 (𝑄𝑡 𝐼𝑡)𝑇 + (1 − 𝛼) (𝑄𝑡 𝐼𝑡)𝑇)

− (𝛼𝛽𝑡 + (1 − 𝛼)𝛽𝑡) 𝜔𝑡 − (𝛼 + (1 − 𝛼)) 𝜀𝑡)+
+ l𝑡 ((𝛼 (𝑄𝑡 𝐼𝑡)𝑇 + (1 − 𝛼) (𝑄𝑡 𝐼𝑡)𝑇)
− (𝛼𝛽𝑡 + (1 − 𝛼)𝛽𝑡) 𝜔𝑡 − (𝛼 + (1 − 𝛼)) 𝜀𝑡)−
= h𝑡 (𝛼 ((𝑄𝑡 𝐼𝑡)𝑇 − 𝛽𝑡𝜔𝑡 − 𝜀𝑡)
+ (1 − 𝛼) ((𝑄 𝐼𝑡)𝑇𝑡 − 𝛽𝑡𝜔𝑡 − 𝜀𝑡))++ l𝑡 (𝛼 ((𝑄𝑡 𝐼𝑡)𝑇 − 𝛽𝑡𝜔𝑡 − 𝜀𝑡)
+ (1 − 𝛼) ((𝑄 𝐼𝑡)𝑇 − 𝛽𝑡𝜔𝑡 − 𝜀𝑡))− = h𝑡 (𝛼u𝑡
+ (1 − 𝛼)u𝑡)+ + l𝑡 (𝛼u𝑡 + (1 − 𝛼) u𝑡)− = �̂�𝑡 (𝛼u𝑡+ (1 − 𝛼)u𝑡) ≤ 𝛼�̂�𝑡 (u𝑡) + (1 − 𝛼) �̂�𝑡 (u𝑡)= 𝛼�̂�𝑡 (𝛽𝑡, (𝑄𝑡 𝐼𝑡)𝑇) + (1 − 𝛼) �̂�𝑡 (𝛽𝑡, (𝑄𝑡 𝐼𝑡)𝑇) ,

(18)

where 0 ≤ 𝛼 ≤ 1. Therefore, �̂�𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) = �̂�𝑡(𝛽𝑡,(𝑄𝑡 𝐼𝑡)𝑇) = �̂�𝑡(u𝑡) is jointly convex in (𝛽1t, 𝛽2𝑡) and 𝑄𝑡, so
does the expectation function,𝐻𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)).
Theorem 4. At any time period t with initial inventory 𝐼𝑡,
the expected revenue function𝐺𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) is continuously
twice differentiable and jointly concave in (𝛽1t, 𝛽2𝑡) and 𝑄𝑡.
Proof. With Lemmas 2 and 3, we can observe that𝐺𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) is continuously twice differentiable. We first
observe that, for any t, the three terms of 𝐺𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) in
(10) are jointly concave. The first term is concave in (𝛽1𝑡, 𝛽2𝑡)
according to Lemma 2. The second term is jointly concave
in (𝛽1𝑡, 𝛽2𝑡) and 𝑄𝑡 (see Lemma 3), and the third term is
linear in 𝑄𝑡, which implies the concavity. With the property
that a nonnegative weighted sum of concave functions
is concave (Stephen Boyd, Lieven Vandenberghe, 2004),𝐺𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) is continuously twice differentiable and
jointly concave in (𝛽1t, 𝛽2𝑡) and 𝑄𝑡.

On the basis of the concavity of 𝐺𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)), we can
haveTheorem 5.

Theorem 5. Consider any time period t with initial inventory𝐼𝑡; the functionΦ𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) is continuously twice differen-
tiable and jointly concave in (𝑄𝑡, (𝛽1t, 𝛽2𝑡)), and the function𝜋𝑡(𝐼𝑡) is concave and nonincreasing in 𝐼𝑡.
Proof. By induction, first, we prove that Φ𝑇(𝑄𝑇, (𝛽1T, 𝛽2𝑇))
is continuously twice differentiable. According to Lemma 2,
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𝐸(𝑄𝑇 − 𝛽1𝑇𝜔𝑇 − 𝜀𝑇)+, as a part of 𝐻𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)), is
thus continuously twice differentiable, which implies thatΦ𝑇(𝑄𝑇, (𝛽1𝑇, 𝛽2𝑇)) = 𝐺𝑇(𝑄𝑇, (𝛽1𝑇, 𝛽2𝑇)) − 𝛾ℎ2,𝑇+1𝐸(𝑄𝑇 −𝛽1𝑇𝜔𝑇 − 𝜀2𝑇)+ is continuously and twice differentiable.
Assuming now that Φ𝑡(𝑄𝑡, (𝛽1𝑡, 𝛽2𝑡)) is continuously
twice differentiable for 𝑡 = 1, 2, . . . , 𝑇, we prove thatΦ𝑡−1(𝑄𝑡−1, (𝛽1,t−1, 𝛽2,𝑡−1)) is also continuously twice differen-
tiable according to Theorem 4. Let Λ 𝑇(𝑄𝑇, 𝛽1𝑇) = 𝐸(𝑄𝑇 −𝛽1𝑇𝜔𝑇−𝜀2𝑇)+ = ∬𝛽1𝑇𝑥+𝑦≤𝑄𝑇(𝑄𝑇−𝛽1𝑇𝑥−𝑦)𝑓𝜔(𝑥)𝑓𝜀(𝑦)𝑑𝑥𝑑𝑦,
where 𝑓𝜔(𝑥) and 𝑓𝜀(𝑦) is the p.d.f. of random variable𝜔𝑇 and 𝜀𝑇, respectively, which are generally assumed to be
independent. For any realization of 𝜀2𝑇, such as 𝜀2𝑇, taking the
second-order derivative ofΛ 𝑇(𝑄𝑇, 𝛽1𝑇)with respective to𝑄𝑇
yields 𝜕2Λ 𝑇(𝑄𝑇, 𝛽1𝑇)/𝜕𝑄2𝑇 = (1/𝛽1𝑇)𝑓((𝑄𝑇 − 𝜀2𝑇)/𝛽1𝑇) > 0,
which implies that Λ 𝑇(𝑄𝑇, 𝛽1𝑇) is convex in 𝑄𝑇. Taking
the second-order derivative with respect to 𝛽1𝑇 yields𝜕2Λ 𝑇(𝑄𝑇, 𝛽1𝑇)/𝜕𝛽21𝑇 = (𝑄2𝑇/𝛽31𝑇)𝑓(𝑄𝑇/𝛽1𝑇) > 0, which
implies the concavity of Λ 𝑇(𝑄𝑇, 𝛽1𝑇) in 𝛽1𝑇. And taking
the cross-partial derivative with respect to 𝑄𝑇 and 𝛽1𝑇 yields𝜕2Λ 𝑇(𝑄𝑇, 𝛽1𝑇)/𝜕𝑄𝑇𝜕𝛽1𝑇 = −((𝑄𝑇 − 𝜀2𝑇)/𝛽21𝑇)𝑓((𝑄𝑇 −𝜀2𝑇)/𝛽1𝑇). Pairing up the above three derivative terms leads
to Hessian Matrix,

𝐻(Λ 𝑇) = [[[[[

𝜕2Λ 𝑇𝜕𝑄2𝑇
𝜕2Λ 𝑇𝜕𝑄𝑇𝜕𝛽1𝑇𝜕2Λ 𝑇𝜕𝛽1𝑇𝜕𝑄𝑇 𝜕2Λ 𝑇𝜕𝛽21𝑇

]]]]]

= [[[[[

1𝛽1𝑇𝑓(𝑄𝑇 − 𝜀2𝑇𝛽1𝑇 ) −𝑄𝑇 − 𝜀2𝑇𝛽2
1𝑇

𝑓(𝑄𝑇 − 𝜀2𝑇𝛽1𝑇 )
−𝑄𝑇 − 𝜀2𝑇𝛽21𝑇 𝑓(𝑄𝑇 − 𝜀2𝑇𝛽1𝑇 ) (𝑄𝑇 − 𝜀2𝑇)2𝛽31𝑇 𝑓(𝑄𝑇 − 𝜀2𝑇𝛽1𝑇 )

]]]]]
.
(19)

And the corresponding determinant, 𝐻(Λ 𝑇) = 0, which
implies matrix 𝐻𝑒𝑠𝑠𝑖𝑎𝑛 is semipositive definite. On the
basis of analysis above, we can conclude that Λ 𝑇(𝑄𝑇, 𝛽1𝑇)
is jointly convex in (𝑄𝑇, 𝛽1𝑇). Meanwhile, the last term,−𝛾ℎ2,𝑇+1𝐸(𝑄𝑇 − 𝛽1𝑇𝜔𝑇 − 𝜀2𝑇)+, is obviously justified to be
jointly concave in (𝑄𝑇, 𝛽1𝑇). According to the concavity
property (Stephen Boyd, Lieven Vandenberghe, 2004),Φ𝑇(𝑄𝑇, (𝛽1T, 𝛽2𝑇)) is jointly concave in (𝛽1t, 𝛽2𝑡) and 𝑄𝑡.

𝜋𝑇(𝐼𝑇) is easily verified to be concave as well, and it is
obviously nonincreasing.

Assume now that Φ𝑡(𝑄𝑡, (𝛽1t, 𝛽2𝑡)) is jointly concave for
some 𝑡 = 1, 2, . . . , 𝑇 − 1 and that 𝜋𝑡(𝐼𝑡) is also concave
and nonincreasing. Then, Φ𝑡−1(𝑄𝑡−1, (𝛽1,t−1, 𝛽2,𝑡−1)) is jointly
concave: joint concavity of the first term of (10) is verified for
the case 𝑡 = 𝑇 above. For any pair of points (𝑄𝑡, 𝛽1𝑡) and(𝑄𝑡, 𝛽1𝑡) with given value of 𝜔𝑡, we have
𝜋𝑡+1 ((𝛼𝑄𝑡 + (1 − 𝛼)𝑄𝑡)𝑡 − (𝛼𝛽1𝑡 + (1 − 𝛼) 𝛽1𝑡) 𝜔𝑡
− (𝛼𝜀1𝑡 + (1 − 𝛼) 𝜀1𝑡)) = 𝜋𝑡+1 (𝛼 (𝑄𝑡 − 𝛽1𝑡𝜔𝑡 − 𝜀1𝑡)
+ (1 − 𝛼) (𝑄𝑡 − 𝛽1𝑡𝜔𝑡 − 𝜀1𝑡)) ≥ 𝛼𝜋𝑡+1 (𝑄𝑡 − 𝛽1𝑡𝜔𝑡
− 𝜀1𝑡) + (1 − 𝛼) 𝜋𝑡+1 (𝑄𝑡 − 𝛽1𝑡𝜔𝑡 − 𝜀1𝑡) ,

(20)

by the concavity of 𝜋𝑡+1(⋅), which implies that 𝐸𝜋𝑡+1(𝑄𝑡 −𝛽1𝑡𝜔𝑡 − 𝜀1𝑡) is jointly concave in 𝑄𝑡 and 𝛽1𝑡. With above
argument, the desired result holds.

5. Optimal Policy

Following the structure property of model, we can obtain the
following result.

Theorem 6. Consider any period t, with the initial inventory𝐼𝑡, there is a unique maximizer, (𝑄∗𝑡 , (𝛽∗1𝑡, 𝛽∗2𝑡)), to maximize
the constrained expected periodical profit function,

(𝑄∗𝑡 , (𝛽∗1𝑡, 𝛽∗2𝑡)) ∈ arg max
𝑄𝑡≥0,(𝛽1t ,𝛽2𝑡)∈Ω𝑡

Φ𝑡 (𝑄𝑡, (𝛽1t, 𝛽2𝑡)) . (21)

Proof. It can be easily proved on the basis of Theorem 5.

On the basis of the dynamic programming analysis,
including the concavity property, we can construct an opti-
mization problem for any period t with constrained condi-
tions as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − Φ𝑡 (𝑄𝑡, (𝛽1t, 𝛽2𝑡))

𝑠.𝑡.

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(𝛽1t − exp (𝛼𝜃1 − 𝑝𝑡)1 + exp (𝛼𝜃1 − 𝑝𝑡))(𝛽1t − exp (𝛼𝜃1 − 𝑝𝑡)1 + exp (𝛼𝜃1 − 𝑝𝑡) 𝑡) ≤ 0
(𝛽2t − exp (𝛼𝜃2 − 𝑝𝑡)1 + exp (𝛼𝜃2 − 𝑝𝑡))(𝛽2t − exp (𝛼𝜃2 − 𝑝𝑡)1 + exp (𝛼𝜃2 − 𝑝𝑡)) ≤ 0
(𝛽1t + 𝛽2𝑡 − ∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡)1 + ∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡))(𝛽1t + 𝛽2𝑡 −

∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡)1 + ∑𝑖=1,2 exp (𝛼𝜃𝑖 − 𝑝𝑡)) ≤ 0
−𝑄𝑡 ≤ 0

(22)
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The Lagrangian and the Karush-Kuhn-Tucker(KTT) condi-
tions provide an efficient solution approach to this optimiza-
tion problem.Denote𝐴𝑡 = (exp(𝛼𝜃1−𝑝𝑡))/(1+exp(𝛼𝜃1−𝑝𝑡)),𝐴𝑡 = (exp(𝛼𝜃1 − 𝑝𝑡))/(1 + exp(𝛼𝜃1 − 𝑝𝑡)), 𝐵𝑡 = (exp(𝛼𝜃2 −𝑝
𝑡
))/(1 + exp(𝛼𝜃2 −𝑝𝑡)), 𝐵𝑡 = (exp(𝛼𝜃2 −𝑝𝑡))/(1 + exp(𝛼𝜃2 −𝑝𝑡)), 𝐶𝑡 = (∑𝑖=1,2 exp(𝛼𝜃𝑖 − 𝑝𝑡))/(1 + ∑𝑖=1,2 exp(𝛼𝜃𝑖 − 𝑝𝑡)),

and 𝐶𝑡 = (∑𝑖=1,2 exp(𝛼𝜃𝑖 −𝑝𝑡))/(1 +∑𝑖=1,2 exp(𝛼𝜃𝑖 −𝑝𝑡)). We
construct for each period t theLagrangian of the optimization
problem as

𝐿 𝑡 (𝑄𝑡, (𝛽1t, 𝛽2𝑡) , (𝜆𝑡1, 𝜆𝑡2, 𝜆𝑡3, 𝜆𝑡4))
= −Φ𝑡 (𝑄𝑡, (𝛽1t, 𝛽2𝑡)) + 𝜆𝑡1 (𝛽1t − 𝐴𝑡) (𝛽1t − 𝐴𝑡)
+ 𝜆𝑡2 (𝛽2t − 𝐵𝑡) (𝛽2t − 𝐵𝑡)
+ 𝜆𝑡3 (𝛽1t + 𝛽2𝑡 − 𝐶𝑡) (𝛽1t + 𝛽2𝑡 − 𝐶𝑡) − 𝜆𝑡4𝑄𝑡,

(23)

where the Lagrange multipliers are 𝜆𝑡𝑖 ≥ 0, 𝑖 = 1, 2, 3, 4. Let(𝑄∗𝑡 , (𝛽∗1𝑡, 𝛽∗2𝑡)) be the optimizing solution; we can construct
the KKT conditions as follows:

− ∇Φ𝑡 (𝑄𝑡, (𝛽1t, 𝛽2𝑡)) + 𝜆𝑡1 (0, 2𝛽1t − 𝐴𝑡 − 𝐴𝑡, 0)
+ 𝜆𝑡2 (0, 0, 2𝛽2t − 𝐵𝑡 − 𝐵𝑡) + 𝜆𝑡3 (0, 2𝛽1t + 2𝛽2𝑡
− 𝐶𝑡 − 𝐶𝑡, 2𝛽1t + 2𝛽2𝑡 − 𝐶𝑡 − 𝐶) − 𝜆𝑡4 (1, 0, 0) = 0

𝜆𝑡1 (𝛽1t − 𝐴𝑡) (𝛽1t − 𝐴𝑡) = 0
𝜆𝑡2 (𝛽2t − 𝐵𝑡) (𝛽2t − 𝐵𝑡) = 0
𝜆𝑡3 (𝛽1t + 𝛽2𝑡 − 𝐶𝑡) (𝛽1t + 𝛽2𝑡 − 𝐶𝑡) = 0
𝜆𝑡4𝑄𝑡 = 0,

(24)

where the first equation represents F.O.C. of Lagrangian
and the latter four equations represent the conditions of
complementary slackness.

With solution of theKKT conditions, (𝑄∗𝑡 , (𝛽∗1𝑡, 𝛽∗2𝑡)), and
(4), we can get the optimization pricing and ordering policy
of (𝑄∗𝑡 , (𝑝∗1𝑡, 𝑝∗2𝑡)) at period t, where (𝑝∗1𝑡, 𝑝∗2𝑡) is as follows:
𝑝∗𝑖𝑡 = 𝑃𝑖𝑡 (𝛽∗1𝑡, 𝛽∗2𝑡) = 𝛼𝜃𝑖 + ln((1 − ∑𝑖 𝛽∗𝑖𝑡)𝛽∗𝑖𝑡 ) ,

𝑖 = 1, 2.
(25)

Note that (𝑄∗𝑡 , (𝛽∗1𝑡, 𝛽∗2𝑡)) depends on state variable, 𝐼𝑡, and
parameters of (ℎ1𝑡, ℎ2𝑡) and (𝑙1𝑡, 𝑙2𝑡) as well as 𝜇𝑡, which

implies that the retailer decides the optimal policy on the
basis of these parameters at every period t. With back-
ward induction, we get the optimal strategy, a sequence of[(𝑄∗1 , (𝑝∗11, 𝑝∗21)), (𝑄∗2 , (𝑝∗12, 𝑝∗22)), ..., (𝑄∗𝑇, (𝑝∗1𝑇, 𝑝∗2𝑇))].
6. Numerical Experiment

We now conduct a numerical example to illustrate our results
and select the parameters as follows. The demand follows
the multiplicative form with i.i.d. terms 𝜔𝑡 ∼ U(0, 100)
for all periods. We assume (𝜃1 𝜃2)𝑇 = (10 5)𝑇, since
fresh product has a higher perceptive value than nonfresh
ones. The cost structure is symmetric: h𝑡 = (0.5 0.5)𝑇,
l𝑡 = (4.5 4.5), and 𝑐𝑡 = 10. For simplicity to compute the
optimal prices, we consider a finite horizon with 𝑇 = 5,
the discount rate is 𝛾 = 0.9, and the initial inventory level𝐼𝑡 = 0. Using Matlab to program the dynamic model and
get the following results with KKT condition method, we
can obtain a sequence of order quantity and optimal prices,
such as [(78, (14.8, 9.7)), (68, (12.6, 8.6)), (92, (17.5, 11.4)),(43, (10.9, 6.2)), (52, (11.5, 10.2))], at which the maximum
profit 𝜋∗ = 4, 235.6 occurs.

In Table 1, we compare the performance between
dynamic pricing policy and a general policy under one
period lifetime setting where all products are sold at a
regular price at any period of time. Similarly, we assume(𝜃1 𝜃2)𝑇 = (10 5)𝑇 in dynamic pricing policy while(𝜃1 𝜃2)𝑇 = (10 10)𝑇 in general policy. Note that in general
setting the optimal pricing and ordering policy can be
obtained by way of general dynamic programming method.
Three examples of different finite horizon time (𝑇 = 5,10,20)
are conducted with the same cost structure and discount rate
mentioned above. Accordingly, the optimal solutions, such
as pricing and order quantity, as well as dynamic inventory,
are shown in Table 1, where superscript g and d represent
regular policy and dynamic policy, respectively.

A summary of interesting observations is as follows. The
dynamic policy is obviously better than general pricing and
inventory policy, with which the retailer’s profit increases
by 15-20%. Further, the demand is also matched to a more
certain extent by the supply since the order quantity is almost
more than that under general policy while the. Based on the
results, we can conclude that dynamic pricing and inventory
policy is beneficial for retailer’s revenue management in
selling fresh agriculture products. Furthermore, from the
perspective of agriculture industrial development, it also can
maximally reduce the operating costs, such as holding costs
or lost costs, since the optimal match between products
supply and demand.

7. Concluding Remark

In this paper, we address a joint pricing and inventory
control problem for stochastic fresh agriproduct inventory
systems under consumer choice over a finite horizon in the
backlogging case. In the model the products are perishable
along time and the customers are sensitive to the ages of
inventories, which result in consumer choice behavior based
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Table 1: The optimal solution under dynamic pricing and regular pricing.

Periods T Order quantity Pricing Inventory 𝜋d 𝜋g (𝜋𝑑 − 𝜋𝑔)𝜋𝑔Qd Qg (𝑝𝑑1 , 𝑝𝑑2) 𝑝𝑔 (𝐼𝑑1 , 𝐼𝑑2 ) 𝐼𝑔

5

78 72 (14.8,9.7) 12.5 (49,0) 9

4235.6 3578.2 18.4%
68 65 (12.6,8.6) 10.4 (31,2) 8
92 80 (17.5,11.4) 12.8 (56,11) 13
43 45 (10.9,6.2) 8.1 (22,0) 3
52 45 (11.5,8.2) 9.3 (12,1) 5

10

81 70 (15.6,10.7) 12.2 (52,0) 10

8343.8 6984.4 19.5%

72 61 (13.6,8.4) 10.3 (38,6) 7
83 58 (16.5,10.4) 13.2 (56,9) 8
76 59 (11.9,7.8) 8.5 (32,2) 4
70 73 (12.5,9.2) 8.1 (34,6) 4
56 41 (16.5,9.8) 14.6 (30,1) 9
68 59 (12.2,8.8) 9.5 (31,2) 8
65 47 (15.4,10.4) 13.8 (33,9) 7
58 56 (12.4,7.3) 9.2 (23,0) 3
49 39 (12.8,6.4) 9.7 (19,1) 2

20

90 86 (15.5,9.8) 13.1 (54,0) 16

17532.8 14963.2 17.2%

72 65 (14.3,8.5) 10.4 (36,6) 8
83 57 (16.5,10.1) 11.1 (40,9) 9
66 75 (13.2,7.6) 8.6 (31,4) 5
72 54 (12.9,9.5) 9.2 (34,6) 4
56 51 (16.3,9.2) 13.2 (35,3) 7
68 62 (13.2,8.7) 9.8 (31,3) 4
65 45 (15.1,12.2) 13.6 (33,5) 4
57 69 (13.8,7.9) 9.7 (28,0) 3
48 46 (15.5,9.2) 10.2 (21,1) 2
81 72 (13.8,7.1) 9.8 (43,0) 2
70 58 (13.9,9.2) 10.4 (38,6) 7
78 50 (15.4,6.8) 11.9 (49,2) 5
71 48 (13.2,8.8) 9.5 (33,3) 0
61 63 (14.5,8.2) 8.4 (35,6) 8
56 52 (16.5,7.8) 14.6 (37,3) 10
76 48 (11.3,8.8) 9.9 (32,3) 6
66 64 (14.5,9.4) 12.8 (39,5) 8
52 49 (13.7,7.8) 9.8 (23,0) 3
50 46 (14.5,6.9) 9.1 (22,0) 1

on product freshness. By using MNL model to describe
consumer discrete choice we construct a stochastic and
dynamic inventory model facing strategic customer behavior
with joint ordering and discounting decisions. We are able
to characterize the firm’s optimal policy with the use of
a transformation technique and employing the concept of
the concavity, and finally develop a Lagrangian and the
Karush-Kuhn-Tucker (KTT) conditions to provide an efficient
solution approach to this optimization problem.

A limitation in our model is that we assume that the
lifetime of the product is only two periods. Although this is
true for some fresh agriproducts in themarket, there are other
products that are perishable but yet have longer lifetimes. To
extend ourmodel to the products withmore than two periods

lifetimes, the state space has to be increased more to specify
the amounts of inventory that are going to expire at different
points of time in the future.This definitelymakes the problem
quite hard. Another issue is to incorporate an operating
cost for discounting pricing practice, which, however, will
introduce additional technical complexity to the dynamic
program. There are several future research directions. One
is to extend the model to the environment where all the
demand can be lost or only non-FAP demand can be lost
while the fresh FAP can be backlogged instead. Another is to
consider the case where the product has a fixed finite lifetime
of exactly 𝑛(𝑛 ≥ 3) periods or random lifetime. Finally, it
would be interesting to account for stock-out based substitu-
tions.
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