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The hydroelastic response of a very large floating structure in regular waves suffering an external moving point load is considered.
The linearized velocity potential theory is adopted to describe the fluid flow. To take into account the coupled effects of the structure
deformation and fluid motion, the structure is divided into multiple segments and connected by an elastic beam. Then through
adding a stiffnessmatrix arising from the elastic beam into themultiple bodies coupledmotion equations, the hydroelastic response
is considered. By applying the Fourier transform to the obtained frequency domain coefficients, themotion equation is transformed
into the time domain and the external point load is further considered. The accuracy and effectiveness of the proposed method are
verified through the comparison with experimental results. Finally, extensive results are provided, and the effects of the moving
point load on the hydroelastic response of the very large floating structure are investigated in detail.

1. Introduction

Very large floating structure (VLFS) can be used as floating
airports and bridges and for many other purposes. Due to
the large dimension of the structure compared with waves,
the elastic deformation should be considered when dealing
with wave-structure interaction. Therefore, hydroelasticity
method has been developed to account for coupling between
hydrodynamic loading and structural deformation for float-
ing flexible structures in waves.

Traditional hydroelasticity methods may be categorized
into two different approaches, i.e., direct method and mode-
superposition method. For the former, the equation of
motion for a flexible structure is solved directly using con-
ceptually full modes of the discretized system [1–3].While for
the latter, the hydroelastic response is obtained by dividing it
into diffraction and radiation problems for each (flexible)
mode of the flexible structure and then superposing all
modal equations together to finally solve them. The mode-
superposition method can be referred to Senjanović et al. [4]
and Michailides et al. [5].

Different from the direct and mode-superposition
methods, Lu et al. [6] proposed a frequency domain

discrete-module-beam-bending based hydroelasticity
method for a continuous flexible structure in waves. One
advantage of this approach is that it avoids the need for
predetermination of the flexible modes, which may be
difficult for complicated geometric (or connection) features
of the flexible structure. Sun et al. [7] extended the method
proposed by Lu et al. [6] to be applicable for the hydroelastic
response of a hinged VLFS in waves (in frequency domain).
Other applications of this method can be referred to Xu et al.
[8] and Zhang et al. [9].

For floating bridges and floating airport, the passage of
vehicles or landing and take-off of an airplane will introduce
unsteady external loading, which may affect the safety of
the structure. Therefore, it is of practical importance to
investigate at the design stage the transient hydrodynamic
response of VLFSs. Traditionally, the hybrid frequency-time
domain method based on mode-superposition approach was
adopted by Kashiwagi [10, 11] to investigate the effects of
unsteady external loading on VLFSs. Also the direct time
domain method was used, for example, by Qiu [12] and
Cheng et al. [13].

In the present study, the discrete-module-beam-bending
based hydroelasticity method [6, 7, 9] is used to investigate

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 6062586, 9 pages
https://doi.org/10.1155/2018/6062586

http://orcid.org/0000-0003-4739-2761
http://orcid.org/0000-0002-7165-9967
http://orcid.org/0000-0001-8021-1980
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6062586


2 Mathematical Problems in Engineering

SF SF

SB

SmS1 S2

S∞
S∞Ω

Figure 1: Definition of fluid and structure boundaries.

the hydroelastic response of a VLFS under unsteady external
loading in waves. The effects of mass and moving velocity of
the point loading on the hydroelastic response of the VLFS in
waves are investigated in detail.

2. Mathematical Model and
Solution Procedure

2.1. Governing Equation for the Multiple Floating Structures.
To solve the problem, we assume that the fluid is inviscid,
incompressible, and homogeneous, and the fluid flow is
irrotational. Then the velocity potential Φ can be introduced
to describe the fluid motion. Under the further assumption
that the amplitude of the wave motion is small compared to
its length and the dimension of the floating structure, we can
apply the linearized velocity potential theory to describe the
fluid flow.

We now consider the wave interactions between multiple
floating structures, as shown in Figure 1. For sinusoidal fluid
motion in time 𝑡 with radian frequency 𝜔, we may write the
total velocity potential Φ into the following form:Φ (𝑥, 𝑦, 𝑧, 𝑡) = Re (𝜙𝑒𝑖𝜔𝑡) (1)

with 𝜙 = 𝜑I + 𝜑𝐷 + 𝜑𝑅
and 𝜑𝑅 = 𝑚∑

𝑞=1

𝜑𝑅,𝑞 (2)

where Re indicates taking the real part, 𝜑I, 𝜑𝐷, and 𝜑𝑅
are, respectively, the complex incident potential, diffracted
potential, and the radiation potential. In fluid domain, the
mass conservation requires that the velocity potential should
satisfy the Laplace equation:∇2𝜙 = 0 (3)

throughout the fluid domain Ω. On the free surface 𝑆𝐹, the
combined kinematic and dynamic boundary condition gives−𝜔2𝜙 + 𝑔𝜕𝜙𝜕𝑧 = 0 (4)

On the seabed 𝑆𝐵, the impermeable condition states𝜕𝜙𝜕𝑧 = 0 (5)

where the seabed is assumed to be flat. On the wetted
structure surface 𝑆𝑞 (𝑞 = 1, . . . , 𝑚), the nonpenetration
condition should be satisfied, i.e.,𝜕𝜑𝐷𝜕𝑛 = −𝜕𝜑𝐼𝜕𝑛 (6)

for the diffracted velocity potential, and𝜕𝜑𝑅,𝑞𝜕𝑛𝑞 = →𝑉𝑞 ⋅ →𝑛 𝑞 (7)

for the radiation velocity potential. Here, 𝑞 indicates the q-th
floating structure. In the far field 𝑆∞, the radiation condition
should be also enforced to close the problem,

lim
𝑅→∞

√𝑅(𝜕𝜙𝐷𝜕𝑅 − 𝑖𝑘𝜙𝐷) = 0 (8)

lim
𝑅→∞

√𝑅(𝜕𝜙𝑅,𝑞𝜕𝑅 − 𝑖𝑘𝜙𝑅,𝑞) = 0 (9)

where 𝑘 denotes the wave number.

2.2. Solution Procedure for the Very Large Floating Structures.
The boundary value problem described in (1) to (9) can
be solved through the standard boundary element method.
Here, the focus is put on the extension of the solution for
multiple structure interaction problem to the hydroelastic
response of very large floating structures. After the velocity
potential has been solved, we can obtain the hydrodynamic
pressure through the linearized Bernoulli equation.

In the frequency domain, the wave exciting force →𝐹 𝑒𝑥𝑘
corresponding to the incident and diffracted velocity poten-
tials can be given as→𝐹 𝑒𝑥𝑘 = 𝑖𝜔𝜌∬

𝑆0𝑞

(𝜑I + 𝜑D) ⋅ →𝑛 𝑞𝑑𝑆 (10)

where 𝜌 is the density of water and 𝑆0𝑞 represents the average
wetted surface. The hydrodynamic force arising from the
radiation potential can be expressed through the added mass𝑎𝑘𝑗 and damping coefficients 𝑏𝑘𝑗, i.e.,[𝑎𝑘𝑗] + 𝑖𝜔 [𝑏𝑘𝑗] = 𝜌∬

𝑆0𝑞

𝜑𝑅,𝑞 ⋅ →𝑛 𝑞𝑑𝑆 (11)

After the hydrodynamic forces are obtained, the equation
of motion of freely floating multibody system can be given
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according to Newton second law. Here, it may be noticed that
themultibody system comprises𝑚modules and eachmodule
has a six degree-of-freedommotion, as shown in Figure 1. For
incident wave with unit amplitude, we have(−𝜔2 ([𝑀𝑘] + [𝑎𝑘𝑘]) − 𝑖𝜔 [𝑏𝑘𝑘] + [𝐶𝑘]) {𝑢𝑘}+ 𝑚∑

𝑗=1,𝑗 ̸=𝑘

(−𝜔2 [𝑎𝑘𝑗] − 𝑖𝜔 [𝑏𝑘𝑗]) {𝑢𝑗} = {𝑓𝑒𝑥𝑘} (12)

for 𝑘 = 1, 2, . . . , 𝑚, where [𝑀𝑘] is the mass matrix of the
k-th module, [𝑎𝑘𝑘] is the added mass matrix of the k-th
module, [𝑏𝑘𝑘] is the damping coefficient matrix of the k-th
module, [𝐶𝑘] is the hydrostatic stiffness matrix of the k-th
module, {𝑓𝑒𝑥𝑘} is the wave excitation force, and {𝑢𝑘} is the six
degree motion amplitude of the k-th module and expressed
as {𝑢𝑘𝑥, 𝑢𝑘𝑦, 𝑢𝑘𝑧, 𝛼𝑘, 𝛽𝑘, 𝛾𝑘}𝑇. The dimension is 6×6 for [𝑀𝑘],[𝑎𝑘𝑘], [𝑏𝑘𝑘], and [𝐶𝑘] and 6×1 for {𝑢𝑘} and {𝑓𝑒𝑥𝑘} (𝑘, 𝑗 =1, 2, . . . , 𝑚). It should be noted that in (12), the constraint
of displacement due to the existence of connections is not
considered.

When considering the elastic response of the very large
structure, (12) becomes

(
(

−𝜔2 [[[[[[[[
[𝑀1] + [𝑎11] [𝑎12] ⋅ ⋅ ⋅ [𝑎1,𝑛][𝑎21] [𝑀2] + [𝑎22] ⋅ ⋅ ⋅ [𝑎2,𝑛]... ... d

...[𝑎𝑛,1] [𝑎𝑛,2] ⋅ ⋅ ⋅ [𝑀𝑛,𝑛] + [𝑎𝑛,𝑛]
]]]]]]]]

− 𝑖𝜔[[[[[[
[𝑏11] [𝑏12] ⋅ ⋅ ⋅ [𝑏1,𝑛][𝑏21] [𝑏22] ⋅ ⋅ ⋅ [𝑏2,𝑛]... ... d

...[𝑏𝑛,1] [𝑏𝑛,2] ⋅ ⋅ ⋅ [𝑏𝑛,𝑛]
]]]]]]

+ [[[[[
[𝐶1] [𝐶2]

d [𝐶𝑛,𝑛]
]]]]] + [𝐾]6𝑛×6𝑛){{{{{{{{{{{

{𝑢1}{𝑢2}...{𝑢𝑛}
}}}}}}}}}}}

= {{{{{{{{{{{
{𝑓𝑒𝑥1}{𝑓𝑒𝑥2}...{𝑓𝑒𝑥𝑛}

}}}}}}}}}}}
(13)

where [𝐾] is the term due to the connection between the
submodules, and details can be seen in Sun et al. [7].

2.3. Motion Equation of Flexible Structure in Time Domain.
To consider the effects of moving load on the hydroelastic
response of the very large floating structure, the solution
should be constructed in the time domain. To do this,
in our work the hybrid frequency/time domain method
(namely the time domain method based on impulse response
function (IRF), which was first introduced by Cummins
(1962)), is adopted to establish themotion equations. Herewe
consider a flexible structure in waves. The motion equations
of the structure (which is divided into m submodules) are
established using the SAM approaches as follows:

[[[[[[
[𝑀1] + [𝑎11 (∞)] [𝑎12 (∞)] ⋅ ⋅ ⋅ [𝑎1,𝑛 (∞)][𝑎21 (∞)] [𝑀2] + [𝑎22 (∞)] ⋅ ⋅ ⋅ [𝑎2,𝑛 (∞)]... ... d

...[𝑎𝑛,1 (∞)] [𝑎𝑛,2 (∞)] ⋅ ⋅ ⋅ [𝑀𝑛,𝑛] + [𝑎𝑛,𝑛 (∞)]
]]]]]]
{{{{{{{{{{{
{�̈�1 (𝑡)}{�̈�2 (𝑡)}...{�̈�𝑛 (𝑡)}

}}}}}}}}}}}
+ ∫𝑡
0

[[[[[[
[𝐵11 (𝑡 − 𝜏)] [𝐵12 (𝑡 − 𝜏)] ⋅ ⋅ ⋅ [𝐵1,𝑛 (𝑡 − 𝜏)][𝐵21 (𝑡 − 𝜏)] [𝐵22 (𝑡 − 𝜏)] ⋅ ⋅ ⋅ [𝐵2,𝑛 (𝑡 − 𝜏)]... ... d

...[𝐵𝑛,1 (𝑡 − 𝜏)] [𝐵𝑛,2 (𝑡 − 𝜏)] ⋅ ⋅ ⋅ [𝐵𝑛,𝑛 (𝑡 − 𝜏)]
]]]]]]
{{{{{{{{{{{
{�̇�1 (𝑡)}{�̇�2 (𝑡)}...{�̇�𝑛 (𝑡)}

}}}}}}}}}}}𝑑𝜏 + [𝐾𝑇𝑜𝑡𝑎𝑙]6𝑛×6𝑛{{{{{{{{{{{
{𝑢1}{𝑢2}...{𝑢𝑛}

}}}}}}}}}}} = {{{{{{{{{{{
{𝑓𝑒𝑥1}{𝑓𝑒𝑥2}...{𝑓𝑒𝑥𝑛}

}}}}}}}}}}}
(14)

where [𝑎𝑖𝑗(∞)] is the added mass matrix of the i-th module
caused by the motion of the j-th module at frequency of
infinity. [𝐵𝑖𝑗(𝑡)] is the kernel function of the i-th module
caused by the motion of the j-th module, which is related
to the radiation damping matrix [𝑏𝑖𝑗(𝜔)]. The expressions of[𝑎𝑖𝑗(∞)] and [𝐵𝑖𝑗(𝑡)] are given as follows:[𝑎𝑖𝑗 (∞)] = [𝑎𝑖𝑗 (𝜔𝑎𝑐)]+ 1𝜔𝑎𝑐 ∫∞0 [𝐵𝑖𝑗 (𝑡)] s ∈ (𝜔𝑎𝑐𝑡) 𝑑𝑡 (15)

[𝐵𝑖𝑗 (𝑡)] = 2𝜋 ∫∞
0

[𝑏𝑖𝑗 (𝜔)] cos (𝜔𝑡) 𝑑𝜔 (16)

where 𝜔𝑎𝑐 is an arbitrarily chosen frequency.
The total stiffness matrix [𝐾𝑇𝑜𝑡𝑎𝑙] is composed of two

parts, i.e., the hydrostatic stiffness of the structure [𝐶] and
the structural stiffness matrix (considering the deformation)[𝐾]. The expression of [𝐾𝑇𝑜𝑡𝑎𝑙] is given as follows:[𝐾𝑇𝑜𝑡𝑎𝑙]6𝑛×6𝑛 = [𝐶] + [𝐾]
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Figure 2: A schematic of a flexible structure with moving point load on the upper surface in waves.
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Figure 3: A schematic of a static point load acting on a flexible structure in calm water.

= [[[[[[[[
[𝐶1]

d [𝐶𝑘]
d [𝐶𝑛]

]]]]]]]]+ [𝐾]6𝑛×6𝑛
(17)

2.4. Consideration of a Moving Load. For a floating bridge
or airport, there are vehicles moving on the upper surface of
the structure. Usually the size of vehicles is small compared
with the floating structure, which means that the vehicle can
be regarded as a point load. Thus the problem of a vehicle
moving on the floating bridge (or airport) can be simplified
as a point load moving on the upper surface of a flexible
structure. In this section, the time domain method is adopted
to investigate the dynamic response of a flexible structure
with moving point loads on the upper surface in waves (see
Figure 2).

The linear assumption for the wave-structure interaction
still remains here. Besides, we assume that the existence
of the moving point load does not cause large structural
deformation. Thus the floating system shown in Figure 2 is
still a linear system. The point mass is assumed to move in
a uniform horizontal velocity 𝑈𝑝. The force due to the point
load on the structure is denoted as {𝑓𝑝(𝑡)}6×1. As the motion
equation is established on the center of each submodule of
the structure. Thus the force {𝑓𝑝(𝑡)} should be transformed
to the ones on the center of submodules, which is denoted as{𝑓𝑝(𝑡)}6𝑛×1 = ({𝑓𝑝1(𝑡)} . . . {𝑓𝑝𝑛(𝑡)})𝑇.

In order to obtain the relationship between {𝑓𝑝(𝑡)} and{𝑓𝑝(𝑡)}, we first consider a (static) point load acting on a
flexible structures in calm water. The motion equation (can

be obtained from (14) after some manipulation) is given as
follows:

[𝐾𝑇𝑜𝑡𝑎𝑙]6𝑛1×6𝑛1 {{{{{{{{{{{{{{{
{𝑢1}{𝑢2}...{𝑢𝑛1}

}}}}}}}}}}}}}}}
= {{{{{{{{{{{{{{{

{𝑓𝑝1}{𝑓𝑝2}...{𝑓𝑝𝑛1}
}}}}}}}}}}}}}}}

(18)

It should be noted that in calm water, the whole structure
is divided into 𝑚1 submodules. 𝑚1 is a large number (𝑚1 =150 adopted in this section) and is much larger than the
number of submodule used in hydroelastic response,𝑚 (𝑚 =8 in the present analysis). The reason is that by setting a
series of submodules (or elements) of very small size, the
point load can be regarded as acting on the center of one
particular submodule (for example, the 𝑖𝑡ℎ1 submodule shown
in Figure 3). Then the equivalent force satisfies {𝑓𝑝𝑗} = 0
(𝑗 ̸= 𝑖1) and {𝑓𝑝𝑗} = {𝑓𝑝(𝑡)} (𝑗 = 𝑖1).

By solving (18), we obtain the distribution of displacement
along the structure in calm water caused by the static
point load at a given position on the structure. Then the
displacement at the center of submodules (the number is𝑚), {𝑢}6𝑚×1 for hydroelastic calculation (see (14)), is also
obtained. Thus we can obtain the equivalent force {𝑓𝑝}6𝑚×1
as follows: {{{{{{{{{{{{{

{𝑓𝑝1}{𝑓𝑝2}...{𝑓𝑚}
}}}}}}}}}}}}} = [𝐾𝑇𝑜𝑡𝑎𝑙]6𝑚×6𝑚{{{{{{{{{{{

{𝑢1}{𝑢2}...{𝑢𝑚}
}}}}}}}}}}} (19)

In calm water, we can obtain the equivalent force {𝑓𝑝}6𝑚×1
for static point loads acting on any position of the structure.
Finally, the hydroelastic response equation can be written as
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[[[[[[[
[𝑀1] + [𝑎11 (∞)] [𝑎12 (∞)] ⋅ ⋅ ⋅ [𝑎1,𝑛 (∞)][𝑎21 (∞)] [𝑀2] + [𝑎22 (∞)] ⋅ ⋅ ⋅ [𝑎2,𝑛 (∞)]... ... d

...[𝑎𝑛,1 (∞)] [𝑎𝑛,2 (∞)] ⋅ ⋅ ⋅ [𝑀𝑛,𝑛] + [𝑎𝑛,𝑛 (∞)]
]]]]]]]
{{{{{{{{{{{{{
{�̈�1 (𝑡)}{�̈�2 (𝑡)}...{�̈�𝑛 (𝑡)}

}}}}}}}}}}}}}
+ ∫𝑡
0

[[[[[[[
[𝐵11 (𝑡 − 𝜏)] [𝐵12 (𝑡 − 𝜏)] ⋅ ⋅ ⋅ [𝐵1,𝑛 (𝑡 − 𝜏)][𝐵21 (𝑡 − 𝜏)] [𝐵22 (𝑡 − 𝜏)] ⋅ ⋅ ⋅ [𝐵2,𝑛 (𝑡 − 𝜏)]... ... d

...[𝐵𝑛,1 (𝑡 − 𝜏)] [𝐵𝑛,2 (𝑡 − 𝜏)] ⋅ ⋅ ⋅ [𝐵𝑛,𝑛 (𝑡 − 𝜏)]
]]]]]]]
{{{{{{{{{{{{{
{�̇�1 (𝑡)}{�̇�2 (𝑡)}...{�̇�𝑛 (𝑡)}

}}}}}}}}}}}}}𝑑𝜏 + [𝐾𝑇𝑜𝑡𝑎𝑙]6𝑛×6𝑛{{{{{{{{{{{{{
{𝑢1}{𝑢2}...{𝑢𝑛}

}}}}}}}}}}}}} = {{{{{{{{{{{{{
{𝑓𝑒𝑥1}{𝑓𝑒𝑥2}...{𝑓𝑒𝑥𝑛}

}}}}}}}}}}}}}
+{{{{{{{{{{{{{{{

{𝑓𝑝1}{𝑓𝑝2}...{𝑓𝑝𝑛}
}}}}}}}}}}}}}}}

(20)

with the external load considered.

3. Numerical Results

3.1. Validation of the Method. To verify the accuracy and
efficiency of the method presented in this paper, we consider
the model by Yago and Endo (1996), which is a scaled model
of the Mega-Float. This is constructed and developed for
use in sheltered waters. The wave amplitude is 1𝑚, and the
main parameters are listed in Table 1. The number of nodes
in hydrodynamic calculation of VLFS is 160 × 10 × 10.

The case considered here is the moving load experiment,
conducted by Endo and Yago (1999). The experiment model
VL-10 was designed similar to the continuous flexible VLFS
model adopted by Yago and Endo (1996) on the basis of
similitude (with a scaling factor of 30.77). In the following
test, all physical properties are listed in prototype scale
(i.e., the scale of MF-300). In experiment, a moving load
of 201016kg was navigated on the runway from 𝑥/𝐿 =−(0.31 ∼ 0.4) (see Figure 4) with constant velocity 3.39𝑚/𝑠.

It should be noted that the origin is set in the middle of the
structure in Endo and Yago (1999), which is different from
the definition of origin at left side of the structure in previous
sections in the present study. This case is also calculated
by the present numerical method. As no incident waves
are considered, the wave excitation force in the right hand
side of (12) should be ignored. The time histories of vertical
displacement of the structure obtained from the present
numerical method, “Present”, and from the experiment,
“Experiment”, are comparatively shown in Figure 5. It can
be seen that the calculated results are found to show a
reasonable agreement with the experiment, which validates
the proposed numerical methodologies for calculating the
dynamic response of a flexible structure undergoing moving
point loads. Generally, it can be expected that the vertical
displacement of the VLFS will have a large trough near the
moving load. This means that the vertical displacement at𝑥/𝐿 = −0.25, 0 and 0.5will have a large trough when 𝑡 ≈ 5.3𝑠,27.4𝑠, and 71.7𝑠, respectively, as shown in Figure 5. For the
black line of 𝑥/𝐿 = 0.5, since the large trough corresponding
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Figure 5: Time history of vertical displacement of the flexible
structure in calm water.

Table 1: Parameters of the model.

Parameters Units Value
Length L: m 300
Width B: m 60
Depth D: m 2
Draft d: m 0.5
Young modulus E: N/m2 1.19e10
Poisson ratio ] 0.13
Density 𝜌: kg/m3 256.25
Water depth H: m 58.5

to 𝑡 = 71.7𝑠 is out of the computed time range, thus only a
trend to the large trough is observed in the figure.

3.2. The Effects of Moving Load Mass. We then consider
the effects of the mass of the moving point load on the
hydroelastic response of the very large floating structure.The
incident wave length is taken to be 300𝑚, and the incident
wave angle is chosen as zero or heading waves.Three different
moving pointmasses are considered, i.e., 200𝑡, 400𝑡, 600𝑡, and800𝑡. For each case, the mass point load is moving with the
same velocity or 5𝑚/𝑠.

In Figure 6, we show the typical contour plot of the
vertical displacement and bending moment response of the
VLFS in regular wave with a moving point mass 600𝑡, against
time and longitudinal position of the structure. In both
Figures 6(a) and 6(b), the trajectory of the moving point
load is also given. It can be seen from Figure 6(a) that the
absolute value of the displacement at the two end sides of
the VLFS is usually larger than those for the point within the
VFLS. This is not unexpected because due to that both the
two end sides are free to move. From the figure, we can also
see that the largest vertical displacement happens when the
moving point load is located at the two end sides of the VLFS,
i.e., approximately at 40𝑠 and 100𝑠, and the value is always
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Figure 6: Typical contours of the vertical displacement and bending
moment responses of the VLFS in regular wave with a moving point
mass as 600𝑡.
negative. This is because the moving point load is always
negative due to the gravity. Compared with Figure 6(a), it can
be seen from Figure 6(b) that the bending moment response
of the VLFS around the middle point is always larger than
those at the two end sides of the VLFS, which is coincided
with the free beam theory. Especially, from these two figures
we can see that the effects of the moving point load on the
bending moment response of the VLFS are much larger than
those on the vertical displacement, as shown for the region(40𝑠, 100𝑠).

Computations are then carried out for the vertical dis-
placement and bending moment responses of the VLFS in
regular waves undergoing a moving point load with different
masses, as shown in Figures 7(a) and 7(b), respectively, for
the vertical displacement response and bending moment
response. From Figure 7(a) we can see that with the increase
of the moving point load mass, the absolute values of the
peaks become much smaller while the absolute values of the
troughs become much larger. This is for that the overall effect
of the moving load is inducing a negative displacement. In
addition, since the time histories are for the point located at𝑥/𝐿 = 0.5, thus within (60𝑠, 80𝑠) the effects of the moving
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Figure 7: Time histories of the vertical displacement and bending moment responses of the VLFS in regular wave for a moving point load
with different masses.
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Figure 8: The maximum vertical displacement and bending moment responses of the VLFS in regular wave for a moving point load with
different masses.

load are most obvious. From Figure 7(b) it can be seen that
the absolute values of the peaks and troughs for the case with
a moving load are always larger than those without a moving
load. Compared with Figure 7(a), we can see that once the
moving load is on the VLFS, its effects should be always
considered. In addition, it is interesting to see that compared
with the vertical displacement response, which varies with
a single frequency, there are more frequency components
in the bending moment response, which indicates that the
hydroelastic effects must be taken into account to obtain a
reasonable result. To see the effects of the moving load mass
more clearly, in Figures 8(a) and 8(b) we plot the maxi-
mum vertical displacement and bending moment against the
load mass, both of which increase with load mass linear-
ly.

3.3. The Effects of Moving Load Velocity. Finally, we investi-
gate the effects of the moving load velocity on the vertical
displacement and bending moment response of the VLFS.
The incident wave length and wave angle are taken to be300𝑚 and zero degree, respectively.Themoving point mass is
chosen as 600𝑡. Here, four moving velocities are considered,
i.e., 5𝑚/𝑠, 10𝑚/𝑠, 15𝑚/𝑠, and 20𝑚/𝑠. In Figures 9(a) and 9(b)
we show the typical contour plots of the vertical displacement
and bending moment response, respectively, in which the
moving point load velocity is 15𝑚/𝑠. The comparison of
Figures 9(a) and 9(b) shows that when the moving point
load leaves the VLFS, its effects on the vertical displacement
disappear quickly, while its effects on the bending moment
response will maintain for a long time. Also, from the
comparison of Figure 9(b) with Figure 6(b) we can see that
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Figure 9: Typical contours of the vertical displacement and bendingmoment responses of the VLFS in regular wave for a moving point mass
with velocity as 15𝑚/𝑠.
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Figure 10: Time histories of the vertical displacement and bending moment responses of the VLFS in regular wave for a moving point load
with different velocities.

the effects of the moving point load on the bending moment
response are muchmore obvious for a larger moving velocity.

In Figures 10(a) and 10(b) we show the time histories of
the vertical displacement and bending moment response of
the VLFS in regular waves undergoing a moving point load
with four different velocities. The point load moves on the
VLFS at 40𝑠 and leaves the VLFS at 60𝑠. The results for the
case without the moving point mass are also given. From
this figure it can be observed that for each velocity, after the
point load leaves the VLFS, its effects will maintain a few
times, and then disappear. Within the computational range of
moving velocity, there is no evidence to show that the vertical
displacement or the bending moment increase or decrease
with the moving velocity. However, the overall trend is that
the vertical displacement and bending moment response for
VLFSwith amoving point load are generally larger than those
without the moving point load. This can be more clearly seen

in Figures 11(a) and 11(b), which shows themaximum vertical
displacement and bending moment response of the VLFS
against point load velocity.

4. Conclusions

In this paper, we have presented the solution procedure for
the hydroelastic response of a very large floating structure
in regular waves suffering an external moving point load,
based on the linearized velocity potential theory and the
multiple bodies beam method. The solution starts from
the coupled motion equations for multiple freely floating
bodies. Then assuming these bodies are connected through
an elastic beam or adding an additional stiffness matrix
into the coupled motion equations, the coupled effects of
the structure deformation and fluid motion are considered.
Through further transforming the frequency domain motion
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Figure 11: The maximum vertical displacement and bending moment responses of the VLFS in regular wave for a moving point load with
different velocities.

equations into the time domain ones via Fourier transform,
the effects of the moving point load are taken into account.
The comparison with experiment results shows that the
method is accurate enough for engineering application. The
extensive results indicate that both the vertical displacement
and bending moment response will increase with the moving
point load mass. However, there is no evidence to show that
the vertical displacement or the bending moment increases
or decreases with the moving velocity.
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