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We introduce in this paper a new technique, a semiexplicit linearized Crank-Nicolson finite difference method, for solving the
generalized Rosenau-Kawahara equation.We first prove the second-order convergence in 𝐿∞-norm of the difference scheme by an
induction argument and the discrete energymethod, and then we obtain the prior estimate in 𝐿∞-norm of the numerical solutions.
Moreover, the existence, uniqueness, and satiability of the numerical solution are also shown. Finally, numerical examples show
that the new scheme is more efficient in terms of not only accuracy but also CPU time in implementation.

1. Introduction

In the study of the dynamics of dense discrete systems,
Rosenau in [1, 2] proposed the so-called Rosenau equation:

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝑢𝑢𝑥 = 0, (1)

as theKdV equation cannot describe the phenomena ofwave-
wave and wave-wall interactions. In [3], the existence and
the uniqueness of the solution of (1) have been studied. For
further consideration of nonlinear waves, adding the viscous
terms 𝑢𝑥𝑥𝑥 and−𝑢𝑥𝑥𝑥𝑥𝑥 to (1), respectively, gives the following
equations:

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥 + 𝛾 (𝑢𝑝)𝑥 = 0, (2)

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥𝑥 + 𝛾 (𝑢𝑝)𝑥 = 0, (3)

where𝛼,𝛽, and 𝛾 are all real constants, while for the exponent,
we assume that 𝑝 ≥ 2 is an integer. Equations (2) and (3) are
called the generalized Rosenau-RdV equation [4–6] and the
generalized Rosenau-Kawahara equation [7, 8]. When 𝑝 =2, they can be considered as Rosenau-KdV equation and the
Rosenau-Kawahara equation, respectively.

As we all know, most of the time, we need to think of the
numerical solution of nonlinear evolution equations. Many
scholars in this field have carried out good work. In [9–22],

the nonlinear Crank-Nicolson scheme (see [9, 10, 13, 16,
19, 21]) and the linear finite difference scheme (see [11–15,
18, 20, 22]) have been used for the generalized Rosenau-
type equations, including the Rosenau-Burgers equation, the
Rosenau-RLW equation, the Rosenau-KdV equation, and the
Rosenau-Kawahara equation.Those classical finite difference
schemes often use the formula (𝑢𝑝)𝑥 = (𝑝/(1 + 𝑝))[𝑢𝑝−1𝑢𝑥 +(𝑢𝑝)𝑥] to construct second-order convergent linear finite
difference scheme [11–15, 18, 20, 22]. In [23], the authors used
the formula (𝑢2)𝑥 = 2𝜃𝑢𝑢𝑥+(1−𝜃)(𝑢2)𝑥 and proposed a linear
finite difference scheme, but the proof of the prior estimate in𝐿∞-norm is not perfect.

In this paper, using technique [(𝑈𝑛𝑗 )𝑝]𝑥 = 𝑝((3/2)𝑈𝑛𝑗 −(1/2)𝑈𝑛−1𝑗 )𝑝−1(𝑈𝑛+1/2𝑗 )𝑥, we propose a semiexplicit linearized
Crank-Nicolson finite difference method for the generalized
Rosenau-Kawahara equation (3) with an initial condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ [𝑥𝐿, 𝑥𝑅] , (4)
and boundary conditions

𝑢 (𝑥𝐿, 𝑡) = 𝑢 (𝑥𝑅, 𝑡) = 0,
𝑢 (𝑥𝐿, 𝑡)𝑥 = 𝑢 (𝑥𝑅, 𝑡)𝑥 = 0,
𝑢 (𝑥𝐿, 𝑡)𝑥𝑥 = 𝑢 (𝑥𝑅, 𝑡)𝑥𝑥 = 0,

𝑡 ∈ (0, 𝑇] .
(5)
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By comparisonwith the classical second-order accuracy finite
difference scheme on a test problem [15, 20–22], our new
scheme improves the CPU time and gives a better maximal
error ‖𝑒𝑛‖∞ of numerical solutions. But the prior estimate
in 𝐿∞-norm of the numerical solutions is very hard to
obtain directly; the proofs of convergence and stability are
difficult for our new schemes (7). So, the discrete energy
analysis method [24] and an induction argument (see [25–
27]) are used to prove the second-order convergence and
stability. Furthermore, our new method has a wide range
of applications for the generalized Rosenau-type equations
including the Rosenau-Burgers equation, the Rosenau-KdV
equation, and the Rosenau-RLW equation.

The content of this paper is organized as follows. In
the following, we propose a semiexplicit linearized Crank-
Nicolson finite difference scheme for initial boundary value
problems (3)–(5). In Section 3, we prove the second-order
convergence in 𝐿∞-norm of the difference scheme by an
induction argument and the discrete energy method, and
then we obtain the prior estimate in 𝐿∞-norm of the
numerical solutions. Moreover, based on the prior estimate,
the existence and uniqueness of the numerical solution are
also shown. Section 4 is devoted to the numerical tests of
the new scheme and shows that our scheme has reliable
accuracy and spends less CPU time than the classical schemes
in implementation. Finally, we finish our paper by concluding
remarks in the last section.

2. Finite Difference Schemes

In this section, we give a complete description of our
numerical method for the initial value problem (3)–(5). We
first give some notation which will be used in this paper. As
usual, we let 𝐽,𝑁 be any positive integers. Let ℎ = (𝑥𝑅−𝑥𝐿)/𝐽,𝜏 = 𝑇/𝑁; the domain of solution is defined to be Ωℎ𝜏 =Ωℎ × Ω𝜏, which is covered by uniform grid Ωℎ = {𝑥𝑗 = 𝑥𝐿 +𝑗ℎ; 𝑗 = 0, 1, . . . , 𝐽}, Ω𝜏 = {𝑡𝑛 = 𝑛𝜏; 𝑛 = 0, 1, . . . , 𝑁}. Suppose𝑈 = {𝑈𝑛𝑗 | 𝑗 = 0, 1, . . . , 𝐽, 𝑛 = 0, 1, . . . , 𝑁} is a discrete
function on Ωℎ𝜏 and denote 𝑢(𝑥𝑗, 𝑡𝑛) ≡ 𝑢𝑛𝑗 , 𝑢(𝑥𝑗, 𝑡𝑛) ≈ 𝑈𝑛𝑗 ,𝑍0ℎ = {𝑈 = (𝑈𝑗) | 𝑈−2 = 𝑈−1 = 𝑈0 = 𝑈𝐽 = 𝑈𝐽+1 =𝑈𝐽+2 = 0, 𝑗 = −2, −1, 0, 1, . . . , . . . , 𝐽, 𝐽+1, 𝐽+2},𝐶 as a general
positive constant independent of step sizes ℎ and 𝜏whichmay
have different values at different occurrences. Introduce the
following notations:

(𝑈𝑛𝑗 )𝑥 = 𝑈𝑛𝑗+1 − 𝑈𝑛𝑗ℎ ,
(𝑈𝑛𝑗 )𝑥 = 𝑈𝑛𝑗 − 𝑈𝑛𝑗−1ℎ ,
(𝑈𝑛𝑗 )𝑥 = 𝑈𝑛𝑗+1 − 𝑈𝑛𝑗−12ℎ ,
(𝑈𝑛𝑗 )𝑡 = 𝑈𝑛+1𝑗 − 𝑈𝑛𝑗𝜏 ,

(𝑈𝑛+1/2𝑗 ) = 𝑈𝑛+1𝑗 + 𝑈𝑛𝑗2 ,
󵄩󵄩󵄩󵄩𝑈𝑛󵄩󵄩󵄩󵄩2 = ⟨𝑈𝑛, 𝑈𝑛⟩ ,

⟨𝑈𝑛, 𝑉𝑛⟩ = ℎ𝐽−1∑
𝑗=0

𝑈𝑛𝑗𝑉𝑛𝑗 ,
󵄩󵄩󵄩󵄩𝑈𝑛󵄩󵄩󵄩󵄩∞ = max

0≤𝑗≤𝐽−1

󵄨󵄨󵄨󵄨󵄨𝑈𝑛𝑗 󵄨󵄨󵄨󵄨󵄨 .
(6)

In this paper, we propose a new linear finite difference
scheme for the generalized Rosenau-Kawahara equation
(3)–(5) which is written as

(𝑈𝑛𝑗 )𝑡 + (𝑈𝑛𝑗 )𝑥𝑥𝑥𝑥𝑡 + (𝑈𝑛+1/2𝑗 )
𝑥
+ 𝛼 (𝑈𝑛+1/2𝑗 )

𝑥𝑥𝑥

− 𝛽 (𝑈𝑛+1/2𝑗 )
𝑥𝑥𝑥𝑥𝑥

+ 𝑝 ((3/2)𝑈𝑛𝑗 − (1/2)𝑈𝑛−1𝑗 )𝑝−1 (𝑈𝑛+1/2𝑗 )
𝑥
= 0,

𝑈0𝑗 = 𝑢0 (𝑥𝑗) , (𝑗 = 0, 1, 2, . . . , 𝐽)
𝑈𝑛 ∈ 𝑍0ℎ,
(𝑈𝑛0 )𝑥 = (𝑈𝑛𝐽 )𝑥 ,
(𝑈𝑛0 )𝑥𝑥 = (𝑈𝑛𝐽 )𝑥𝑥 ,

(𝑛 = 0, 1, 2, . . . , 𝑁) .

(7)

This scheme is a semiexplicit linearized Crank-Nicolson
scheme; the truncation error of this scheme is of order𝑂(ℎ2+𝜏2). In this scheme, complicated nonlinear term [(𝑈𝑛𝑗 )𝑝]𝑥 is
extrapolated by𝑝((3/2)𝑈𝑛𝑗 −(1/2)𝑈𝑛−1𝑗 )𝑝−1(𝑈𝑛+1/2𝑗 )𝑥.Thus, we
only need to solve a linear system of equations in computing𝑈𝑛+1𝑗 . Hence, scheme (7) can be expected to be more efficient.

3. Convergence and Stability

In this section, we prove the convergence and stability of
scheme (7). Let 𝑒𝑛𝑗 = 𝑢𝑛𝑗 − 𝑈𝑛𝑗 , where 𝑢𝑛𝑗 and 𝑈𝑛𝑗 are the
solutions of (3)–(5) and (7), respectively. We then obtain the
following error equation:

𝑟𝑛𝑗 = (𝑒𝑛𝑗)𝑡 + (𝑒𝑛𝑗)𝑥𝑥𝑥𝑥𝑡 + (𝑒𝑛+1/2𝑗 )
𝑥
+ 𝛼 (𝑒𝑛+1/2𝑗 )

𝑥𝑥𝑥

− 𝛽 (𝑒𝑛+1/2𝑗 )
𝑥𝑥𝑥𝑥𝑥

+ 𝑅𝑛𝑗 ,
(8)

where

𝑅𝑛𝑗 = 𝑝 ((3/2) 𝑢𝑛𝑗 − (1/2) 𝑢𝑛−1𝑗 )𝑝−1 (𝑢𝑛+1/2𝑗 )
𝑥

− 𝑝 ((3/2)𝑈𝑛𝑗 − (1/2)𝑈𝑛−1𝑗 )𝑝−1 (𝑈𝑛+1/2𝑗 )
𝑥
, (9)

and 𝑟𝑛𝑗 denotes the truncation error. By using Taylor expan-
sion at (𝑥𝑗, 𝑡𝑛+1/2), we easily obtain that the truncation error
of scheme satisfies

𝑟𝑛𝑗 = 𝑂 (ℎ2 + 𝜏2) , 𝜏, ℎ 󳨀→ 0. (10)

The following lemma is a property of scheme (7); we
can obtain that directly from the boundary conditions and
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notations. This is a well known result, which is essential
for existence, uniqueness, convergence, and stability of our
numerical solution.

Lemma 1 (see [18, 24]). For any two discrete functions 𝑈,𝑉 ∈𝑍0ℎ, one has
⟨𝑈𝑥, 𝑉⟩ = − ⟨𝑈,𝑉𝑥⟩ ,
⟨𝑈𝑥, 𝑉⟩ = − ⟨𝑈,𝑉𝑥⟩ ,
⟨𝑈𝑥𝑥, 𝑉⟩ = − ⟨𝑈𝑥, 𝑉𝑥⟩ ,

(11)

and then one has

⟨𝑈,𝑈𝑥𝑥⟩ = − 󵄩󵄩󵄩󵄩𝑈𝑥󵄩󵄩󵄩󵄩 ,
⟨𝑈,𝑈𝑥⟩ = 0,

⟨𝑈,𝑈𝑥𝑥𝑥⟩ = 0,
⟨𝑈,𝑈𝑥𝑥𝑥𝑥𝑥⟩ = 0.

(12)

Furthermore, if (𝑈0)𝑥𝑥 = (𝑈𝐽)𝑥𝑥 = 0, then
⟨𝑈,𝑈𝑥𝑥𝑥𝑥⟩ = 󵄩󵄩󵄩󵄩𝑈𝑥𝑥󵄩󵄩󵄩󵄩 ,

⟨2𝑈𝑛+1/2, 𝑈𝑥𝑥𝑥𝑥𝑡⟩ = 1𝜏 (󵄩󵄩󵄩󵄩󵄩𝑈𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑈𝑛𝑥𝑥󵄩󵄩󵄩󵄩2) . (13)

The following lemmas including Lemmas 2 and 3 are
well known and useful for the proofs of the convergence and
stability. Lemma 4 can be deduced directly from the Cauchy-
Schwarz inequality and Sobolev inequality.

Lemma 2 (discrete Sobolev inequality [24]). For any discrete
function 𝑈 = {𝑈𝑛𝑗 | 𝑗 = 0, 1, . . . , 𝐽, 𝑛 = 0, 1, . . . , 𝑁} on the
finite interval [𝑥𝐿, 𝑥𝑅], there is the inequality

󵄩󵄩󵄩󵄩𝑈𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝐶0√‖𝑈𝑛‖√󵄩󵄩󵄩󵄩𝑈𝑛𝑥󵄩󵄩󵄩󵄩 + ‖𝑈𝑛‖, (14)

or
󵄩󵄩󵄩󵄩𝑈𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝜀 󵄩󵄩󵄩󵄩𝑈𝑛𝑥󵄩󵄩󵄩󵄩 + 𝐾 (𝜀) 󵄩󵄩󵄩󵄩𝑈𝑛󵄩󵄩󵄩󵄩 . (15)

Here, 𝜀, 𝐶0, and 𝐾(𝜀) are three constants independent of 𝑈 ={𝑈𝑛𝑗 | 𝑗 = 0, 1, . . . , 𝐽, 𝑛 = 0, 1, . . . , 𝑁} and 𝜏, ℎ. 𝜀 can be any
small and 𝐾(𝜀) is a constant dependent on 𝜀.
Lemma 3 (discrete Gronwall’s inequality [24]). Suppose that
the discrete function {𝜔𝑛 | 𝑛 = 0, 1, . . . , 𝑁; 𝑁𝜏 = 𝑇} satisfies
the inequality

𝜔𝑛 ≤ 𝐴 + 𝜏 𝑛∑
𝑙=1

𝐵𝑙𝜔𝑙, (16)

where 𝐴 and 𝐵𝑙 (𝑙 = 0, 1, . . . , 𝑁) are nonnegative constants.
Then,

max
1≤𝑛≤𝑁

󵄨󵄨󵄨󵄨𝜔𝑛󵄨󵄨󵄨󵄨 ≤ 𝐴 exp(2𝜏 𝑁∑
𝑙=1

𝐵𝑙) , (17)

where 𝜏 is sufficiently small, such that 𝜏 ⋅max1≤𝑛≤𝑁𝐵𝑙 ≤ 1/2.

Lemma 4 (see [22]). Suppose that 𝑢0 ∈ 𝐻20 [𝑥𝐿, 𝑥𝑅]. Then, the
solution of problems (3)–(5) satisfies

‖𝑢‖𝐿2 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑢𝑥󵄩󵄩󵄩󵄩𝐿2 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑢𝑥𝑥󵄩󵄩󵄩󵄩𝐿2 ≤ 𝐶,
‖𝑢‖𝐿∞ ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑢𝑥󵄩󵄩󵄩󵄩𝐿∞ ≤ 𝐶.

(18)

It should be pointed out that the induction argument
is very useful for proving the convergence of a difference
schemewhose prior estimate is difficult to obtain directly (see
[25–27]). The following theorem shows the convergence of
our scheme (7) with the convergence rate 𝑂(𝜏2 + ℎ2) in the𝐿∞-norm by an induction argument.

Theorem 5. Suppose 𝑢0 ∈ 𝐻20 [𝑥𝐿, 𝑥𝑅], and 𝑢(𝑥, 𝑡) ∈ 𝐶7,3𝑥,𝑡 ;
then the solution of the difference problem (7) converges to the
solution of problem (3)–(5) with order 𝑂(𝜏2 + ℎ2) in the 𝐿∞-
norm, if

32𝐶0 ⋅max (𝐶𝑛−1, 𝐶𝑛) (𝜏2 + ℎ2) ≤ 1,
𝜏 ≤ 1

2𝑝+13𝑝 (𝑝 − 1) (𝐶𝑢 + 1)𝑝−1 .
(19)

Proof. We use the mathematical induction to prove it. First,
from (10) and Lemma 4, we have

󵄩󵄩󵄩󵄩󵄩𝑟𝑛𝑗 󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝑟,
󵄩󵄩󵄩󵄩󵄩𝑢𝑛𝑗󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝑢,

𝑛 = 0, 1, 2, . . . , 𝑁,
(20)

where 𝐶𝑟 and𝐶𝑢 are two constants independent of 𝜏 and ℎ. It
follows from the initial conditions that

󵄩󵄩󵄩󵄩󵄩𝑒0󵄩󵄩󵄩󵄩󵄩 = 0,
󵄩󵄩󵄩󵄩󵄩𝑒0𝑥𝑥󵄩󵄩󵄩󵄩󵄩 = 0,

󵄩󵄩󵄩󵄩󵄩𝑈0󵄩󵄩󵄩󵄩󵄩∞ = 0.
(21)

We also can get 𝑈1 by the C-N scheme. Hence, the following
estimate holds:

󵄩󵄩󵄩󵄩󵄩𝑒1󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑒1𝑥𝑥󵄩󵄩󵄩󵄩󵄩 ≤ (𝜏2 + ℎ2) 𝐶1. (22)

Now, assume that
󵄩󵄩󵄩󵄩󵄩𝑒𝑙󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑙𝑥𝑥󵄩󵄩󵄩󵄩󵄩 ≤ (𝜏2 + ℎ2) 𝐶𝑙,

𝑙 = 0, 1, 2, . . . , 𝑛, (0 ≤ 𝑛 ≤ N) , (23)
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where𝐶𝑙 is a constant independent of 𝜏 and ℎ. Using Lemma 2
and Cauchy-Schwarz inequality, we get

󵄩󵄩󵄩󵄩󵄩𝑒𝑙󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝐶0√󵄩󵄩󵄩󵄩𝑒𝑙󵄩󵄩󵄩󵄩√󵄩󵄩󵄩󵄩𝑒𝑙𝑥󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑒𝑙󵄩󵄩󵄩󵄩 ≤ 12𝐶0 (2 󵄩󵄩󵄩󵄩󵄩𝑒𝑙󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑙𝑥󵄩󵄩󵄩󵄩󵄩)
≤ 32 (𝜏2 + ℎ2) 𝐶0𝐶𝑙,

𝑙 = 0, 1, 2, . . . , 𝑛, (0 ≤ 𝑛 ≤ 𝑁) ,
󵄩󵄩󵄩󵄩󵄩𝑈𝑙󵄩󵄩󵄩󵄩󵄩∞ ≤ 󵄩󵄩󵄩󵄩󵄩𝑢𝑙󵄩󵄩󵄩󵄩󵄩∞ + 󵄩󵄩󵄩󵄩󵄩𝑒𝑙󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝐶𝑢 + 32 (𝜏2 + ℎ2) 𝐶0𝐶𝑙,

𝑙 = 0, 1, 2, . . . , 𝑛, (0 ≤ 𝑛 ≤ 𝑁) .

(24)

Now, computing the inner product of error equation (8) with𝑒𝑛+1/2 and using boundary condition (5) and Lemma 1, we
obtain

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2) + 12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2)
= ⟨𝑟𝑛, 𝑒𝑛+1/2⟩ − ⟨𝑅𝑛, 𝑒𝑛+1/2⟩ = ⟨𝑟𝑛, 𝑒𝑛+1/2⟩
− 𝑝ℎ𝐽−1∑
𝑗=1

(32𝑈𝑛𝑗 − 12𝑈𝑛−1𝑗 )𝑝−1 (𝑒𝑛+1/2𝑗 )
𝑥
𝑒𝑛+1/2𝑗

− 𝑝ℎ𝐽−1∑
𝑗=1

(32𝑒𝑛𝑗 − 12𝑒𝑛−1𝑗 )[𝑝−2∑
𝑘=0

(32𝑢𝑛𝑗 − 12𝑢𝑛−1𝑗 )𝑝−2−𝑘

⋅ (32𝑈𝑛𝑗 − 12𝑈𝑛−1𝑗 )𝑘 (𝑢𝑛+1/2𝑗 )
𝑥
𝑒𝑛+1/2𝑗 ] .

(25)

Using Lemma 1, Lemma 4, Cauchy-Schwarz inequality, and
(24) for

32𝐶0 ⋅max (𝐶𝑛−1, 𝐶𝑛) (𝜏2 + ℎ2) ≤ 1, (26)

we have

− 𝑝ℎ𝐽−1∑
𝑗=1

(32𝑈𝑛𝑗 − 12𝑈𝑛−1𝑗 )𝑝−1 (𝑒𝑛+1/2𝑗 )
𝑥
𝑒𝑛+1/2𝑗 ≤ 𝑝 [2𝐶𝑢

+ 3 (𝜏2 + ℎ2) 𝐶0 ⋅max (𝐶𝑛−1, 𝐶𝑛)]𝑝−1

⋅ ℎ𝐽−1∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨(𝑒𝑛+1/2𝑗 )
𝑥

󵄨󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨𝑒𝑛+1/2𝑗 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑝2𝑝−2 (𝐶𝑢 + 1)𝑝−1

⋅ (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1/2󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1/2𝑥 󵄩󵄩󵄩󵄩󵄩2) ≤ 𝑝2𝑝−4 (𝐶𝑢 + 1)𝑝−1
⋅ (3 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 3 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2)

(0 ≤ 𝑛 ≤ 𝑁 − 1) ,

(27)

− 𝑝ℎ𝐽−1∑
𝑗=1

(32𝑒𝑛𝑗 − 12𝑒𝑛−1𝑗 )[𝑝−2∑
𝑘=0

(32𝑢𝑛𝑗 − 12𝑢𝑛−1𝑗 )𝑝−2−𝑘

⋅ (32𝑈𝑛𝑗 − 12𝑈𝑛−1𝑗 )𝑘 (𝑢𝑛+1/2𝑗 )
𝑥
𝑒𝑛+1/2𝑗 ]

≤ 𝑝𝑝−2∑
𝑘=0

[
[
(2𝐶𝑢)𝑝−2−𝑘

⋅ (2𝐶𝑢 + 3 (𝜏2 + ℎ2) 𝐶0 ⋅max (𝐶𝑛−1, 𝐶𝑛))𝑘

⋅ 𝐶𝑢ℎ𝐽−1∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 32𝑒𝑛𝑗 − 12𝑒𝑛−1𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨𝑒𝑛+1/2𝑗 󵄨󵄨󵄨󵄨󵄨]]

≤ 𝑝 (𝑝 − 1)

⋅ 2𝑝−2𝐶𝑢 (𝐶𝑢 + 1)𝑝−2 ℎ𝐽−1∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 32𝑒𝑛𝑗 − 12𝑒𝑛−1𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨𝑒𝑛+1/2𝑗 󵄨󵄨󵄨󵄨󵄨

≤ 𝑝 (𝑝 − 1) 2𝑝−4 (𝐶𝑢 + 1)𝑝−1 (3 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 4 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1/2󵄩󵄩󵄩󵄩󵄩2
+ 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) ≤ 𝑝 (𝑝 − 1) 2𝑝−4 (𝐶𝑢 + 1)𝑝−1 (2 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2
+ 5 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) , (0 ≤ 𝑛 ≤ 𝑁 − 1) .

(28)

On the other hand,

⟨𝑟𝑛, 𝑒𝑛+1/2⟩ = 12 ⟨𝑟𝑛, 𝑒𝑛+1 + 𝑒𝑛⟩
≤ 12 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 14 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2) .

(29)

Substituting (27)-(29) into (25), we obtain

(󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2) + (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2) ≤ 𝜏 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2
+ 𝜏2 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2) + 𝜏𝑝2𝑝−3 (𝐶𝑢 + 1)𝑝−1
⋅ (3 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 3 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2) + 𝜏𝑝 (𝑝
− 1) 2𝑝−3 (𝐶𝑢 + 1)𝑝−1 (2 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 5 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2
+ 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) ≤ 𝜏 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 𝜏𝑝 (𝑝 − 1) 2𝑝 [(𝐶𝑢 + 1)𝑝−1
⋅ (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2)] ,

(0 ≤ 𝑛 ≤ 𝑁 − 1) .

(30)

Summing up (30) from 0 to𝑁 − 1, we get
󵄩󵄩󵄩󵄩󵄩𝑒𝑁󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑁𝑥𝑥󵄩󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩󵄩𝑒0󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒0𝑥𝑥󵄩󵄩󵄩󵄩󵄩2 + 𝜏𝑁−1∑
𝑛=0

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2

+ 𝜏 𝑁∑
𝑛=0

3𝑝 (𝑝 − 1) 2𝑝 (𝐶𝑢 + 1)𝑝−1 (󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2) .
(31)
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Taking small 𝜏 and ℎ such that

𝜏𝑁−1∑
𝑘=0

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 ≤ 𝜏𝑁max
1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 ≤ 𝑇 (𝜏2 + ℎ2)2 (𝐶𝑟)2 , (32)

then using (22) and Lemma 3, for

𝜏 ≤ 1
3𝑝 (𝑝 − 1) 2𝑝+1 (𝐶𝑢 + 1)𝑝−1 , (33)

we have
󵄩󵄩󵄩󵄩󵄩𝑒𝑁󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑁𝑥𝑥󵄩󵄩󵄩󵄩󵄩2

≤ (𝜏2 + ℎ2)2 (𝐶𝑟)2 𝑇𝑒2𝑇(3𝑝(𝑝−1)2𝑝(𝐶𝑢+1)𝑝−1)
≤ (𝜏2 + ℎ2)2 (𝐶𝑛+1)2 , (𝑛 = 0, 1, 2, . . . , 𝑁 − 1) ,

(34)

where 𝐶𝑛+1 = 𝐶𝑟√𝑇𝑒3𝑝(𝑝−1)𝑇2𝑝(𝐶𝑢+1)𝑝−1 is a constant indepen-
dent of 𝑛. By an induction argument,

󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩 ≤ 𝑂 (𝜏2 + ℎ2) ,
󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩 ≤ 𝑂 (𝜏2 + ℎ2) ,

(𝑛 = 0, 1, 2, . . . , 𝑁) .
(35)

From Cauchy-Schwarz inequality, we can obtain

󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩 ≤ 𝑂 (𝜏2 + ℎ2) , (𝑛 = 0, 1, 2, . . . , 𝑁) . (36)

By using Lemma 2, it is shown that

󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝑂 (𝜏2 + ℎ2) , (𝑛 = 0, 1, 2, . . . , 𝑁) . (37)

This completes the proof of Theorem 5.

The following theorem guarantees that the numerical
solution obtained from the difference scheme (7) is bounded.
This can be proved from (24) of Theorem 5.

Theorem 6. Suppose 𝑢0 ∈ 𝐻20 [𝑥𝐿, 𝑥𝑅], and 𝑢(𝑥, 𝑡) ∈ 𝐶7,3𝑥,𝑡 ; if 𝜏
and ℎ are small enough, then, for 𝑛 = 1, 2, . . . , 𝑁, the inequality

󵄩󵄩󵄩󵄩󵄩𝑈𝑛𝑗 󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝐶 (38)

holds, where 𝐶 is a constant independent of 𝜏 and ℎ.
By a similar proof ofTheorem 5, we can obtain the follow-

ing theorems.Theorem 7 shows that the solution of difference
scheme (7) is stable in 𝐿∞-norm. Theorem 8 guarantees the
existence and uniqueness of numerical solution.

Theorem 7. Under the conditions of Theorem 5, the solution
of scheme (7) is stable in 𝐿∞-norm for the initial values.

Theorem 8. There exists a unique solution for difference
scheme (7).

Another similar semiexplicit scheme for the generalized
Rosenau-Kawahara equation (3)–(5) is written as

(𝑈𝑛𝑗 )𝑡 + (𝑈𝑛𝑗 )𝑥𝑥𝑥𝑥𝑡 + (𝑈𝑛+1/2𝑗 )
𝑥
+ 𝛼 (𝑈𝑛+1/2𝑗 )

𝑥𝑥𝑥

− 𝛽 (𝑈𝑛+1/2𝑗 )
𝑥𝑥𝑥𝑥𝑥

+ 𝑝(32 (𝑈𝑛𝑗 )𝑝−1 − 12 (𝑈𝑛−1𝑗 )𝑝−1) (𝑈𝑛+1/2𝑗 )
𝑥
= 0,

𝑈0𝑗 = 𝑢0 (𝑥𝑗) , (𝑗 = 0, 1, 2, . . . , 𝐽)
𝑈𝑛 ∈ 𝑍0ℎ,
(𝑈𝑛0 )𝑥 = (𝑈𝑛𝐽 )𝑥 ,
(𝑈𝑛0 )𝑥𝑥 = (𝑈𝑛𝐽 )𝑥𝑥 ,

(𝑛 = 0, 1, 2, . . . , 𝑁) .

(39)

Its second-order convergence in the 𝐿∞-norm and stabil-
ity can be proved by a similar proof to that of scheme (7) in
this paper.

4. Numerical Examples

In this section, we compute three numerical examples to
demonstrate and validate the effectiveness of our differ-
ence scheme. As a test problem for the scheme proposed
here, we chose three test problems for which exact solu-
tion or numerical solutions have been reported previously.
For the Rosenau-KdV, Rosenau-Kawahara, and generalized
Rosenau-Kawahara equations, the parameters used by other
researchers [15, 20, 22] to obtain their results were taken as
a guiding principle for our computations. As scheme (7) is
a semiexplicit scheme, which is a linear system about 𝑈𝑛+1𝑗 ,
we use the Thomas algorithm to solve the system. All the
numerical experiments were executed on a 3.20GHz com-
puter, with 8G RAM, running Matlab 2013a.

For convenience, we denote the new linear difference
scheme (7) as New. In [15], we denote the linear difference
scheme as Linear 1. In [20], we denote the linear difference
scheme as Linear 2 when 𝑝 = 2. In [22], we denote the linear
difference scheme as Linear 3 when 𝑝 = 8. We will measure
the accuracy of the proposed scheme using the maximum
norm errors defined by ‖𝑒‖∞ = ‖𝑢𝑛−𝑈𝑛‖∞.The second-order
convergence of the numerical solutions is verified directly
from ‖𝑒𝑛(ℎ, 𝜏)‖∞/‖𝑒𝑛(ℎ/2, 𝜏/2)‖∞.
4.1. Example 1. Consider the Rosenau-KdV equationwith the
initial condition

𝑢0 (𝑥)
= (−3548 + 35624√313) sech4 ( 124√−26 + 2√313𝑥) (40)
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Table 1: Comparison of the maximal errors ‖𝑒‖∞ and CPU time for the Rosenau-KdV equation at 𝑡 = 40 with 𝛼 = 1, 𝛽 = 0, and 𝑝 = 2.
Scheme ℎ = 𝜏 = 1/10 ℎ = 𝜏 = 1/20 ℎ = 𝜏 = 1/40‖𝑒‖∞ CPU(s) ‖𝑒‖∞ CPU(s) ‖𝑒‖∞ CPU(s)
Linear 1 [15] 9.39𝑒 − 4 4.11 2.35𝑒 − 4 14.85 5.91𝑒 − 5 69.06
New 4.66𝑒 − 4 4.02 1.17𝑒 − 4 14.07 2.95𝑒 − 5 66.66

Table 2:The numerical verification of theoretical accuracy𝑂(ℎ2+𝜏2) for Rosenau-KdV equation at different time at 𝑡 = 40with 𝛼 = 1, 𝛽 = 0,
and 𝑝 = 2.
𝑡 󵄩󵄩󵄩󵄩𝑒𝑛 (ℎ, 𝜏)󵄩󵄩󵄩󵄩∞ / 󵄩󵄩󵄩󵄩𝑒𝑛 (ℎ/2, 𝜏/2)󵄩󵄩󵄩󵄩∞ℎ = 𝜏 = 1/10 ℎ = 𝜏 = 1/20 ℎ = 𝜏 = 1/40𝑡 = 10 - 3.9730964 4.0264475𝑡 = 20 - 3.9871826 4.0049147𝑡 = 30 - 3.9940428 3.9816829𝑡 = 40 - 3.9982009 3.9577326

and the boundary conditions

𝑢 (𝑥𝐿, 𝑡) = 𝑢 (𝑥𝑅, 𝑡) = 0,
𝑢 (𝑥𝐿, 𝑡)𝑥 = 𝑢 (𝑥𝑅, 𝑡)𝑥 = 0,
𝑢 (𝑥𝐿, 𝑡)𝑥𝑥 = 𝑢 (𝑥𝑅, 𝑡)𝑥𝑥 = 0,

0 ≤ 𝑡 ≤ 𝑇.
(41)

It is known that the solitary wave solution [4] is

𝑢0 (𝑥) = (−3548 + 35624√313) sech4 ( 124
⋅ √−26 + 2√313 (𝑥 − (12 + 126√313) 𝑡)) .

(42)

The results in terms of themaximal norm errors and CPU
time at the time 𝑇 = 40 using 𝛼 = 1, 𝛽 = 0, 𝑥𝐿 = −80, 𝑥𝑅 =120, and 𝑝 = 2 are reported in Table 1. It can be seen that the
computational efficiency of the present newmethod is slightly
better than that of the method in [15], in terms of grid point
number. As shown in Table 2, the second-order convergence
in 𝐿∞-norm of the new schemes verifies the correction of the
theoretical analysis. In Figure 1, plots of maximal errors from
the four schemes are presented when 𝛼 = 1, 𝛽 = 0, 𝑝 = 2,
and 𝜏 = ℎ = 1/40. Clearly, our proposed new scheme gives
smaller maximal error than the scheme in [15].

4.2. Example 2. According to [7, 8], when 𝛼 = 𝛽 = 1, 𝑝 =2, the solitary wave solution of the initial boundary problem
(3)–(5) is

𝑢0 (𝑥) = (−3524 + 35312√205) sech4 ( 112
⋅ √−13 + √205 (𝑥 − ( 113 + √205) 𝑡)) ,

(43)
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Figure 1: Comparison between maximal errors of numerical solu-
tions computed by scheme [15] and new scheme for Rosenau-KdV
equation with 𝛼 = 1, 𝛽 = 0, ℎ = 𝜏 = 1/40, and 𝑝 = 2.

and when 𝛼 = 𝛽 = 1, 𝑝 = 8, the solitary wave solution [7] is

𝑢 (𝑥, 𝑡) = (− 351224 (−85 + √7549))1/7

⋅ sech4/7 ( 736√−85 + √7549(𝑥 − √754985 𝑡)) .
(44)

The results in terms of the maximal norm errors and
CPU time at the time 𝑇 = 40 using 𝑥𝐿 = −80, 𝑥𝑅 = 120
are reported in Tables 3 and 4. It is clear from Tables 3 and
4 that results by our new method show improvement over
the previous one reported by [20, 22]. As shown in Table 5,
the second-order convergence of the numerical solutions is
verified. In Figures 2 and 3, the graphs of the maximal errors‖𝑒‖∞ are presented; the graphs show that our method gives
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Table 3: Comparison of the maximal errors ‖𝑒‖∞ and CPU time for Rosenau-Kawahara equation at 𝑡 = 40 with 𝛼 = 1, 𝛽 = 1, and 𝑝 = 2.
Scheme ℎ = 𝜏 = 1/10 ℎ = 𝜏 = 1/20 ℎ = 𝜏 = 1/40‖𝑒‖∞ CPU(s) ‖𝑒‖∞ CPU(s) ‖𝑒‖∞ CPU(s)
Linear 2 [20] 2.51𝑒 − 4 6.01 6.28𝑒 − 5 22.60 1.56𝑒 − 5 100.43
New 1.19𝑒 − 4 5.87 3.00𝑒 − 5 22.45 7.44𝑒 − 6 97.91

Table 4: Comparison of the maximal errors ‖𝑒‖∞ and CPU time for generalized Rosenau-Kawahara equation at 𝑡 = 40 with 𝛼 = 1, 𝛽 = 1,
and 𝑝 = 8.
Scheme ℎ = 𝜏 = 1/10 ℎ = 𝜏 = 1/20 ℎ = 𝜏 = 1/40‖𝑒‖∞ CPU(s) ‖𝑒‖∞ CPU(s) ‖𝑒‖∞ CPU(s)
Linear 3 [22] 1.01𝑒 − 3 7.47 2.53𝑒 − 4 28.84 6.62𝑒 − 5 124.68
New 3.97𝑒 − 4 6.89 9.77𝑒 − 5 26.32 2.84𝑒 − 5 114.59

Table 5: The numerical verification of theoretical accuracy 𝑂(ℎ2 + 𝜏2) for generalized Rosenau-Kawahara equation.

𝑡 𝑝 = 2 𝑝 = 8ℎ = 1/10 ℎ = 1/20 ℎ = 1/40 ℎ = 1/10 ℎ = 1/20 ℎ = 1/40𝑡 = 10 - 3.9760462 4.0631134 - 4.0350242 3.6676336𝑡 = 20 - 3.9878186 4.0811327 - 4.0699563 3.5392528𝑡 = 30 - 3.9915570 4.0556430 - 4.0749519 3.7479758𝑡 = 40 - 3.9933012 4.0316195 - 4.0701304 3.5400894
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Figure 2: Comparison between maximal errors of numerical
solutions computed by scheme [20] and new scheme for Rosenau-
Kawahara equation with 𝛼 = 1, 𝛽 = 1, ℎ = 𝜏 = 1/40, and 𝑝 = 2.
a better approximate solution than the scheme proposed in
[20, 22]. Moreover, our proposed scheme gives less CPU time
than [20, 22].

5. Conclusion

In brief, we first proposed a semiexplicit linearized Crank-
Nicolson finite difference scheme for generalized Rosenau-
Kawahara equation. We prove the second-order convergence
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Figure 3: Comparison between maximal errors of numerical
solutions computed by scheme [22] and new scheme for generalized
Rosenau-Kawahara with 𝛼 = 1, 𝛽 = 1, ℎ = 𝜏 = 1/40, and 𝑝 = 8.

in 𝐿∞-norm of the difference scheme and then obtain the
prior estimate in 𝐿∞-norm of the numerical solutions. The
stability, existence, and uniqueness of the numerical solution
are also shown. Finally, some exampleswere given to show the
efficiency of the new scheme. For future research, our new
method has a wide range of applications for some nonlin-
ear wave equations including the generalized Rosenau-type
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equations, Ginzburg-Landau equation, and a generalization
of the BBM equation [28].
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