
Research Article
Detection of Broken Rotor Bars Fault in
Induction Motors by Using an Improved MUSIC and
Least-Squares Amplitude Estimation

Junjie Lu , PanpanWang , Sen Duan , Liping Shi , and Li Han

School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China

Correspondence should be addressed to Panpan Wang; wangpanpan@cumt.edu.cn

Received 15 September 2018; Accepted 31 October 2018; Published 15 November 2018

Academic Editor: Isabel S. Jesus

Copyright © 2018 Junjie Lu et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The frequencies and amplitudes of the broken rotor bar (BRB) fault features are the basis for the accurate diagnosis of the BRB
fault. However, how to accurately detect their frequency and amplitudes has always been a difficult problem for induction motor
fault detection. For this problem, a new fault detection method based on an improved multiple signal classification (MUSIC) and
least-squares magnitude estimation is proposed. First, since the fixed-step traversal search reduces the computational efficiency of
MUSIC, a niche bare-bones particle swarm optimization (NBPSO) for multimodal peaks search is proposed to improve MUSIC,
which is used to compute the frequency values of fault-related and fundamental components in stator current signal. Second,
using these frequency values, a fault current signal model is established to convert the magnitude estimation problem into a linear
least-squares problem. On this basis, the amplitudes and phases of fault-related and fundamental components could be estimated
accurately with the singular value decomposition (SVD). A simulation signal is used to test the new method and the results show
that the proposed method not only has higher frequency resolution, but also improves estimation accuracy of parameters greatly
even with short data window. Finally, experiments for a real induction motor are performed, and the effectiveness and superiority
of the proposed method are proved again.

1. Introduction

Induction motors have been widely applied in the fields of
industry and agriculture because of its simple structure, long
life, low cost, and so on. In fact, mostmotors operate in a poor
working environment, such as overloading, frequently start-
ing and braking. Meanwhile, due to the toomuchmechanical
and thermal stress, as well as some inherent defects of the
rotor, the appearance of BRB or end ring cracking is a com-
mon phenomenon. During early stage, such as one broken
bar, this type of fault may not show any symptoms. If
no detection system or program, such fault will gradually
deteriorate, causing other faults or leading to the sudden
collapse [1–3]. It is known that unplanned downtime often
causes a great economic loss [3]. So BRB fault detection for
induction motor is necessary in early stage.

When BRB failure occurs, additional current compo-
nents, whose frequency are f brk=(1±2ks)f 1, will appear in the

stator current. Here, f 1 is the power frequency, s is the slip,
and k is a positive integer. These current components are
viewed as the features of BRB fault. Since the stator current
signal is collected easily, its spectrum analyzed by the dis-
crete Fourier transform (DFT) is widely used to detect
BRB fault. However, when the motor is in the steady state,
the small slip makes the frequencies of the strongest fault-
related components very close to the fundamental frequency.
Meanwhile, they are relatively weak and easy to be submerged
by the leakage of fundamental harmonic or noise. The above
two points expect signal processing methods to have func-
tions of high frequency resolution and elimination of the
fundamental leakage. For the influence of fundamental har-
monic,many distinctive detectionmethods based onDFT are
proposed to eliminate its influence [4–9]. The main idea of
these methods is to filter the fundamental harmonic directly
or convert it into DC component, and then the DFT is
used to analyze the preprocessed current signal. In other
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papers, filtered Park’s vector modulus [10], product of current
and virtual flux [11] and instantaneous power [12] analyzed
through DFT have been used in BRB detection. Although
these methods improve the reliability of the BRB detection,
they cannot avoid the inherent shortcoming of DFT. For
instance, the frequency resolution is inversely proportional
to the sampling time. This means that, it requires a long
enough sampling time and large memory space to get a
high frequency resolution. However, in real application, long
sampling time will cause the increase of the probability of
disturbances, affecting the reliability of fault detection [13].
To reduce thememory space and compute cost, a sub-Nyquist
strategy with reduced data length [14] and a diagnostic signal
designated as the reduced envelope of the stator current
[15] are introduced into detection methods. At the same
time, harmonic order tracking analysis [15, 16] and side-lobes
leakage phenomenon of the sliding DFT [17] are used in BRB
detection to lessen the dependence on frequency resolution.
Another problem of DFT-based methods is the amplitude
estimation of the fault-related components which is used to
calculate the fault severity. Due to spectrum leakage and fence
effect, DFT has no ability to estimate them accurately with
short-time data window [13].

MUSIC is one of themodern spectral estimationmethods
known as subspace techniques. Due to the original signal
extrapolation ability, its frequency resolution can get rid
of the limitation of the data window. Therefore, MUSIC
algorithm also was applied in the analysis of stator cur-
rent [18], radial flux signal [19], and zero-sequence current
[20] for BRB detection. To eliminate the influence of the
fundamental harmonic, the eigenvector corresponding to
fundamental harmonic in signal subspace was moved to the
noise subspace to construct a new noise subspace [21]. This
improved algorithm cannot only eliminate the influence
of fundamental harmonic, but also improve the frequency
resolution. Combining other techniques, such as spectrum
zooming technique [22] and empirical mode decomposition
[23], is another way to improve detection performance of the
MUSIC. Although MUSIC has been applied successfully in
the detection of BRB fault, it still has two shortcomings: (1)
due to the fixed-step traversal search, it is not efficient for
the spectrum peak search; (2)MUSIC cannot determine the
other parameter values of each component, such as initial
phase and amplitude. To solve the 2th-problem, an improved
MUSIC algorithm which combines MUSIC with the pattern
search algorithm is proposed [24]. However, this method
needs a good starting point byDFT, and a long computational
time.

In this paper, MUSIC, particle swarm intelligence search
and least-square technology are conjugated to improve esti-
mate accuracy of the parameters of fault-related and funda-
mental components for BRB fault detection. For the shortages
of MUSIC, we modify MUSIC from two aspects. To improve
the efficiency of the spectrumpeak search, a niche bare-bones
particle swarm optimization (NBPSO) is proposed, replacing
the fixed-step traversal search; on the other hand, the least-
squares criterion is used to estimate the magnitude and
phase of each component in the stator current. In simulation
test, the DFT and traditional MUSIC are also selected for

comparison. Finally, the proposed method combining the
improvedMUSIC with least-squares magnitude estimation is
applied to the BRB fault detection for a real induction motor.

2. Related Concepts and Methods

2.1. Multiple Signal Classification. Multiple signal classifica-
tion (MUSIC) was raised by Schmidt R. O. in 1986 [25]. It is a
subspace method that can detect the frequencies of complex
sinusoids using matrix eigenvalue decomposition. Its main
idea is described as follows. First, the information space of
observation signal is divided into two orthogonal subspaces
by eigenvalue decomposition, i.e., the signal subspace and
noise subspace; second, the spectrum is structured with the
orthogonality of two subspaces to estimate the frequency
of each component in the signal. MUSIC assumes that the
discrete-time signal can be represented as a data model, that
is

𝑦 (𝑛) = 𝑃/2∑
𝑖=1

𝐴 𝑖 cos (2𝜋𝐹𝑖𝑛 + 𝜑𝑖) + ℎ (𝑛) , (1)

where 𝑛 = 1, 2, 3, . . .; P/2 is the number of pure sinusoids; Ai,
Fi,𝜑i are the amplitude, frequency, and initial phase of the i-th
pure sinusoids, respectively; h(n) is the complex white noise
with a zero mean and a variance 𝜏2.

According to Euler’s formula, y(n) can also be expressed
as

𝑦 (𝑛) = 𝑃∑
𝑖=1

𝑎𝑖𝑒j(2𝜋𝑓𝑖𝑛+𝜑𝑖) + ℎ (𝑛) , (2)

where 𝑎𝑖 = 𝐴 𝑖/2, 𝑓𝑖 = 𝐹𝑖, 𝑓𝑃/2+𝑖 = −𝐹𝑖, for 1 ≤ 𝑖 ≤ 𝑃/2.
ForM serial observed signal, (2) is constructed as

𝑌 (𝑛) = [𝑦 (𝑛) 𝑦 (𝑛 + 1) ⋅ ⋅ ⋅ 𝑦 (𝑛 +𝑀 − 1)]
= 𝑃∑
𝑖=1

𝑠𝑖 (𝑛) + ℎ (𝑛) , (3)

where 𝑀 >> 𝑃, 𝑠𝑖(𝑛) = [1, 𝑒j2𝜋𝑓𝑖 , 𝑒j4𝜋𝑓𝑖 , . . . ,𝑒j2𝜋(𝑀−1)𝑓𝑖]𝑎𝑖𝑒j2𝜋𝑓𝑖𝑛.
If set 𝐷(𝑓𝑖) = [1, 𝑒j2𝜋𝑓𝑖 , 𝑒j4𝜋𝑓𝑖 , . . . , 𝑒j2𝜋(𝑀−1)𝑓𝑖]𝑇, 𝐹𝐷 =[𝐷(𝑓1),𝐷(𝑓2), . . . ,𝐷(𝑓𝑀)], 𝐴 = [𝑎1𝑒j2𝜋𝑓1𝑛, 𝑎2𝑒j2𝜋𝑓2𝑛, . . . ,𝑎𝑀𝑒j2𝜋𝑓𝑀𝑛],Y(n) is rewrote as

𝑌 (𝑛) = 𝐹𝐷 ⋅ 𝐴 + ℎ (𝑛) . (4)

Here, 𝐹𝐷 is a M×P Vander monde matrix and also a space
spanned by𝐷(𝑓𝑖).

The autocorrelation matrix of 𝑌(𝑛) is
𝑅𝑦𝑦 = 𝐸 {𝑌 (𝑛)𝑌𝑇 (𝑛)} = 𝐹𝐷 ⋅ 𝐸 {𝐴𝐴𝑇} ⋅ 𝐹𝐷𝑇 + 𝜏2𝐼, (5)

where T represents the matrix conjugate transpose, E is the
mathematical expectation, and 𝐼 is an identity matrix.

The eigenvalue Σ = {𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑃 ≥ 𝜆𝑃+1 ≥ . . . ≥𝜆𝑀} and corresponding eigenvector𝑈𝑆𝑁 = {𝑈1,𝑈2, . . . ,𝑈𝑀}
are derived from eigenvalue decomposition of the 𝑅𝑦𝑦. That
is
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𝑅𝑦𝑦 = 𝑈𝑆𝑁Σ𝑈𝑇𝑆𝑁 = [𝑈𝑆 𝑈𝑁] [Σ𝑆 0
0 Σ𝑁] [𝑈𝑆 𝑈𝑁]

𝑇

= 𝑈𝑆Σ𝑆𝑈𝑇𝑆 +𝑈𝑁Σ𝑁𝑈𝑇𝑁.
(6)

In the space 𝑈𝑆𝑁, the subspace 𝑈𝑆, as well as the space 𝐹𝐷,
spanned by eigenvectors {𝑈1,𝑈2, . . . ,𝑈𝑃} corresponding to
Top-P larger eigenvalues is the signal subspace. The subspace
𝑈𝑁 spanned by eigenvectors {𝑈𝑃+1,𝑈𝑃+2, . . . ,𝑈𝑀} corre-
sponding to the remaining eigenvalues is the noise subspace.

Since𝑈𝑆 and𝑈𝑁 are orthogonal, the vector of each signal
component is also orthogonal to noise subspace, which is

𝐷 (𝑓𝑖) ⊥ 𝑈𝑁. (7)

According to (7), the MUSIC pseudospectrum is defined as

PM (𝑓) = 1𝐷 (𝑓)𝑇 ⋅𝑈𝑁2
. (8)

For one pure sinusoid component included in signal y(n),
if its frequency is f i, PM(f) will have a peak at f i. Therefore,
the signal frequency estimation can be achieved by searching
the peaks of PM (f) with the step �f. In a real application, the
𝑅𝑦𝑦 need to be estimated using observation data.

The specific steps of traditional MUSIC are described as
follows:

Step 1. Take a group of observation data and estimate the
autocorrelation matrix 𝑅𝑦𝑦.

Step 2. Perform the eigenvalue decomposition of 𝑅𝑦𝑦 to
generate the signal subspace𝑈𝑆 and the noise subspace 𝑈𝑁.

Step 3. According to (8), calculate MUSIC pseudospectrum
with the step �f.

Step 4. Find all the peaks in the pseudospectrum, and then
determine the frequencies of all pure sinusoids.

2.2. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is a global optimization technique simulating
behavior of biological colony [26]. For PSO, each particle
represents a solution and has three intrinsic properties.
Two of them are the position and velocity, respectively,
represented by the vectors 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐷) and 𝑣𝑖 =(V𝑖1, V𝑖2, . . . , V𝑖𝐷). The third is the fitness that is determined
by the fitness function. Each particle keeps flying in feasible
space and adjusts its flight path according to two extremum
particles. One is its personal best position 𝑝𝑖, i.e., its own fly-
ing experiences. The other is the global best position 𝑝𝑔, i.e.,
its companions’ flying experiences. PSO is an optimization
tool based on iteration. For the (t+1)-th iteration, the position
and velocity of each particle are updated by the following
equations:

V𝑖,𝑗 (𝑡 + 1) = 𝑤V𝑖,𝑗 (𝑡) + 𝑐1𝑟1 (𝑝𝑖,𝑗 (𝑡) − 𝑥𝑖,𝑗 (𝑡))
+ 𝑐2𝑟2 (𝑝𝑔,𝑗 (𝑡) − 𝑥𝑖,𝑗 (𝑡)) (9)

𝑥𝑖,𝑗 (𝑡 + 1) = 𝑥𝑖,𝑗 (𝑡) + V𝑖,𝑗 (𝑡 + 1) , (10)

where 𝑤 is an inertia weight, c1, c2 are two learn-
ing factors, r1, r2 are two random numbers in [0, 1],
V𝑖𝑗𝜖[−Vmax, Vmax], Vmax is maximum velocity set by users, 𝑖 =1, 2, . . . ,K, K is the number of the particle swarm, 𝑗 =1, 2, . . . ,D, D is the dimension of the search space.

To simplify PSO, a bare-bones PSO algorithm (BBPSO)
was proposed in 2003 [27]. InBBPSO, aGaussian distribution
about the position information of pi and pg is used to update
the positions of all particles.

𝑥𝑖,𝑗 (𝑡 + 1) = 𝑁(𝜇𝑖,𝑗 (𝑡) , 𝜎2𝑖,𝑗 (𝑡)) (11)

where 𝜇𝑖,𝑗(n) = (𝑝𝑖,𝑗(𝑛) + 𝑝𝑔,𝑗(𝑛))/2 is the mean of the
Gaussian distribution and 𝜎2𝑖,𝑗(n) = |𝑝𝑖,𝑗(n) − 𝑝𝑔,𝑗(n)| is the
standard deviation of the Gaussian distribution. Compared
with the standard PSO algorithm, BBPSO need not to set
up control parameters, such as inertia weight and learning
factor.Therefore, BBPSO is more suitable for the engineering
application.

3. Improved MUSIC Based on NBPSO

3.1. Niche BBPSO (NBPSO). Actually, the spectrum peak
search of MUSIC is a multimodal optimization problem.
One of feasible methods for this problem is designing a
multimodal algorithm to find all global optima and local
optima as many as possible. Both the standard PSO and
BBPSO are global optimization algorithms. However, they
can only find out one optimal solution. In their evolution
process, because of the selective pressure, they cannot get
more than one global optimal solution or some better local
optimal solutions. Therefore, for solving the multimodal
optimization problem, scholars have introduced the niche
technology into the evolutionary algorithm and presented
many niche strategies, such as the preselection technique, the
crowding strategy, the fitness sharing strategy, and the species
conserving strategy [28].

According to the characteristics of BRB fault signal, an
improved seed selection strategy is proposed in this section
based on [29]. Meanwhile, we introduce it into BBPSO to
form a new algorithm (named, niche bare-bones particle
swarm optimization, NBPSO), which can realize the multi-
modal search. Comparing to [29], three differences in
NBPSO are introduced: (1) the seeds are selected from the
personal best positions of all particles to prevent oscillation;(2) define the species similarity 𝜎 to maintain the diversity
of seeds, where 𝜎 is the Euclidean distance between any two
seeds; (3) the formation of subpopulations is not dependent
on the niche radius. Instead, the nonseed particles are
attributed to the nearest seed. The pseudocode of improved
seed selection strategy is shown in Algorithm 1 . Algorithm 1
is reproduced from the published article titled “Adaptively
Choosing Neighbourhood Bests Using Species in a Particle
Swarm Optimizer for Multimodal Function Optimization,”
which is cited in the references [28].

The seed selection strategy in Algorithm 1 is executed
in each generation of evolutionary process. First, arrange
all the personal best positions in the descending order with
the fitness values to form a set 𝑆𝑝𝑏𝑒𝑠𝑡. Second, calculate the
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Input: Spbest-containing all particles sorted in
decreasing order fitness
Output: 𝑋𝑠-containing dominating particles
identified as species seeds

begin𝑋𝑠 =⌀;
while (not reaching the end of Spbest) do
found← FALSE;
for all 𝑥∗ ∈ 𝑋𝑠 do

if (𝑑(𝑥∗, 𝑥) ≤ 𝜎∗) then
found← TRUE;
break;

end (if)
end (for)
if (not found) then

let 𝑋𝑠 ← 𝑋𝑠 ∪ {𝑥};
end (if)

end (while)
end

Algorithm 1: The algorithm for determining the species seeds.

Euclidean distances between each individual in 𝑆𝑝𝑏𝑒𝑠𝑡 and
element in the seed set𝑋𝑠. If all Euclidean distances are larger
than 𝜎∗, the current personal best position is added to𝑋𝑠.

The specific steps of NBPSO are described as follows.

Step 1. Initialize the positions of all particles, personal best
positions and seed set𝑋𝑠. Set algorithmparameters including
the population size, maximum iteration, and species similar-
ity threshold 𝜎∗.
Step 2. Calculate particles’ fitness.

Step 3. Update particles’ personal best positions 𝑝𝑖.

Step 4. Arrange all 𝑝𝑖 in the descending order according to
the fitness values.

Step 5. Determine and update the seeds according to
Algorithm 1 .

Step 6. Calculate the distance between each particle and each
seed to determine which seed the particle belongs to.

Step 7. Update the positions of particles according to (11),
where 𝑝g is replaced with a seed.

Step 8. If the stop condition (the fitness error is less than the
threshold or the iteration number ismore than themaximum
number) ismet, stop the iterative procedure and output all the
global optimal positions, some better local optimal positions
and their fitness values. Otherwise, return to Step 2 and
continue the search.

3.2. Improved MUSIC. In this section, we replace the fixed-
step traversal with NBPSO in MUISC to improve the accu-
racy and speed of peak search. According to the characters of
MUSIC spectrum, the fitness function is defined as

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥𝑖) = 𝑒 (𝑥𝑖)𝑇 ⋅𝑈𝑁 ⋅𝑈𝑇𝑁 ⋅ 𝑒 (𝑥𝑖) . (12)

The specific steps of improved MUSIC are described as
follows:

Step 1. Take a group of observation data and estimate the
autocorrelation matrix 𝑅𝑦𝑦.

Step 2. Perform the eigenvalue decomposition of 𝑅𝑦𝑦 to
generate the signal subspace 𝑈𝑆 and the noise subspace 𝑈𝑁.

Step 3. Encode f i in (2) with real numbers and choose (12) as
the fitness function.

Step 4. Search multispectral peaks using NBPSO to obtain
the frequency of each component in signal 𝑦(𝑛).
4. Least-Squares Amplitude Estimation and
New BRB Fault Detection Method

4.1. Amplitude Estimation Using Least-Squares Criterion.
Under the condition of BRB fault, there are three major
harmonics, the fundamental harmonic and the strongest
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fault-related components, around 50Hz. So the stator current
signal filtered by a band-pass filter can be represented as

𝑖𝑚 (𝑡) = 𝛼1𝑒j2𝜋𝑓1𝑡 + 𝛼2𝑒−j2𝜋𝑓1𝑡 + 𝛼3𝑒j2𝜋𝑓1−2𝑠𝑡
+ 𝛼4𝑒−j2𝜋𝑓1−2𝑠𝑡 + 𝛼5𝑒j2𝜋𝑓1+2𝑠𝑡 + 𝛼6𝑒−j2𝜋𝑓1+2𝑠𝑡, (13)

where 𝑓1−2s and 𝑓1+2s are the frequencies of the strongest
fault-related components and 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼6]𝑇 is the
model parameter. Since the frequency of each component in
stator current can be determined accurately with theNBPSO-
based MUSIC, f 1, 𝑓1−2s and 𝑓1+2s are considered to be known
parameters. Based on least-squares criterion, define an error
function 𝑓(𝛼) between model current im and actual current
is. Tomake the im fit the is, the error function value is required
minimum, i.e.,

min {𝑓 (𝛼)} = min{ 𝑁∑
𝑖=1

𝑟2𝑖 } , (14)

where 𝑟𝑖 = 𝑖𝑠(𝑡𝑖) − 𝑖𝑚(𝑡𝑖), 𝑡𝑖 = 𝑖 ⋅ Ts, Ts and N are sampling
interval and points.

If the error function 𝑓(𝛼) reaches to a minimum, the
amplitude and phase of each component in is can be estimated
from its solution 𝛼∗. Therefore, how to find the least-squares
solution 𝛼∗ is the first mission. Fortunately, (14) is a linear
least-squares problem, because f 1, 𝑓1−2s and 𝑓1+2s can be pre-
determined.

Many methods have been proposed for the linear least-
squares problem, such as the SVD method and the QR de-
composition. For the stability and reliability, the SVDmethod
has been widely used. This section also adopts it.

The parameters of fundamental harmonic and BRB
fault-related components are estimated by the least-squares
method as follows.

(1) According to the results from improved MUSIC,
construct the design matrix𝐻 as follows:

𝐻 =
[[[[[[[
[

𝑒j2𝜋𝑓1𝑡1 𝑒−j2𝜋𝑓1𝑡1 𝑒j2𝜋𝑓1−2𝑠𝑡1 ⋅ ⋅ ⋅ 𝑒−j2𝜋𝑓1+2𝑠𝑡1
𝑒j2𝜋𝑓1𝑡2 𝑒−j2𝜋𝑓1𝑡2 𝑒j2𝜋𝑓1−2𝑠𝑡2 ⋅ ⋅ ⋅ 𝑒−j2𝜋𝑓1+2𝑠𝑡2

... ... ... ⋅ ⋅ ⋅ ...
𝑒j2𝜋𝑓1𝑡𝑁 𝑒−j2𝜋𝑓1𝑡𝑁 𝑒j2𝜋𝑓1−2𝑠𝑡𝑁 ⋅ ⋅ ⋅ 𝑒−j2𝜋𝑓1+2𝑠𝑡𝑁

]]]]]]]
]
. (15)

(2) Decompose 𝐻 using SVD to make 𝐻 = 𝑈Σ𝑉𝑇,
here𝑈 and 𝑉 are both orthogonal matrixes, and Σ =
diag(𝜎1, 𝜎2, . . . , 𝜎6).

(3) Calculate 𝛼∗ = 𝑉 ⋅ Σ−1 ⋅𝑈𝑇 ⋅ 𝑖𝑠.
(4) Estimate the amplitude and phase of each component

in is, by calculating the modulus and argument of 𝛼∗.

4.2. Process of the Proposed Detection Method. Combining
improved MUSIC and least-squares amplitude estimation,
a new BRB fault detection method of the induction motor
is proposed. As shown in Figure 1, the proposed scheme
consists of four modules: Improved MUSIC, Current model,

Least-square estimator, and Fault identification. In the
Improved MUSIC module, the frequencies of fundamental
and fault-related components are determined. Using the
frequency values, the model current im is built. The ampli-
tude estimate is calculated by least-square estimator. In last
module, frequencies and amplitudes are used to identify BRB
fault.

The specific steps of the new fault detection method are
described as follows:

Step 1. Sample the stator current of one phase and estimate
the autocorrelation matrix 𝑅yy using current data.

Step 2. Perform the eigenvalue decomposition of𝑅yy to gene-
rate the signal subspace 𝑆 and the noise subspace 𝐺.

Step 3. Carry out multispectral peaks search in frequency
domain by NBPSO to determine the frequency of each com-
ponent in current signal.

Step 4. Corresponding to each frequency from Step 3, build
the current model.

Step 5. Estimate the amplitude of each component accurately
using least-squares estimation method.

Step 6. Based on the amplitude ratio of the sideband compo-
nents and fundamental harmonic, it is determined whether
the BRB fault occurs or not.

5. Results and Discussion Based on the
Simulation and Experiment

5.1. Simulation Results and Discussion. To test the perfor-
mance of the new detection method, a simulated current is
built as follows.

𝑖𝑏𝑟 (𝑡) = 𝐼1 cos [2𝜋𝑓1𝑡 + 𝜑1]
+ 𝐼𝑏𝑝1 cos [2𝜋 (1 − 2𝑠) 𝑓1𝑡 + 𝜑𝑏𝑝1]
+ 𝐼𝑏𝑛1 cos [2𝜋 (1 + 2𝑠) 𝑓1𝑡 + 𝜑𝑏𝑛1] + 𝑛 (𝑡)

(16)

where I1=10, f 1=50, 𝜑1=𝜋/3 are the parameters of fun-
damental harmonic. When the BRB fault is slight, the
amplitudes of components at f br1 are much smaller than
the fundamental harmonic’s, and their frequency intervals
are also small. Therefore, set Ibp1=Ibn1=0.2, (1-2s)f 1=49.5438,
(1+2s)f 1=50.4562,𝜑bp1=2𝜋/3 and 𝜑bn1=8𝜋/9. Meanwhile, n(t)
is a random noise with uniform distribution in the interval
[-0.01, 0.01]. The sampling frequency of the simulated signal
is 250Hz; the size of the data window is 500. The NBPSO
parameter settings are shown in Table 1. To compare the
performance, DFT and traditional MUSIC, which have been
widely applied in BRB fault detection, are also performed in
this simulated signal.

Data processing results of three methods are shown in
Figure 2. The DFT result is not satisfactory. As Figure 2(a)
shows, there is only one peak that is the fundamental
harmonic.The fault-related components ((1±2s) f 1 ) which are
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Induction Motor

Improved MUSIC

Search for the frequency values 
of all peaks by improved MUSIC 
based on NBPSO.

PSO Particles

MUSIC Spectrum

Current data

Least-Squares Amplitude Estimation

Frequency values of all 
peaks nearby 50 Hz

Current Model with BRB Fault

Least-Squares Problem

SVD 
Method

Amplitude and frequency 
values of all components 
nearby 50 Hz

BRB Fault Identify

im (t) = 1e
j2f1t + 2e

-j2f1t + 3e
j2f1−2t +

4e
-j2f1−2t + 5e

j2f1+2t + 6e
-j2f1+2t

ＧＣＨ {f()} = ＧＣＨ{ N∑
i=1

r
2
i }

Figure 1: Block diagram of the proposed method.

Table 1: Parameter configurations of NBPSO.

Algorithm Population size Maximum iteration Other parameters
NBPSO 60 30 Seed number sn=3, species similarity threshold 𝜎∗ = 0.4.

submerged completely by the fundamental harmonic are not
distinguished. The reason for this case is that the frequency
resolution with 2s data window is 0.5Hz, while the frequency
interval between (1±2s)f 1 components and f 1 component is
only 0.4562Hz. Therefore, the detection reliability of BRB
fault using DFT method is low, when the data window is
short. Fortunately, DFT method has very high accuracy of
fundamental frequency as well as traditional MUSIC. The
reason is that 50Hz is an integer multiple of the frequency
resolution.

For the traditional MUSIC method, it has a very high
frequency resolution, even with a short-time data window.
As Figures 2(b), 2(c), and 2(d) show, the fault-related peaks
are identified clearly. Due to high frequency resolution
MUSIC can use shorter data window to achieve the desired
frequency resolution, avoiding the impact of load fluctuations
or noise in fault detection effectively. This advantage makes
MUSIC suitable for the spectrum analysis of the stator
current signal, especially in the BRB fault detection for the
induction motor. However, the traditional MUSIC requires
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Figure 2: Simulated current spectrum analyzed by three methods. (a) DFT spectrum, (b) MUSIC spectrum with search step �f=0.1 Hz, (c)
MUSIC spectrum with search step �f=0.01 Hz, (d) MUSIC spectrum with search step �f=0.001 Hz, (e) spectrum of the proposed method.

a predetermined peak search step �f and then traverses
the whole frequency domain to find spectrum peaks. As a
result of fixed-step search, the frequencies of all spectrum
peaks are integer multiples of the step size. Thus frequency

precision is limited. With the increase of the step size, the
frequency error increases, and the peak amplitudes reduce in
the spectrum. It means that the reliability of BRB detection is
also limited by peak search step �f ; that is, too large search
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Table 2: Statistical results of the proposed method.

Signal parameters Actual values Estimation result (average) Average error Maximum error
f 1/Hz 50.0000 50.0000 1.48×10−7 3.78×10−5
I1 /A 10 10.0000 5.47×10−6 8.33×10−5𝜑1 /rad 𝜋/3 1.0472 3.67×10−7 2.61×10−4
(1-2s)f 1/Hz 49.5438 49.5438 5.36×10−5 7.40×10−4𝐼bp1/A 0.2 0.2000 5.00×10−6 2.89×10−4
𝜑bp1/rad 2𝜋/3 2.0941 3.41×10−4 7.98×10−3
(1+2s)f 1/Hz 50.4562 50.4562 2.81×10−5 7.87×10−4𝐼bn1/A 0.2 0.2000 9.72×10−6 1.53×10−4
𝜑bn1/rad 8𝜋/9 2.7923 1.93×10−4 7.52×10−3

step makes the spectrum unable to identify some tiny fault-
related components. Moreover, it is clear that the amplitudes
of spectrum peaks obtained by MUSIC make no sense in
identification of each component, even not reflecting the real
magnitude value of each component.

Figure 2(e) shows the result of the proposed method. As
can be seen from the graph, compared with the traditional
MUSIC (search step �f=0.001 Hz), the improved MUSIC
provides a higher frequency resolution. Meanwhile, the pro-
posed method allows it to precisely estimate the amplitudes
and phases of components, while traditional MUSIC cannot.
Therefore, the proposedmethod combiningMUSIC,NBPSO,
and least-squares estimation is more reliable in the BRB fault
detection of the induction motor.

Since NBPSO is a stochastic optimization algorithm, it
is often necessary that the proposed method is executed
50 times independently to test its robustness. The statistical
results are shown in Table 2.

Comparing Figures 2(b), 2(c), and 2(d) with Table 2, it
can be seen that the spectrum peak search using NBPSO im-
proves frequency accuracy greatly. In the statistical results,
the maximum frequency error is only 7.87×10−4 even
3.78×10−5 for fundamental frequency, which is more accurate
than the fixed-step search of the traditional MUSIC with
a step size of 0.001Hz. The average frequency error which
can better reflect the accuracy of the proposed method
reaches 5.36×10−5 (maximum of three frequency errors). By
contrast, the fixed-step search requires a step size of 0.00001
Hz to achieve the same accuracy. Therefore, the improved
MUSIC based on NBPSO has higher search efficiency and
accuracy. It is more suitable for the BRB fault detection of
the induction motor. Compared with traditional MUSIC,
another advantage is that the proposed method can accu-
rately estimate the amplitudes and initial phases of the funda-
mental and fault-related components. As Table 2 shows,
the estimation accuracy of amplitudes reaches 9.72×10−6 or
higher, the phases’ reaches 3.41×10−4 or higher. In addition,
to verify this method robustness, we also randomly changed
the fundamental frequency, slip, and amplitude of each
component in (16). The calculation accuracy of final results
is consistent with Table 2.

Table 3 compares the three algorithms’ computational
costs. DFT has absolute advantage in this comparison; how-
ever, its frequency resolution is low with short data window.
For the MUSIC, the search time increases sharply with the
decrease of step. Namely, the improvement of accuracy is at
the expense of computation. In contrast, the calculation cost
of the proposed method is only 0.365s, which is equivalent to
the traditional MUSIC in the step Δf=0.1 Hz.

Therefore, the proposed method obtains a prominent
improvement on solution accuracy and search efficiency
contrasting with traditional MUSIC.

5.2. Experimental Results and Discussion. Themain parame-
ters of the experimental induction motor (MODEL Y132M-
4) are shown in Table 4. The experiments are carried out
respectively under the conditions of half load with 1 broken
bar (s=0.022) and full load with 1 broken bar (s=0.04133).The
sampling interval of current signal is 7ms, and data length is
200.The waveforms of stator current signal of phase A in the
two states are shown in Figure 3. The NBPSO parameters are
the same as that in Table 1.

Figure 4 shows the results analyzed by MUSIC, DFT, and
the proposed algorithm, respectively, on the condition of
full load. In this condition, fault feature frequencies are far
from the fundamental frequency, and the amplitudes of fault
feature components are maximal at full load. It means that
fault features are easy to be found. Thus we can see that the
three algorithms can distinguish the fault feature compo-
nents. However, the fault-related peaks are clearer in current
spectrums analyzed by traditional MUSIC and the proposed
method. The reason is that they can overcome the spectrum
leakage problem well. In addition, the algorithms based on
MUSIC have better frequency resolution and calculation
accuracy. Figure 4 also shows that whether for fundamental
frequency or for fault feature frequencies, DFT has a larger
error, but it has an absolute advantage in the computational
time.

Comparing Figure 4(a) with Figure 4(b), we can see that
two methods all have a high accuracy in estimating the
frequency of fault feature components. However, due to
fixed-step search (step �f=0.001), the frequencies estimated



Mathematical Problems in Engineering 9

A
m

pl
itu

de
 (A

)

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

20

30

Time (s)

(a)

A
m

pl
itu

de
 (A

)

0 0.1 0.2 0.3 0.4 0.5
−30

−20

−10

0

10

20

30

Time (s)

(b)

Figure 3: Waveform of stator current. (a) Full load with 1 broken bar. (b) Half load with 1 broken bar.
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Figure 4: Spectrum of stator current under the full load. (a) Spectrum of the proposed method. (b) MUSIC spectrum. (c) DFT spectrum.
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Figure 5: Spectrum of stator current under the half load. (a) Spectrum of the proposed method. (b) MUSIC spectrum. (c) DFT spectrum.

with traditional MUSIC are only the integer multiples of Δf.
Therefore, the estimation results of three spectrum peaks are
45.861Hz, 50.023Hz, and 54.224Hz in Figure 4(b). Compar-
ing Figure 4(b) and Table 5, whether for the fundamental
harmonic or for the fault-related components, the proposed
method can find higher spectrumpeaks (with the same signal
subspace and noise subspace).This cannot only prove that the
spectrum peaks found by traditional MUSIC are not the true
spectrum peaks, but also verify that the improved MUSIC
has a higher accuracy. Moreover, the proposed method can
accurately determine the amplitude and initial phase of each
component signal. In addition, it also has a higher computing
speed. In this experiment, its computing time is only 0.113s
while traditional MUSIC’s is 4.054s (Δf = 0.001).

Figure 5 shows the analysis results of themotor stator cur-
rent under the half load with 1 broken bar. In this case, fault
feature components are weaker and closer to fundamental
harmonic in spectrum, so it is difficult to be extracted and
highlighted. The characters of each method are consistent
with the above analysis under the full load. Figure 5 also

verifies the effectiveness, feasibility, and superiority of the
proposed method.

6. Conclusions

To improve the accuracy and reliability of the BRB fault
detection for induction motor, combining NBPSO-based
MUSIC and least-squares amplitude estimation, a new BRB
fault detection method is proposed and applied in a real
motor. Although the computation cost of the proposed
method is more than the DFT’s, it is more reliable to detect
BRB fault due to higher frequency resolution with short-time
data window. Comparing with the traditional MUSIC, the
proposed algorithm also has a higher accuracy, efficiency,
and reliability. In our experiment of a real induction motor,
two load conditions are used to verify the proposed method.
The results show that it cannot only estimate the amplitude
of each component accurately and improve the accuracy of
spectrum peak search, but also reduce the computation time
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Table 3: Computation cost comparison for the methods.

Methods DFT MUSIC with different search step Proposed method (average time in 50 runs)
�f=0.1 �f=0.01 �f=0.001

Computational cost t/s 0.001 0.101 0.814 7.732 0.365

Table 4: Specifications of the test motor.

Related power/kW Related voltage/V Related current/A Related speed/ (r/min) No. of rotor bars
7.5 380 15.4 1440 32

Table 5: Results of improved MUSIC.

Test condition Parameters Amplitudes of peaks/dB Frequencies of peaks /Hz

Full load with 1 broken bar
f 1 56.7599 50.0226

(1-2s)f 1 -18.4726 45.8700
(1+2s)f 1 -10.8207 54.2190

Half load with 1 broken bar
f 1 70.5717 50.0047

(1-2s)f 1 -15.1455 47.8055
(1+2s)f 1 -14.5698 52.1934

greatly. These advantages make it more usable for fault motor
operating with small slip and fluctuant load.
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