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Object tracking is a vital topic in computer vision. Although tracking algorithms have gained great development in recent years,
its robustness and accuracy still need to be improved. In this paper, to overcome single feature with poor representation ability
in a complex image sequence, we put forward a multifeature integration framework, including the gray features, Histogram of
Gradient (HOG), color-naming (CN), and Illumination Invariant Features (IIF), which effectively improve the robustness of object
tracking. In addition, we propose a model updating strategy and introduce a skewness tomeasure the confidence degree of tracking
result. Unlike previous tracking algorithms, we judge the relationship of skewness values between two adjacent frames to decide
the updating of target appearancemodel to use a dynamic learning rate.This waymakes our tracker further improve the robustness
of tracking and effectively prevents the target drifting caused by occlusion and deformation. Extensive experiments on large-
scale benchmark containing 50 image sequences show that our tracker is better than most existing excellent trackers in tracking
performance and can run at average speed over 43 fps.

1. Introduction

It is difficult to accurately estimate the location of target
in a video due to the complex causes such as occlusion,
deformation, illumination variation, background clutter, and
scale variations, all of which have brought difficulties to
tracking. Although object tracking has been successfully used
in robotics, video surveillance, human-computer interaction,
automation, etc., we still need to find an effective and robust
tracker.

Most of existing tracking methods mainly include two
categories: one is generative method and the other is dis-
criminative method. Generative trackers firstly construct a
target appearance model, then match it with the candidate
target regions, and take the candidate region with the highest
similarity to the target region as the tracking result. There are
many generative algorithms such as sparse representation [1–
3], density estimation [4, 5], and incremental subspace learn-
ing [6]. In contrast, discriminative trackers use sample data to
learn a binary classifier which can discriminate tracked target

from its background areas. Discriminative trackers include
multiple instance learning (MIL) [7], compressive tracking
(CT) [8], tracking-learning-detection (TLD) [9], support
vector machines (SVMs) [10–12], and online adaboost (OAB)
[13, 14]. MIL tracker employs a set of generalized Haar-
like features to represent the image patch and each feature
consisting of two to four rectangles.MIL also trains a classifier
with multiple instances learning to achieve superior results.
CT tracker based on compressed sensing enhances tracking
efficiency thanks toHaar-like features are reduced by random
measurement matrix conforming to the restricted isometry
property (RIP), and a simple naive Bayes classifier is used to
classify the features after dimensionality reduction. In recent
years, the discriminative trackers based on correlation filters
have raised much attention in the field of visual tracking due
to their outstanding performance in computing efficiency.
Bolme et al. [15] firstly introduce correlation filters into visual
tracking and learn filter by minimizing the output sum of
squared error on grayscale images. Henriques et al. [16] figure
out a circulant structure with kernel (CSK)method achieving
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an amazing speed on tracking benchmark [17], but CSK only
uses gray features which are less effective in representing
the target appearance model. Later, the performance of
tracking has been further improved in kernelized correlation
filters (KCF) [18] tracker. Discriminative scale space tracking
(DSST) [19] enhances the tracking accuracy by multichannel
HOG features instead of the low dimensional gray features.
Danelljan et al. [20] exploit color attributes (CN) for tracking
and extend the input color features from single channel to
multiple channels.

However, all above-mentioned trackers only use single
feature which limits the power of target representations when
the object appearances undergo challenges such as occlusion
and illumination changes. As a result, the ideal tracking
results are oftendifficult to obtain. To overcome the limitation
of single feature on target tracking, scale adaptive multiple
features (SAMF) [21] tracker integrates HOG features and
CN features based on correlation filter to improve tracking
accuracy. Lan et al. propose a discriminative feature learning
method in [22, 23], which can exploit the representation
and discriminative abilities of multiple features by separating
out contaminated features. Sum of template and pixel-wise
learner (Staple) [24] tracker combines the response maps
of the HOG template and global color histogram both
of which are learned independently in previous estimated
translation to enhance tracking performance. Convolutional
neural network (CNN) has found a broad application in
pattern classification [25] and text processing [26] because
of its powerful feature representation ability. Several existing
tracking approaches based on CNN such as a deep compact
image representation for tracking (DLT) [27], hierarchical
convolutional features for tracking (HCF) [28], hedged deep
tracking (HDT) [29], and spatial and semantic convolutional
features for tracking (DSCF) [30] have been proposed. They
all extract rich features from CNN to precisely predict
the target position and have shown excellent performance.
Although these algorithms based on features fusion or CNN
features are satisfactory in constrained environment, these
methods do not address the vital problem with respect to
the model update mechanism with a constant learning rate
which are prone to drifting in tracking due to inaccurate
prediction. For the drifting problem, thus, TLD tracker [9]
combines tracking learning with detection, the mechanism
performs well in presence of occlusion, deformation. The
long-term correlation tracking (LCT) [31] can prevent sig-
nificant occlusion by using an online detector to detect the
target again when wrong tracking results appear. SUN et al.
[32] present mixed classifier decision compressive tracking
(MDCT) method to locate the target and update the models
by using different learning rates to improve the tracking
accuracy.

In this paper, to overcome the problem that DSST
tracker cannot describe target well and its model updating
strategy which uses constant learning rate is unable to update
filters adaptively, we propose a fast object tracker based on
integrated multiple features and dynamic learning rate. We
integrate gray features, HOG, CN, and IIF [33] to improve
the target description ability of algorithm while preserving
the performance of tracking under complex circumstances.

Meanwhile, for the problem of constant learning rate, we
apply the criteria of skewness to our approach. Skewness
can reflect the confidence degree of the tracking results via
fluctuation of response map. By comparing the skewness
values between two adjacent frames, our approach can adap-
tively choose a learning rate to update the model in tracking.
To validate the contribution of our approach, we perform
the extensive experiments on a popular benchmark dataset
[17] with 50 image sequences and compare our proposed
approach with 12 excellent algorithms using precision and
success rate. Experimental results show that our tracker
performs significantly against existing trackers in the aspect
of accuracy and robustness of tracking, while maintain-
ing a high average speed which exceeds 40 frames per
second.

The organizational structure of the paper is shown below.
We first introduce DSST tracker in Section 2 and then
describe our approach in Section 3. Section 4 demonstrates
the experimental results on benchmark dataset. Conclusions
are finally given in Section 5.

2. The DSST Tracker

DSST tracker [19] has obtained impressive results on tracking
benchmark and has some significant ideas relevant to our
work. The algorithm separately learns correlation filters for
translation and scale estimation. For the translation estima-
tion, the DSST tracker trains an optimal correlation filter
relying on the high-dimensional HOG features and then
employs the filter to determine target location of next frame.
Equipped with the estimated translation, themultiscale filters
which use HOG features are applied to obtain accurate target
size.We briefly describe themain ideas of DSST tracker in the
following.

2.1. Translation Estimation. In DSST tracker, we crop an
image patch 𝑓 ∈ R𝑀×𝑁 where target is located and extract𝑑-dimensional feature map from the image patch to train
translation filters. Considering the multidimensional feature
maps of image patch, we let 𝑓𝑙 denote the 𝑙-th dimension
feature map of 𝑓, 𝑙 ∈ {1, . . . , 𝑑}. Per feature dimension has
a corresponding filter ℎ𝑙. The 𝑙-th feature dimension has a
single filter ℎ𝑙, and all of these ℎ𝑙 can be concatenated into
optimal correlation filter ℎwhich obtained byminimizing the
cost function:

𝜀 = 
𝑑∑
𝑙=1

ℎ𝑙 ∗ 𝑓𝑙 − 𝑔
2

+ 𝜆 𝑑∑
𝑙=1

ℎ𝑙
2

(1)

where 𝑔 represents 2-dimensional Gaussian function in
which its peak at the target center of the image patch 𝑓.𝜆 (𝜆 > 0) denotes a regularization parameter, and ∗ is
circular correlation. Note that the minimization issue in (1)
can be solved by transforming (1) to the Fourier domain
using Parseval’s formula. The solution to (1) can be availably
obtained by

𝐻𝑙 = 𝐺𝐹𝑙
∑𝑑𝑘=1 𝐹𝑘𝐹𝑘 + 𝜆 (2)
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where𝐺 and 𝐹𝑙 denote the Discrete Fourier Transform (DFT)
of 𝑔 and 𝑓𝑙, respectively, and the bar (⋅) indicates complex
conjugation.

In (2), we only compute the correlation filter of a training
sample. In practice, we find an optimal filter by minimizing
the output error over all training patches, but it will lead to
complex computations when requiring solving a 𝑑 × 𝑑 linear
system of equations. In order to obtain high computational
efficiency, 𝐴𝑙𝑡−1 and 𝐵𝑡−1 are defined as the numerator and
denominator of filter 𝐻𝑙𝑡−1 in the (t-1)-th frame, respectively.
In the t-th frame, the numerator𝐴𝑙𝑡 and denominator𝐵𝑡 of𝐻𝑙𝑡
in (2) are updated separately in the following iterative ways:

𝐴𝑙𝑡 = (1 − 𝜂)𝐴𝑙𝑡−1 + 𝜂𝐺𝑡𝐹𝑙𝑡 (3)

𝐵𝑡 = (1 − 𝜂)𝐵𝑡−1 + 𝜂 𝑑∑
𝑘=1

𝐹𝑘𝑡 𝐹𝑘𝑡 (4)

where 𝜂 is the learning rate. Given an image patch 𝑧 cropped
from a new frame, d-dimensional feature maps are extracted
from 𝑧. The correlation scores 𝑦 can be computed by

𝑦 = F
−1 {∑𝑑𝑙=1 𝐴𝑙𝑍𝑙𝐵 + 𝜆 } (5)

where F−1 denotes the inverse DFT operator. 𝑍𝑙 denotes
the Discrete Fourier Transform (DFT) of 𝑧𝑙. The new target
position is found via the maximal response value of 𝑦.
2.2. Scale Estimation. In the actual tracking, the scale of
target often changes because of the complexity of tracking
environment. In order to solve problem of changing target
size, the DSST tracker proposes a novel approach to predict
the target scale. After determining the position of target, we
construct scale pyramid bymultiscale sampling in target area.
Let 𝑃 × 𝑄 denote the target size of the t-th frame, for each𝑖 ∈ {⌊−(𝑆 − 1)/2⌋, . . . , ⌊(𝑆 − 1)/2⌋}, an image patch 𝐽𝑖 with the
size of 𝑎𝑖𝑃×𝑎𝑖𝑄 centered at the estimated target location of the
t-th frame is cropped. Here, 𝑎 denotes the scale factor and 𝑆 is
the number of scales. The set of image patch 𝐽 consisted of all
these image patch 𝐽𝑖.We extract d-dimensional HOG features
from image patch set 𝐽 to train scale filters ℎ𝑠𝑐𝑎𝑙𝑒. Similar
to translation estimation, (3) and (4) are used to update the
scale filters ℎ𝑠𝑐𝑎𝑙𝑒, but the desired correlation output 𝑔 is a 1-
dimensional Gaussian function. We get the response scores
between the scale filter and image patch 𝐽𝑖 by (5); the optimal
scale of target can be obtained by maximum response scores.

3. Our Approach

DSST tracker uses HOG features for tracking, which only
reflects partial characteristic of target and is easy to affect
the robustness of tracking. Moreover, DSST tracker updates
the filters using a fixed learning rate. However, the target
appearance is dynamically changing in the tracking, so the
DSST tracker cannot ensure the target model is updated
with a reasonable learning rate. Therefore, in this paper,

we improved the DSST algorithm by feature integration
and model updating strategy with dynamic learning rate.
The flowchart of our algorithm is shown in Figure 1. Like
DSST, our tracking task is composed of two parts: translation
and scale estimation. However, our algorithm fuses gray
features, HOG, CN, and IIF [33] for translation estimation.
We transform the multichannel fusion features extracted
from image patch into Fourier domain in current frame and
then use (5) to get the maximum response in the location of
new target. For scale estimation, our method uses the same
procedure as DSST, which uses the HOG features to train
scale filter. With respect to the model update for translation
filter, we adopt a new model updating strategy with dynamic
learning rate which helps our algorithm to achieve significant
performance gain in object tracking. With respect to the
model update for scale filter, we follow the method in DSST.

We introduce the integration of multiple features for our
tracking in Section 3.1. The novel model updating strategy is
investigated in Section 3.2.

3.1. The Integration of Multiple Features Based on DSST.
Integration features can provide richer representation of
target than single feature. In this paper, we integrate gray
features, HOG, CN, and IIF together based on DSST tracker.

HOG features are commonly used by various algorithms
in the field of computer vision and can well show the edge
and gradient information of the target. It divides the image
patch into small connected regions which are also called
cells. The gradient direction or edge orientation histogram
are collected on the pixels of each cell. Compared with other
features, HOG has many advantages that it can maintain
favorable invariability in geometric and illumination. CN,
based on the color names in English linguistics, are assigned
by 11 color labels which can represent color names in real
word. RGB color image is mapped to color-naming space
via the mapping methods in [34]. We incorporate it into
our integration scheme because it is robust to scale variation
and rotation. IIF are obtained by transforming image into
CIE Lab color space and then perform a nonparametric local
rank transformation [35] on the image brightness channel.
IIF features can enhance the ability of tracker to suppress
intense illumination changes. The gray features only contain
brightness channel and are the simplest features. Figure 2
shows the visualized results of gray features, HOG, CN, and
IIF, respectively, on the Bolt sequence.

The four types of features are complementary to each
other. In our work, we extract one-channel gray features, 31-
channel HOG features, ten-channel CN features, and one-
channel IIF from the image patch, respectively. Totally 43-
channel features represent the target appearance. Note that
the sizes of the four features are different from each other
and these feature sizes should be normalized to a fixed
size. Afterwards, we concatenate these normalized features
together, which significantly enhance the performance of our
proposed tracker.

3.2. Model Updating Strategy. The conventional algorithms
use a constant learning rate to update the model. However,
the target appearance is constantly changing due to the
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Figure 1: Framework of our proposed tracking algorithm.

(a) Original image (b) Gray features (c) HOG (d) CN (e) IIF

Figure 2: Visualizations for different features of Bolt sequence.

influence of deformation, occlusion, scale variations, and
other factors in target tracking. Constant learning rate cannot
cope with these interference factors effectively. The learning
rate controls the updating degree of the target template.
A higher learning rate can prevent insufficient updating
of samples when the target appearance changes. But this
will increase the probability of adding negative samples. In
contrast, a lower learning rate can avoid learning more back-
ground information. Simultaneously, it is easy to suffer from
target appearance deformation. Therefore, how to design a
reasonable mechanism for dynamically updating learning
rate is important.

In object tracking, the maximum response value in
the response map is regarded as the target location, and
other nontarget responses are generally much smaller than

the maximum response value. However, in practice, the
target is often disturbed by many factors, such as complex
background, occlusion, and illumination variation, which
may lead to some nontarget responses being closer to the
target response value. As a result, the tracked target may be
difficult to distinguish. The fluctuation degree of response
map can reflect the quality of tracking results to a certain
extent. In our method, in order to measure the fluctuation
of the response map, we introduce a new criterion called
skewness. It is ameasure of the deviation direction and degree
of data distribution and can reflect the asymmetric degree
of data distribution. The relationship between skewness of
two sequential frames can be used to decide the necessity of
learning rate updates.The skewness value of response map in
the t-th frame is defined as
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Figure 3: The analysis of skewness onWoman sequence.

𝑆𝐾𝑡 = (1/𝑀𝑁)∑𝑁𝑛−1∑𝑀𝑚−1 (𝐸 (𝑚, 𝑛) − 𝜇𝑡)3
[(1/𝑀𝑁)∑𝑁𝑛−1∑𝑀𝑚−1 (𝐸 (𝑚, 𝑛) − 𝜇𝑡)2]3/2 (6)

where𝐸 is the response map obtained by (5) in the t-th frame
and 𝜇𝑡 is its mean. 𝑀 denotes the width of response map
and 𝑁 denotes the height of response map. The larger the
skewness is, the greater the response value of the target is than
the nontarget response; thus the tracking result in current
frame is more reliable. On the contrary, it indicates that the
difference between response value of target and nontarget is
not significant when the skewness becomes smaller, and the
tracking result in the current frame is disturbed. In these
cases, we should choose appropriate learning rate to update
target appearance.

Figure 3(b) shows the skewness of each frame on the
Woman sequence. It can be seen from Figure 3(a), the target
is partly occluded by the car in the 145th frame and interfered
by a lamppost in the 340th frame. Consequently, the values
of skewness are affected and reduced to lower points in
Figure 3(b). When the occlusion disappears in the 434th
frame, the value of skewness recovers to a higher point.

In our approach, we use the following three ways to
update the learning rate:

𝜂𝑜 ← 𝜂 (7)

𝜂𝑑 ← 𝜂 − 𝜂 1𝑛1 + 1 (8)

𝜂𝑖 ← 𝜂 + (1 − 𝜂) 1𝑛2 + 1 (9)

where 𝜂 ∈ (0, 1) is an original learning rate which is defined
as 𝜂𝑜 in this paper. 𝜂𝑑 and 𝜂𝑖 are new learning rates. 𝜂𝑑 ∈(0, 𝜂) gradually decreases with the increase of 𝑛1. 𝜂𝑖 ∈ (𝜂, 1)
gradually become larger with the increase of 𝑛2. There are
more details in Remarks 1 and 2. 𝑛1 denotes the number of
frames when the skewness of the (t-1)-th frame minus the
skewness of the t-th frames over 𝜃. Similarly, 𝑛2 denotes the
number of frames when the present skewness minus previous
is greater than 𝜃. We define the threshold 𝜃 (𝜃 > 0) as the
skewness difference of two adjacent frames. Whether a new
learning rate is applied to the t-th frame depends on the
difference of the two skewness values between two adjacent
frames. A more intuitive updating strategy for learning rate
is displayed in Table 1. If the value of skewness satisfies
condition 1, it shows that the confidence level of tracking
results in the t-th frame is not as reliable as the previous frame
and we should reduce the learning rate to adapt the quick
changes in the appearance of target. If condition 2 is satisfied,
it indicates that the tracking results are reliable in the t-th
frame and we should increase the learning rate to adapt the
rapid changes of target appearance. There are slow changes
in the appearance of target when condition 3 is satisfied.
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Table 1: The updating strategy of learning rate.

No State of learning rate Value of learning rate Condition in the t-th frame
1 Update 𝜂𝑑 𝑆𝐾𝑡−1 − 𝑆𝐾𝑡 > 𝜃
2 Update 𝜂𝑖 𝑆𝐾𝑡 − 𝑆𝐾𝑡−1 > 𝜃
3 Not update 𝜂𝑜 𝑆𝐾𝑡 − 𝑆𝐾𝑡−1 < 𝜃

Input: Initial target position 𝑝1 and scale 𝑠1
Output: Estimated target position 𝑝𝑡 and scale 𝑠𝑡
For t=2: n

Translation estimation
1: Crop out the translation sample 𝑥𝑡𝑟𝑎𝑛𝑠 from the input image at the previous target
position and extract the four types of features.
2: Compute the translation correlation filters ℎ𝑡𝑟𝑎𝑛𝑠 using Eq. (2).
3: Estimate the new position 𝑝𝑡 through the maximum response of Eq. (5).
Scale estimation
4: Construct the scale pyramid centered at the estimated position 𝑝𝑡.
5: Compute the scale correlation filter ℎ𝑠𝑐𝑎𝑙𝑒 using Eq. (2).
6: Estimate the optimal scale 𝑠𝑡 through the maximum response of Eq. (5).
Model update
7: Calculate 𝑆𝐾𝑡 with Eq. (6), update the learning rate according to relation of
skewness between two adjacent frames.
8: Update the translation filter using new learning rate in Eqs. (3) and (4).
9: Update the scale filter using the original learning rate in Eqs. (3) and (4).

END

Algorithm 1: Overall procedure of our algorithm.

In this case, we apply the initial learning rate 𝜂𝑜to the t-th
frame.

Remark 1. With the iteration of (8), 𝜂𝑑 is getting smaller and
can be used as a new learning rate whose value requires to be
in the interval (0,1).

Proof. Given original learning rate 𝜂 ∈ (0, 1), the corre-
sponding number of frames 𝑛1 ∈ 𝑁+ meets condition 1 in
Table 1. According to (8), a new learning rate 𝜂𝑑 is updated
as 𝜂 − 𝜂(1/(𝑛1 + 1)). Therefore, we have two inequalities as
follows:

𝜂𝑑 = 𝜂 − 𝜂 1𝑛1 + 1 = 𝜂 𝑛1𝑛1 + 1 < 𝜂 < 1 (10)

𝜂𝑑 = 𝜂 − 𝜂 1𝑛1 + 1 = 𝜂 𝑛1𝑛1 + 1 > 0 (11)

Equations (10) and (11) denote the new learning rate 𝜂𝑑 ∈(0, 1). Equation (10) denotes that 𝜂𝑑 is getting smaller.

Remark 2. With the iteration of (9), 𝜂𝑖 is getting larger and
can be used as a new learning rate whose value requires to be
in the interval (0,1).

Proof. Given original learning rate 𝜂 ∈ (0, 1), the correspond-
ing number of frames 𝑛2 ∈ 𝑁+ meets condition 2 in Table 1.
According to Eq. (9), a new learning rate 𝜂𝑖 is updated as

𝜂 + (1 − 𝜂)(1/(𝑛2 + 1)). Therefore, we have two inequalities
as follows:

𝜂𝑖 = 𝜂 + (1 − 𝜂) 1𝑛2 + 1 = 𝜂𝑛2 + 1𝑛2 + 1 < 𝑛2 + 1𝑛2 + 1 = 1 (12)

𝜂𝑖 = 𝜂 + (1 − 𝜂) 1𝑛2 + 1 = 𝜂𝑛2 + 1𝑛2 + 1 > 𝜂𝑛2 + 𝜂𝑛2 + 1 = 𝜂 > 0 (13)

Equations (12) and (13) denote the new learning rate 𝜂𝑖 ∈(0, 1). Equation (13) denotes that 𝜂𝑑 is getting larger.
Algorithm 1 presents an overall procedure of our pro-

posed approach.

4. Experimental Results

In this section, implementation details of experiments are
first discussed. Secondly, we perform multiple trackers with
different features setting based on DSST to validate the effec-
tiveness of our integrated features. Thirdly, we investigate the
most suitable threshold for learning rate update and validate
the effectiveness of skewness. Finally, we evaluate propose
algorithmonbenchmark dataset containing 50 sequencewith
comparison to 12 state-of-the-art algorithms.

4.1. Implementation Details. We perform the experiment in
MATLABR2015b on Intel (R) Core (TM) i7-6700K4.00 GHz
CPU. The regularization parameter 𝜆 and scale number 𝑎
are set the same as DSST. The original learning rate is set
to 𝜂=0.025. The threshold for learning rate update is set to
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Figure 4: Success and precision plot using one-pass evaluation on the OTB. The performances of algorithms with variations in features.

𝜃=2.3. To prevent the boundary effect, the extracted features
are usually multiplied by a Hann window. We use OTB-2013
dataset which contains 50 sequences and adopts one-pass
evaluation (OPE) reporting by two aspects: precision and
success plot. The precision plot shows the ratio of correct
frames whose distance between predicted location of target
and the ground truth not exceeds a certain threshold. We use
center location error with a threshold of 20 pixels to rank
tracking algorithms for precision plot. Success plot shows the
ratio of correct frames whose overlap rate between prediction
and the ground truth exceeds the given bounding box overlap
threshold. For success plot, we rank tracking algorithm by
employing the area under curve (AUC). In addition, we also
utilize average speed to measure the efficiency of excellent
algorithms.

4.2.TheMultiple Feature Comparison. We implement several
variations of our tracker to verify the validity of our approach.
Figure 4 presents the tracking results with different features.
As can be seen from Figure 4, our algorithm using the gray
features, HOG, CN, and IIF achieves excellent performance
in precision and performs as good as the variation tracker
with three types of features (HOG, gray features, and CN)
in success rate. The algorithm with three types of features
(HOG, gray features, and CN) outperforms one with two
types of features (HOG, gray features). The tracker with only
HOG features has the worst performance among compared
trackers. The results from our experiments indicate that the
multiple feature integration is effective and robust.

4.3. The Detailed Analysis of Skewness

4.3.1. TheThreshold Analysis. The threshold value has signif-
icant influence on the result of tracking and it is important
to investigate the optimal threshold for learning rate update.
Thedifferences of two sequential frames on theBasketball and
Woman sequences are shown in the Figure 5. By analyzing

the skewness difference between two adjacent frames, we
approximately estimate the range of the threshold and define
threshold set as 𝜃= {1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5}.
We found that tracking performance gradually improved as
threshold is gradually increased by 0.1. When the threshold is
increased to 2.3 or 2.4, the experimental result is the best. But
when the threshold increases again, the performance of the
tracker begins to decrease. As is shown in Figure 6, we find
that the tracker has the best robustness and accuracy when
the threshold is 2.3 or 2.4, andwe employ 𝜃= 2.3 as a threshold
value for our algorithm.

4.3.2. The Effectiveness Analysis of Skewness. To validate the
effectiveness of our proposed skewness, we progressively
incorporate our contribution. We add the integration features
proposed in this paper into the baseline DSST and refer to it
as multifeatures in Figure 7. Skewness is incorporated into
the multifeatures, i.e., our tracker, which obtains the best
results in precision and success rate. Figure 7 presents the
performance results of our skewness.When themodel update
threshold is 2.3, the precision and success rate of our tracker
have reached 79.9% and 58.4%, respectively. Compared with
multifeatures, the precision and success rate increased by 2%
and 0.8%, respectively. It illustrates that our model updating
strategy which apply skewness model to decide the update of
learning rate is effective.While comparedwith baselineDSST,
our tracker increased by 5.9% in precision and 3% in success
rate, respectively.

4.4. Comparisons with State-of-the-Art Trackers. We evaluate
proposed tracker with 12 existing state-of-the-art trackers
which include MIL [7], TGPR [36], Struck [10], CSK [16],
KCF [18], DSST [19], ASLA [37], SCM [38], TLD [9], CT
[8], DLT [27], and HDT [29]. Specifically, DLT and HDT are
methods based on deep learning. The quantitative, attribute-
based, efficiency, and qualitative evaluations are implemented
in this section.
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Figure 5: Analysis of differences between two adjacent frames on the Basketball andWoman sequences.
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Figure 6: Comparisons of different thresholds in our algorithm.
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Figure 7: The performance results of skewness on OTB-2013.

4.4.1. Quantitative Evaluation. Figure 8 shows one-pass eval-
uation (OPE) results on 50 sequences. Our tracker performs
well in both precision and success rate and just behind HDT.
HDT incorporates deep features into correlation filter frame-
work, which enhance the ability of target representation.
Compared with it, the performance of our approach falls

behind, but the speed of our tracker is far ahead of HDT.
DLT is also based on deep learning, but its performance in
precision and success plots is inferior to our tracker. The
baseline framework DSST ranks the fifth in precision and
occupies the third place in success rate. Overall, our tracker
is better than most existing excellent trackers.
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Figure 8: Evaluation results on OTB-2013.

4.4.2. Attribute-Based Evaluation. We compare our tracker
with existing tracker based on 50 sequences annotated by 11
challenging attributes. Figures 9 and 10 illustrate attribute-
based evaluations of all trackers in precision and success
plots. Our algorithm favorably outperforms the most existing
trackers in all challenging evaluations. The results show that
our tracker is effective. In success plot, our tracker is superior
to HDT in presence of illumination variations. It can be
attributed to the fact that our fusion framework contains
IIF features that are robust to severe illumination changes.
Our algorithm outperforms other compared algorithms in
occlusion,motion blur, and fastmotion because our proposed
model updating strategy plays an instructive role in these
challenging sequences.

4.4.3. Efficiency Evaluation. We evaluate the operating effi-
ciency of our proposed tracker with comparisons to 12
existing excellent trackers on 50 benchmark sequences. The
results in Table 2 show that the average speeds of 13 trackers.
Among these trackers, CSK achieves the best results with an
average speed of 269.45 fps and KCF tracker acquires the
second highest speed. Our proposed algorithm performs well
with an average speed at 43.798 frames per second. DSST
tracker achieves the average speed of 25.919 fps which are
provided from [19], while the tracker obtains an average speed
at 63.683 fps in our experimental platform. HDT obtains
the slowest tracking speed because it is time-consuming to
extract features from deep neural networks. Our integrated
features and model updating strategy have a slight effect on
tracking speed. However, our tracker is still faster than most
of compared trackers.

4.4.4. Qualitative Evaluation. Figure 11 summarizes a qual-
itative comparison of proposed tracker with five existing

Table 2: Average speeds of 13 excellent trackers on 50 challenging
image sequences.

Tracker Speed(fps)
Ours 43.798
TLD [9] 21.742
MIL [7] 28.059

DSST [19]
25.919 (from [19])

63.683 (our hardware)
Struck [10] 10.009
ASLA [37] 7.482
TGPR [36] 1.522
SCM [38] 0.374
CSK [16] 269.45
KCF [18] 245.87
CT [8] 28.79
HDT [29] 1.73
DLT [27] 15.00

excellent trackers (Struck [10], TGPR [36], KCF [18], DSST
[19], and CSK [16]) on five challenging sequences. Compar-
ison results of different algorithms are represented via solid
rectangular frames with different colors. Five frames of each
video sequence are selected to display the results and they
contain common tracking problems. The Sylvester sequence
contains illumination variations and out-of-plane rotation.
The first row of Figure 10 shows partial tracking results of
Sylvester sequence. The target suffers from rotation in the
935th frame. However, our algorithm is more adaptable to
rotation than DSST, which mainly attribute to CN features.
Although TGPR and Struck keep path with the target in the
following sequence, their tracking effect is inferior to our
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Precision plots of OPE - out-of-plane rotation (39)
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Precision plots of OPE - scale variation (28)
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Precision plots of OPE - occlusion (29)
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Precision plots of OPE - deformation (19)
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Precision plots of OPE - motion blur (12)
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Precision plots of OPE - fast motion (17)
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Precision plots of OPE - in-plane rotation (31)
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Precision plots of OPE - out of view (6)

HDT [0.679]
Ours [0.676]
KCF [0.649]
TLD [0.576]
Struck [0.539]
DSST [0.515]
DLT [0.505]
TGPR [0.495]
SCM [0.429]
MIL [0.393]
CSK [0.379]
CT [0.336]
ASLA [0.333]

0 5 10 15 20 25 30 35 40 45 50
Location error threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ec

isi
on

Precision plots of OPE - background clutter (21)
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Precision plots of OPE - low resolution (4)
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Figure 9:The precision plots show the attribute-based evaluation of our proposed tracker with 10 existing excellent trackers on 50 sequences.
Our algorithm outperformed all trackers in all attributes.
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Success plots of OPE - illumination variation (25)
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Success plots of OPE - out-of-plane rotation (39)

HDT [0.584]
Ours [0.560]
DSST [0.535]
TGPR [0.507]
KCF [0.496]
SCM [0.470]
Struck [0.432]
ASLA [0.422]
TLD [0.420]
DLT [0.393]
CSK [0.386]
MIL [0.350]
CT [0.297]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Su
cc

es
s r

at
e

Success plots of OPE - scale variation (28)
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Success plots of OPE - occlusion (29)
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Success plots of OPE - deformation (19)
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Success plots of OPE - motion blur (12)
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Success plots of OPE - fast motion (17)
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Success plots of OPE - in-plane rotation (31)
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Success plots of OPE - out of view (6)
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Success plots of OPE - background clutter (21)
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Success plots of OPE - low resolution (4)
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Figure 10: The success plots demonstrate our algorithm performance significantly better than existing excellent trackers in all tracking
challenging.
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Figure 11: Tracking results comparison of our algorithm, Struck, TGPR, KCF, DSST, and CSK methods on five image sequences (from top to
bottom, namely, Sylvester, CarScale, Bolt, Soccer, and Shacking, respectively).

tracker. The CarScale sequence shown in the second row
presents scale variation. DSST and our tracker are better for
tracking on this sequence, but they still can not completely
mark the target. It is found that the reason for the phe-
nomenon of tracking drift is that the targetmoves quickly and
heavily occluded by the trees. The other four trackers suffer
from heavily scale drift due to no adaptive scale estimation.
TheBolt sequence comprises occlusion and deformation.Our
tracker and DSST work well, while TGPR and Struck trackers
lose the target due to the deformation and the following
tracking is always in the state of tracking the wrong target.
The Soccer sequence comprises occlusion, motion blur, fast
motion, and illumination variation. Althoughour tracker and
DSST tracker in this paper accurately track the target, the
DSST tracker is still insufficient compared to our tracker.
The reason is that our proposed model updating strategy has
anti-interference ability in presence of motion blur. Target of
TGPR tracker appears drifting in the 38th frame and TGPR
fails to track the target in the 127th frame. It is unstable during
the tracking process. Shacking sequence exhibits illumination
variation and complex background. Our tracker and DSST
can keep up with the target, but KCF and Struck trackers have
poor performance in all frames of Shacking sequence. From

the previous analysis, our tracker performance is superior to
the above five state-the-art trackers in general.

5. Conclusion

In this paper, we put forward a simple and fast object
tracker based on DSST. Our method extracts powerful
features including gray features, HOG, CN, and IIF to learn
correlation filters for estimating the target position and the
scale is estimated by constructing feature pyramid. Toprevent
model drift, we further introduce skewness to measure the
confidence degree of tracking results and update the learning
rate by comparing the skewness value of two adjacent frames.
Our tracker performs the excellent performancewith the help
of cooperation between the integrated features and dynamic
learning rate in tracking. Contrastive experiments demon-
strate that superiority of our proposed tracking algorithm
over the 12 existing state-of-the-art algorithms on popular
tracking benchmark dataset.
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