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This paper presents the theoretical development of a new model of shells called SAM-H (Stress Approach Model of Homogeneous
shells) and adapted for linear elastic shells, from thin to moderately thick ones.Themodel starts from an original stress polynomial
approximation which involves the generalized forces and verifies the 3D equilibrium equations and the stress boundary conditions
at the faces of the shell. Hellinger-Reissner functional and Reissner’s variational method are applied to determine the generalized
fields and equations. The generalized forces and displacements are the same as those obtained in a classical, moderately thick
shell model (CS model). The equilibrium and constitutive equations have some differences from those of a CS model, mainly in
consideration of applied stress vectors at the upper and lower faces of the shell and the stiffness matrices. Another feature of the
SAM-H model is the inclusion of the Poisson’s effect of out-of-plane normal stresses on in-plane strains. As a first application
example to test the accuracy of the model, the case of a pressurized hollow sphere is considered. The analytical results of stresses
and displacements of the SAM-H and CS models are compared to those of an exact 3D resolution. In this example, SAM-Hmodel
proves to bemuchmore accurate than the CSmodel and its approximation of the normal out-of-plane stress is very precise. Finally,
an implementation of the SAM-H model equations in a finite element software is performed and a case study is analyzed to show
the advantages of using the SAM-H model.

1. Introduction

In structural engineering, models of plates and shells are
necessary for carrying out reliable predictions of displace-
ments and stresses without the excessive computational
cost of three-dimensional solid finite element calculations.
Displacement and stress approaches are commonly used as
starting point for the construction of these models. In a dis-
placement approach, the displacement field is approximated
by linear combinations of friendly functions of the thickness
coordinate such as polynomials. In a stress approach, an
analogue approximation is made with the components of the
3D stress field. Additionally, in this last approach it is ideal
that the approximate stress field verifies the 3D equilibrium
equation and stress boundary conditions [1].

In the family of linear elastic plate models, the Kirchhoff-
Love theory [2] is the simplest one. In this theory, the plate

thickness does not change during deformation and the in-
plane displacements are approximated by first degree polyno-
mials of the thickness coordinate while the out-of-plane dis-
placement is uniform across the thickness.The coefficients of
these polynomials depend only on the three displacements of
the middle surface and their derivatives (these displacements
can also be called generalized displacements). This model
neglects out-of-plane shear forces and is usually applied to
thin plates. A more complete plate model is Mindlin’s one
[3] which considers the same polynomial degrees in the
displacement approximation but includes two rotations in
the coefficients of the in-plane displacement polynomials.
Five generalized displacements are then involved inMindlin’s
model (three displacements and two rotations) and the linear
out-of-plane strain remains zero as in Kirchhoff-Love theory.
Anothermodel of plates is Reissner’smodel [4]which is based
on a stress approach: the in-plane stresses are approximated
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by first degree polynomials while the out-of-plane shear and
normal stresses are approximated by second degree and third
degree polynomials, respectively. The stress approximation
verifies the 3D equilibrium equation and the stress boundary
conditions at the upper and lower faces of the plate. The
coefficients of the stress polynomials are the stress resultants
also called generalized forces. Owing to the shear correction
factor introduced by Mindlin, the models of Reissner and
Mindlin have similar plate equations: this explains the com-
mon denomination “Reissner-Mindlin” plate theory. These
models provide accurate stiffness predictions of moderately
thick plates and good but less precise results for thick shells.
These models have been the starting point for the analysis
of composite laminated plates and the development of other
models such as higher-order models [5], zig-zag models
[6], extensions of Reissner-Mindlin-like models [7, 8], and
layerwise models [9]. In this last family of models, Pagano’s
model [1], which proposes a polynomial stress approximation
that verifies the 3D equilibrium in each layer, is worth
citing. Pagano used Reissner’s variational mixed formulation
[10] to build the model. No displacement approximation is
made despite the use of a mixed formulation. The Hellinger-
Reissner functional and the stress approximation helps to
identify 2D generalized displacements. More recent develop-
ments of Pagano’s approach can be found in [11–13], where
some simplifications are adopted to obtain more operational
layerwise models. In [13], Alvarez-Lima et al. enhanced
a layerwise model called M4-5N (originally developed by
Chabot in [11]) in order to include the Poisson’s effect of out-
of-plane normal stresses on in-plane strains which may have
an important impact on plasticity and failure mechanisms.
Most models of plates do not take into account this effect.

Shell models can be classified depending on how the ratio𝜂 between the thickness to the smallest principal radius is
considered in themodel equations: thin andmoderately thick
shell models neglect any term multiplied by 𝜂𝑘 for 𝑘 ≥ 1
and 𝑘 ≥ 2, respectively; thick shell models consider higher-
degree terms. The simplest thin shell models are Love’s first
approximation theories [2, 14–17] which neglect transverse
shear deformation and are based on a displacement approach
similar to that in Kirchhoff-Love plate theory. Other thin and
moderately thick shell models apply a displacement approx-
imation (in the curvilinear coordinate system) analogue to
Mindlin’s plate model [18, 19]; for example, in [20], Toorani
and Lakis proposed a generalization of the classical Reissner-
Mindlin plate theory in order to include the curvature and
transverse shear strains of the shell. These authors improved
their model in [21] by enhancing the kinematic fields. In
these displacement approach models, the 3D constitutive
equations yield linear in-plane stresses and constant out-
of-plane shear stresses across the thickness of the shell.
For these models, the stress field does not verify the 3D
equilibrium equations and the stress boundary conditions at
the faces of the shell [22]. Moreover, the normal out-of-plane
stresses and the linear out-of-plane strains are neglected and
this may lead to important errors in thicker shells. These
drawbacks have motivated the development of higher-degree
displacement approximations, the use of better techniques

to recover the 3D stress, and the construction of models
based on stress ormixed stress/displacement approximations.
In [23, 24], Tornabene and Viola used an approximation
of the 3D displacement field to obtain all the generalized
equations and generalized fields for shells of revolution.
After solving the static problem, they applied the generalized
differential quadrature method in order to approximate the
spatial derivatives of the stress field. This approximation
and Hooke’s law allowed recovering and correcting the 3D
stress field which took into account the boundary conditions
at the faces of the shell. One of the first stress approach
models for shells is the one developed by Trefftz [25]; in
this model, an approximation of in-plane stresses in terms
of generalized forces is made, but transverse stresses are
neglected. This implies that both 3D equilibrium equations
and boundary conditions at the faces of the shell are not
verified. In [26, 27], Synge and Chien proposed a mixed
stress/displacement approach model for thin shells where
stresses and displacements are approximated by polynomials
of the thickness coordinate. In their theory, the boundary
conditions at the faces of the shell are not fulfilled. In [28],
Fang et al. developed a thick shell model using a mixed
stress/displacement approach by applying Hellinger-Reissner
functional [10]. In this mixed model, the stress field verifies
the boundary conditions at the faces of the shell but not the
3D equilibrium equations. Shellmodels based on a pure stress
approach are less usual than those based on a displacement
approach; two noteworthy stress approach based models
for cylindrical and spherical thick shells can be found in
[29, 30], respectively. A summary and comparative study
of several shell and plate theories was made by Leissa in
[31, 32]. In Leissa’s work, all the shell models start with
an approximation of the displacement field. There are few
models based on a stress approach although these types of
models have advantages over those based on displacement
approximation.

Many commercial finite element software packages offer
surface elements to analyze shell structures. These elements
are based on classical shell models. A family of these surface
elements is the one introduced in the MITC (Mixed Interpo-
lation of Tensorial Components) shell concept; this family is
referred to in the literature as MITC𝑛, where 𝑛 is related to
the number of nodes in the element [33]. Lee and Bathe [34]
state that these elements development is based on the use of
displacement interpolations and the selection of appropriate
strain field interpolation. Finally, the element rigidity matrix
is built using a stress-strain constitutive equation of classical
shell models. Obviously, with this family of elements, the
stress field does not verify the 3D equilibrium equations and
the stress boundary conditions at the faces of the shell.

In this paper, an original model of linear elastic moder-
ately thick shells (𝜂 ≤ 0.3) called SAM-H (Stress Approach
Model of Homogeneous shells) is developed by making use
of a method similar to that applied by Pagano in [1] and
based on a stress approach which, in the limit case of a
homogeneous plate, involves less generalized forces than
Pagano’smodel. Reissner’s variationalmixed formulation [10]
is applied to obtain the generalized fields and equations. The
main contribution of the paper resides on the quality of the
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stress approximation and the simplicity of the model: the 3D
equilibrium equations and the stress boundary conditions
at the shell faces are verified, with the same number of
generalized forces, moments, strains, and displacements as
the linear elastic version of the classical model of general
moderately thick shells proposed by Reddy [19]. Another
originality of the model resides on taking into account and
distinguishing the effect of stress vectors applied at the inner
and outer faces of the shell. Finally, the inclusion of the
Poisson’s effect of out-of-plane normal stresses on in-plane
strains is another feature of themodel that has not been found
on any thin or moderately thick shell model.

This paper is organized in six sections. In the first section,
the adopted notations and assumptions are detailed.The sec-
ond section recalls the Hellinger-Reissner variational princi-
ple of elastostatics.Then, in section three, the proposed stress
approximation is shown. The generalized displacements,
strains, equilibrium equations, and force edge conditions
are obtained in section four. The generalized constitutive
equations and displacement edge conditions are determined
in section five. In the last section, the main differences
between the SAM-H model and a classical shell model are
discussed; a comparison of analytical and numerical results
of these two models is also shown. Finally, an appendix
containing further details of equations is included.

2. Notations, Geometry Definition,
and Assumptions

A doubly curved shell is considered. Its thickness ℎ is
uniform. (𝜉1, 𝜉2, 𝜉3) denote the orthogonal curvilinear coor-
dinateswhere 𝜉1 and 𝜉2 are the lines of curvature at themiddle
surface (𝜉3 = 0). The principal radii of curvature are 𝑅1

and 𝑅2; the principal curvatures are then 𝜅1 = 1/𝑅1 and𝜅2 = 1/𝑅2. The Lamé coefficients are defined by𝐴1 = 𝑎1 (1 + 𝜉3𝑅1

) ,
𝐴2 = 𝑎2 (1 + 𝜉3𝑅2

) ,𝐴3 = 1
(1)

where 𝑎1 = √𝑔2
11, 𝑎2 = √𝑔2

22; 𝑔𝛼𝛽 (𝛼, 𝛽 = 1, 2) are the
surface metric tensor components. In what follows, the next
notations are adopted:

(i) Greek subscripts take the values 1 and 2;
(ii) Latin subscripts take the values 1, 2, and 3;
(iii) the shell lies in the volumeΩ; its middle surface is 𝜔;
(iv) bold face characters denote vectors, matrices, and

tensors;
(v) unit vectors in the directions of the lines of curvature

are e1 and e2; the unit vector normal to the middle
surface is e3 = e1 × e2, where × is the cross product;

(vi) the dot product of vectors and simple contraction of
tensors is noted “⋅” while the double contraction of

tensors and the tensor product are noted “:” and “⊗”,
respectively;

(vii) an underline and a double underline below a bold face
character (for example:U andM) denote, respectively,
vectors and second-order tensors of the 2D space
defined by the basis (e1, e2);

(viii) 𝜅 = 𝜅1e1 ⊗ e1 +𝜅2e2 ⊗ e2 and 𝜅󸀠 = 𝜅2e1 ⊗ e1 +𝜅1e2 ⊗ e2
are curvature tensors;

(ix) the stress vectors applied on the outer (𝜉3 = ℎ/2) and
inner (𝜉3 = −ℎ/2) faces are s+ and s−, respectively;
these vectors are defined by

s+ (𝜉1, 𝜉2) = 𝜏+ + 𝜎+e3
and s− (𝜉1, 𝜉2) = 𝜏− + 𝜎−e3,

where 𝜏+ = 𝜏+1 e1 + 𝜏+2 e2 and 𝜏− = 𝜏−1 e1 + 𝜏−2 e2; (2)

in the above expression 𝜎+ and 𝜎− are the applied
normal stresses while 𝜏+𝛼 and 𝜏−𝛼 are the applied shear
stresses.

(x) f is the 3D body load vector and its components in the
curvilinear coordinate system are 𝑓𝑖;

(xi) n0 = 𝑛01e1 + 𝑛02e2 is the outward-pointing normal
vector to the edge of the middle surface 𝜔;

(xii) 𝜎 and u denote the 3D stress tensor and displacement
field;

(xiii) dik 𝜎 denotes the 3D divergence operator applied to
the second-order tensor 𝜎:

dik 𝜎 = 1𝐴1𝐴2𝐴3

(k1 + k2) (3)

where vectors k1 and k2 take the array form:

k1 = (
(

𝜕𝐴2𝐴3𝜎11𝜕𝜉1 + 𝜕𝐴1𝐴3𝜎12𝜕𝜉2 + 𝜕𝐴1𝐴2𝜎13𝜕𝜉3𝜕𝐴2𝐴3𝜎21𝜕𝜉1 + 𝜕𝐴1𝐴3𝜎22𝜕𝜉2 + 𝜕𝐴1𝐴2𝜎23𝜕𝜉3𝜕𝐴2𝐴3𝜎31𝜕𝜉1 + 𝜕𝐴1𝐴3𝜎32𝜕𝜉2 + 𝜕𝐴1𝐴2𝜎33𝜕𝜉3
)
)

(4)

and

k2 = (𝐴2𝑎2 𝜕𝑎1𝜕𝜉2 𝜎21 − 𝐴1𝑎1 𝜕𝑎2𝜕𝜉1 𝜎22 + 𝐴2

𝑎1𝑅1

𝜎31𝐴1𝑎1 𝜕𝑎2𝜕𝜉1 𝜎12 − 𝐴2𝑎2 𝜕𝑎1𝜕𝜉2 𝜎11 + 𝐴1

𝑎2𝑅2

𝜎32−𝐴2

𝑎1𝑅1

𝜎11 − 𝐴1

𝑎2𝑅2

𝜎22 ); (5)

(xiv) grad g is the 2D gradient of the 2D vector g = 𝑔1e1 +𝑔2e2; its components take the following array form:

grad g

= ( 1𝑎1 𝜕𝑔1𝜕𝜉1 + 𝑔2𝑎1𝑎2 𝜕𝑎1𝜕𝜉2 1𝑎2 𝜕𝑔1𝜕𝜉2 − 𝑔2𝑎1𝑎2 𝜕𝑎2𝜕𝜉11𝑎1 𝜕𝑔2𝜕𝜉1 − 𝑔1𝑎1𝑎2 𝜕𝑎1𝜕𝜉2 1𝑎2 𝜕𝑔2𝜕𝜉2 + 𝑔1𝑎1𝑎2 𝜕𝑎2𝜕𝜉1); (6)
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(xv) grad 𝑝 = (1/𝑎1)(𝜕𝑝/𝜕𝜉1)e1 + (1/𝑎2)(𝜕𝑝/𝜕𝜉2)e2 is the
2D gradient of the 2D scalar function 𝑝;

(xvi) dik M is the divergence of the 2D second-order tensor
M = 𝑀𝛼𝛽e𝛼 ⊗ e𝛽 (sum on 𝛼 and 𝛽); its components
have the following array form:

dik M = 1𝑎1𝑎2
⋅ (𝜕𝑎2𝑀11𝜕𝜉1 + 𝜕𝑎1𝑀12𝜕𝜉2 +𝑀21

𝜕𝑎1𝜕𝜉2 −𝑀22

𝜕𝑎2𝜕𝜉1𝜕𝑎2𝑀21𝜕𝜉1 + 𝜕𝑎1𝑀22𝜕𝜉2 +𝑀12

𝜕𝑎2𝜕𝜉1 −𝑀11

𝜕𝑎1𝜕𝜉2); (7)

(xvii) the divergence of the 2D vector field k = V1e1 + V2e2
is defined by

div k = 1𝑎1𝑎2 (𝜕𝑎2V1𝜕𝜉1 + 𝜕𝑎1V2𝜕𝜉2 ) . (8)

The following assumptions are adopted:

(1) small displacements and strains are assumed;
(2) the material is homogeneous and orthotropic, and

one of its orthotropy directions is direction 3; S is the
3D, 4th-order compliance tensor, and its components
are 𝑆𝑖𝑗𝑘𝑙; while handling plates and shells, it is useful
to define the following compliance tensors and con-
stants:

S = 2∑
𝛼,𝛽,𝛾,𝛿=1

𝑆𝛼𝛽𝛾𝛿e𝛼 ⊗ e𝛽 ⊗ e𝛾 ⊗ e𝛿,
Sc = 2 2∑

𝛼,𝛽=1

𝑆𝛼𝛽33e𝛼 ⊗ e𝛽,
SQ = 4 2∑

𝛼,𝛽=1

𝑆𝛼3𝛽3e𝛼 ⊗ e𝛽

and 𝑆𝜎 = 𝑆3333;
(9)

(3) in all calculations the terms 𝜉3/𝑅𝛼 and ℎ/𝑅𝛼 are con-
sidered, but higher-order terms (𝜉3/𝑅𝛼)𝑛 and (ℎ/𝑅𝛼)𝑛
(𝑛 ≥ 2) are neglected;

(4) the curvatures vary smoothly along the lines of
curvature and their derivatives with respect to 𝜉𝛼 are
neglected;

(5) in order to ease the generalized compliance calcu-
lations, the divergence of the shear stress vectors
applied on the faces of the shell are assumed to be
zero:

div 𝜏+ = div 𝜏− = 0; (10)

(6) the body load vector f is uniform through the thick-
ness direction;

(7) no 3D displacement constraints are applied on the
inner and outer faces of the shell.

Ωs

ΩsΩu

Figure 1: Example of a shell with different regions of boundary
conditions.

3. Hellinger-Reissner Functional

On the boundaries 𝜕Ωu and 𝜕Ωs of Ω, the body is subjected
to the displacement vector ug and stress vector sg, respec-
tively. In Figure 1, an example of the boundaries 𝜕Ωu and𝜕Ωs is shown. The Hellinger-Reissner functional for elastic
problems [10] applied to the shell is𝐻.𝑅. (u∗,𝜎∗) = ∫

Ω
[𝜎∗ : 𝜀 (u∗) − f ⋅ u∗ − 𝑤∗

𝑒 ] 𝑑Ω− ∫
𝜕Ωu

(𝜎∗ ⋅ n) ⋅ (u∗ − ug) 𝑑𝑆− ∫
𝜕Ωs

sg ⋅ u∗𝑑𝑆 (11)

where n is the 3D outward-pointing normal vector to the
boundary ofΩ, u∗ is a piecewise C1 first order tensor field, 𝜎∗
is a piecewise C1 second-order symmetric tensor field, 𝜀 is the
Cauchy’s infinitesimal strain tensor, and 𝑤∗

𝑒 = (1/2)𝜎∗ : S :
𝜎∗ is the elastic energy density. In what follows, a field with an
uppercase ∗ denotes a field that is not necessarily the solution
of the problem and varies in its corresponding space. If a field
(stress, generalized displacement, force, or moment) appears
without uppercase ∗, this field is solution of the problem.

In this paper, as in [35], an integration by parts is
performed for the term containing 𝜎∗ : 𝜀(u∗).𝐻.𝑅. (u∗,𝜎∗) = −∫

Ω
[dik 𝜎∗ ⋅ u∗ + f ⋅ u∗ + 𝑤𝑒] 𝑑Ω+ ∫

𝜕Ωu

(𝜎∗ ⋅ n) ⋅ ug𝑑𝑆+ ∫
𝜕Ωs

(𝜎∗ ⋅ n − sg) ⋅ u∗𝑑𝑆 (12)

Reissner’s theorem [10] states that:

(i) the solution to the mechanical problem is the 3D
displacement field/stress tensor field couple (u,𝜎)
that makes the H.R. functional stationary (notice that
no uppercase ∗ appears for the solution);

(ii) the stationarity of H.R. with respect to u∗ yields the
equilibrium equations and the boundary conditions
on the stress vector while its stationarity with respect
to 𝜎∗ yields the constitutive equations and the bound-
ary conditions on the displacement field.
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In this paper, a stress approach is proposed. The intro-
duction of the stress approximation in the H.R. functional
in (12) allows identifying the generalized displacements in
the thickness integral of the term dik 𝜎∗ ⋅ u∗. The stress
approximation will lead to 5 generalized displacements (3
displacements and 2 rotations).

4. Stress Approximation

4.1. Polynomial Expressions. Let us define the following
polynomial basis of 5-th degree 𝜉3-polynomials:𝑃0 (𝜉3) = 1,𝑃1 (𝜉3) = 𝜉3ℎ ,𝑃2 (𝜉3) = −6(𝜉3ℎ )2 + 12 ,𝑃3 (𝜉3) = −2(𝜉3ℎ )3 + 310 (𝜉3ℎ ) ,𝑃4 (𝜉3) = −143 (𝜉3ℎ )4 + (𝜉3ℎ )2 − 140

and 𝑃5 (𝜉3) = (𝜉3ℎ )5 − 518 (𝜉3ℎ )3 + 5336 (𝜉3ℎ ) .
(13)

This polynomial basis is orthogonal:∫ℎ/2

−ℎ/2
𝑃𝑚 (𝜉3) 𝑃𝑛 (𝜉3) 𝑑𝜉3 = 0 if 𝑚 ̸= 𝑛. (14)

The following stress approximations are selected:𝜎∗𝛼𝛽 (𝜉1, 𝜉2, 𝜉3) = 1∑
𝑛=0

𝜎𝑛∗𝛼𝛽 (𝜉1, 𝜉2) 𝑃𝑛 (𝜉3) (15)

𝜎∗𝛼3 (𝜉1, 𝜉2, 𝜉3) = 3∑
𝑛=0

𝜎𝑛∗𝛼3 (𝜉1, 𝜉2) 𝑃𝑛 (𝜉3) (16)

𝜎∗33 (𝜉1, 𝜉2, 𝜉3) = 4∑
𝑛=0

𝜎𝑛∗33 (𝜉1, 𝜉2) 𝑃𝑛 (𝜉3) (17)

where 𝜎𝑛∗𝑖𝑗 are stress coefficients which will be expressed as
linear combinations of the generalized forces.Thepolynomial
degree of each stress componentwas chosen so as to verify the
3D equilibrium equation as will be shown in Section 4.3.

4.2. Generalized Forces. Let us define the components of the
membrane forces N∗, shear forces Q∗, and moments M∗ as
follows: 𝑁∗

𝛼𝛽 = ∫ℎ/2

−ℎ/2
𝜎∗𝛼𝛽 (1 + 𝜉3𝑅3−𝛽

)𝑑𝜉3 (18)𝑄∗
𝛼 = ∫ℎ/2

−ℎ/2
𝜎∗𝛼3 (1 + 𝜉3𝑅3−𝛼

)𝑑𝜉3 (19)𝑀∗
𝛼𝛽 = ∫ℎ/2

−ℎ/2
𝜉3𝜎∗𝛼𝛽 (1 + 𝜉3𝑅3−𝛽

)𝑑𝜉3 (20)

where the subscript 3−𝛽 is 2 if 𝛽 = 1, and 1 if 𝛽 = 2.The same
can be said for the subscript 3−𝛼. Let us point out thatN∗ and
M∗ may be nonsymmetric, while the stress tensor is always
symmetric. Owing to assumption (3) and to the symmetry of
the 3D stress tensor,𝑁21 and𝑀21 are related to𝑁12 and𝑀12

as follows: 𝑁21 = 𝑁12 + 𝛿𝜅𝑀12

and 𝑀21 = ℎ212𝛿𝜅𝑁12 +𝑀12. (21)

Here 𝛿𝜅 = 𝜅2 − 𝜅1. By making use of assumption (3) in
Section 2 and introducing the stress approximation defined
in (15) and (16), one obtains the following.𝑁∗

𝛼𝛽 = ℎ𝜎0∗𝛼𝛽 + ℎ212𝑅3−𝛽

𝜎1∗𝛼𝛽 (22)𝑄∗
𝛼 = ℎ𝜎0∗𝛼3 + ℎ212𝑅3−𝛼

𝜎1∗𝛼3 (23)𝑀∗
𝛼𝛽 = ℎ312𝑅3−𝛽

𝜎0∗𝛼𝛽 + ℎ212𝜎1∗𝛼𝛽 (24)

In the limit case of a plate,N∗ andM∗ are symmetric and
thus the model contains 8 generalized forces and moments, 2
less than Pagano’s model [1] applied to a homogeneous plate.
The generalized forces and moments of SAM-H are the same
as those in the Reissner-Mindlin plate theory.

4.3. Determination of Coefficients in the Stress Approximation.
Owing to (3), the 3D equilibrium equation yields the follow-
ing.

k1 + k2 + 𝐴1𝐴2f = 0 (25)

Introducing (4)-(5) and (15)–(17) in (25) yields

((((
(

2∑
𝑞=0

𝜂𝑞1 (𝜉1, 𝜉2) 𝑃𝑞 (𝜉3) + 4∑
𝑞=0

𝜆𝑞1 (𝜉1, 𝜉2) 𝑃𝑞 (𝜉3) + 𝑟𝑓1 (𝜉1, 𝜉2)
2∑

𝑞=0

𝜂𝑞2 (𝜉1, 𝜉2) 𝑃𝑞 (𝜉3) + 4∑
𝑞=0

𝜆𝑞2 (𝜉1, 𝜉2) 𝑃𝑞 (𝜉3) + 𝑟𝑓2 (𝜉1, 𝜉2)
3∑

𝑞=0

𝜂𝑞3 (𝜉1, 𝜉2) 𝑃𝑞 (𝜉3) + 5∑
𝑞=0

𝜆𝑞3 (𝜉1, 𝜉2) 𝑃𝑞 (𝜉3) + 𝑟𝑓3 (𝜉1, 𝜉2)
))))
)

= (000) (26)
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where 𝑟 = 𝑎1𝑎2(1 + 𝜉3(𝜅1 + 𝜅2)) (the terms in (𝜅𝛼𝜉3)2 are
neglected owing to assumption (3) in Section 2) and 𝜂𝑞𝑖 are
nonnegligible linear combinations of the stress coefficients𝜎𝑛∗𝑖𝑗 and their derivatives with respect to 𝜉1 and 𝜉2 (none of
the terms in 𝜂𝑞𝑖 are multiples of (𝜅𝛼ℎ)2). The terms 𝜆𝑞𝑖 are
also a linear combination of the stress coefficients but they
are neglected because they aremultiples of (𝜅𝛼ℎ)2. Bymaking
use of the linear independence of polynomials 𝑃𝑞, the values
of the stress coefficients are selected so as to obtain

(i) 𝜂2𝛼 = 0; this is ensured by selecting 𝜎3∗𝛼3 judiciously;
in this manner, as mentioned at the end of Section 3,
the terms 𝜂0𝛼 and 𝜂1𝛼 will provide two generalized equi-
librium equations and two generalized displacements
for each 𝛼 value;

(ii) 𝜂13 = −𝑎1𝑎2ℎ(𝜅1 + 𝜅2)𝑓3 (in order to obtain 𝜂13𝑃1 +𝑟𝑓3 = 0), 𝜂23 = 0, and 𝜂33 = 0; this is ensured
by a suitable selection of the values of 𝜎2∗33 , 𝜎3∗33 , and𝜎4∗33 ; in this manner, the term in 𝜂03 will yield one
more generalized equilibrium equation and another
generalized displacement.

Owing to (22)–(24), assumptions (3) and (4) in Section 2,
and the definition of the stress vectors applied at the inner
and outer faces, the obtained stress coefficients 𝜎𝑛∗

𝑖𝑗 are
expressed in terms of the generalized forces and applied shear
and normal stresses at the faces of the shell. In (A.1)–(A.3)
in Appendix A, B, and C, the expression of these stress
coefficients is shown. Let us point out that, with these stress
coefficients, the 3D boundary conditions at the faces of the
shell are verified: ∀ (𝜉1, 𝜉2) ∈ 𝜔 :𝜏+𝛼 (𝜉1, 𝜉2) = 𝜎𝛼3 (𝜉1, 𝜉2, ℎ2) ,𝜏−𝛼 (𝜉1, 𝜉2) = −𝜎𝛼3 (𝜉1, 𝜉2, −ℎ2) ,𝜎+ (𝜉1, 𝜉2) = 𝜎33 (𝜉1, 𝜉2, ℎ2)

and 𝜎− (𝜉1, 𝜉2) = −𝜎33 (𝜉1, 𝜉2, −ℎ2) .
(27)

The obtained stress field in a classical model of moderately
thick shells (such as that based on a displacement approach
and presented by Reddy in [19]) does not verify these
conditions.

5. Generalized Fields and Equations

5.1. Generalized Displacements, Equilibrium Equations,
Strains, and Stress Boundary Conditions. The application of
the stress approximation in the Hellinger-Reissner functional
in (12) makes the term ∫

Ω
(dik 𝜎∗ ⋅ u∗ + f ⋅ u∗)𝑑Ω become∫

𝜔
(dik N∗ + 𝜅 ⋅Q∗ + ℎ2 (𝜅1 + 𝜅2) (𝜏+ − 𝜏−) + 𝜏+

+ 𝜏−) ⋅ U∗𝑑𝜔 + ∫
𝜔
(divQ∗ + 𝜎+ − 𝜎−2 ℎ (𝜅1 + 𝜅2)+ 𝜎+ + 𝜎− − 𝑁∗

11𝜅1 − 𝑁∗
22𝜅2)𝑈∗

3 𝑑𝜔 + ∫
𝜔
(dik M∗

−Q∗ + ℎ24 (𝜅1 + 𝜅2) (𝜏+ + 𝜏−) + ℎ2 (𝜏+ − 𝜏−))
⋅Φ∗𝑑𝜔 + ∫

𝜔
(ℎf ⋅ U∗ + ℎ𝑓3𝑈∗

3 + ℎ3 (𝜅1 + 𝜅2)12 f

⋅Φ∗)𝑑𝜔
(28)

where f = 𝑓1e1 + 𝑓2e2,𝑈∗
3 = ∫ℎ/2

−ℎ/2

𝑃0ℎ 𝑢∗3𝑑𝜉3, (29)

U∗ andΦ∗ are 2D vectors whose components are defined on
the basis of lines of curvature as follows:

U∗ = (𝑈∗
1𝑈∗
2

) ,
𝑈∗
1 = ∫ℎ/2

−ℎ/2

𝑃0ℎ 𝑢∗1𝑑𝜉3,𝑈∗
2 = ∫ℎ/2

−ℎ/2

𝑃0ℎ 𝑢∗2𝑑𝜉3,
Φ

∗ = (𝜙∗1𝜙∗2) ,
𝜙∗1 = ∫ℎ/2

−ℎ/2

12𝑃1ℎ2 𝑢∗1𝑑𝜉3,𝜙∗2 = ∫ℎ/2

−ℎ/2

12𝑃1ℎ2 𝑢∗2𝑑𝜉3.

(30)

Expression (28) allows identifying the following 5 gener-
alized displacements: 𝑈∗

1 , 𝑈∗
2 , 𝑈∗

3 , 𝜙∗1 , and 𝜙∗2 (the two latter
can be regarded as rotations). Let us point out that in the stress
approach, the approximation of the 3D displacement field u is
not required. Nevertheless, one can state that its components
take the following array form:
u

= (𝑈1 (𝜉1, 𝜉2) 𝑃0 (𝜉3) + ℎ𝜙1 (𝜉1, 𝜉2) 𝑃1 (𝜉3) + 𝛿𝑢1 (𝜉1, 𝜉2, 𝜉3)𝑈2 (𝜉1, 𝜉2) 𝑃0 (𝜉3) + ℎ𝜙2 (𝜉1, 𝜉2) 𝑃1 (𝜉3) + 𝛿𝑢2 (𝜉1, 𝜉2, 𝜉3)𝑈3 (𝜉1, 𝜉2) 𝑃0 (𝜉3) + 𝛿𝑢3 (𝜉1, 𝜉2, 𝜉3) ) (31)

where 𝛿𝑢1, 𝛿𝑢2, and 𝛿𝑢3 verify∫ℎ/2

−ℎ/2
𝑃𝑖𝛿𝑢𝛼𝑑𝜉3 = 0 for 𝑖 ≥ 2

and ∫ℎ/2

−ℎ/2
𝑃𝑗𝛿𝑢3𝑑𝜉3 = 0 for 𝑗 ≥ 1. (32)
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The stationarity of the H.R. functional (in (12)) with
respect to the generalized displacements leads to the follow-
ing generalized equilibrium equations:

dik N + 𝜅 ⋅Q + ℎ2 (𝜅1 + 𝜅2) (𝜏+ − 𝜏−) + 𝜏+ + 𝜏−+ ℎf = 0, (33)

divQ + 𝜎+ − 𝜎−2 ℎ (𝜅1 + 𝜅2) + 𝜎+ + 𝜎− − 𝑁11𝜅1− 𝑁22𝜅2 + ℎ𝑓3 = 0, (34)

dik M −Q + ℎ24 (𝜅1 + 𝜅2) (𝜏+ + 𝜏−) + ℎ2 (𝜏+ − 𝜏−)
+ ℎ3 (𝜅1 + 𝜅2)12 f = 0. (35)

Let us point out that in other shell models such as that
in [19], a supplementary algebraic equilibrium equation is
considered: 𝑀12𝜅2 −𝑀21𝜅1 = 𝑁21 − 𝑁12. (36)

In SAM-H model, this equation is not considered as an
equilibrium equation. Equations (21)will be considered in the
constitutive equations (C.4) of SAM-H model and, with this
consideration, it can be easily verified that condition (36) is
automatically satisfied by making use of assumption (3).

The aforementioned stationarity for the boundary inte-
gral ∫

𝜕Ωs

(𝜎∗ ⋅ n − sg) ⋅ u∗𝑑𝑆 (37)

in the H.R. functional provides the boundary conditions on
the generalized forces. Let us point out that the term 𝜎∗ ⋅n−sg
is zero on the inner and outer faces of the shell due to (27).
Thus, the boundary integral reduces to an integration on the
lateral boundaries (not the faces) of the structure. At these
lateral boundaries, the following assumptions are adopted
for the stress vector sg: the first and second components of
this vector (𝑠𝑔1 and 𝑠𝑔2 ) are first degree 𝜉3-polynomials, while
the third component (𝑠𝑔3 ) is uniform through the thickness
of the shell. Owing to these assumptions and to assumption(3) in Section 2, the aforementioned stationarity yields the
boundary conditions on the generalized forces:

N ⋅ n0 = F𝑔,
Q ⋅ n0 = 𝐹𝑔

3 ,
M ⋅ n0 = C𝑔. (38)

Here F𝑔, 𝐹𝑔
3 , and C𝑔 are the given membrane force vector,

shear force, and bending moment vector at the shell edges,
respectively. Their components are𝐹𝑔

𝛼 = ∫ℎ/2

−ℎ/2
[𝑃0 + ℎ ((𝑛01)2 𝜅1 + (𝑛02)2 𝜅2)𝑃1] 𝑠𝑔𝛼𝑑𝜉3,

𝐹𝑔
3 = ∫ℎ/2

−ℎ/2
[𝑃0 + ℎ ((𝑛01)2 𝜅1 + (𝑛02)2 𝜅2)𝑃1] 𝑠𝑔3𝑑𝜉3

and 𝐶𝑔
𝛼 = ∫ℎ/2

−ℎ/2

ℎ212 ((𝑛01)2 𝜅1 + (𝑛02)2 𝜅2)𝑃0 (𝜉3) 𝑠𝑔𝛼𝑑𝜉3+ ∫ℎ/2

−ℎ/2
ℎ𝑃1 (𝜉3) [1 − ℎ6 ((𝑛01)2 𝜅1 + (𝑛02)2 𝜅2)]⋅ 𝑠𝑔𝛼𝑑𝜉3.

(39)

Once the generalized displacements are identified, by
means of an integration by parts the term −∫

Ω
(dik 𝜎∗ ⋅ u∗ +

f ⋅ u∗)𝑑Ω in the H.R. functional becomes∫
𝜔
(N∗ : 𝜀∗𝑡 +Q∗ ⋅ d∗ +M∗ : 𝜒∗𝑡)𝑑𝜔 + 𝑇 (40)

where the superscript 𝑡 denotes the transposition of a tensor;𝑇 is a term involving the generalized forces anddisplacements
evaluated at the edges of the middle surface 𝜔; 𝜀∗, 𝜒∗, and d∗
are the generalized strain tensors defined as follows:

𝜀
∗ = gradU∗ + 𝑈∗

3 𝜅,
𝜒
∗ = gradΦ∗,

d∗ = grad𝑈∗
3 +Φ∗ − 𝜅 ⋅ U∗. (41)

5.2. Generalized Constitutive Equations and Displacement
Boundary Conditions. Let us now introduce the stress
approximation in the expression of the volume elastic energy
density 𝑤∗

𝑒 in (12). The integral of this energy can be written
as follows:∫

Ω
𝑤∗
𝑒 𝑑Ω = ∫

𝜔
(𝑤𝑠∗

𝑒 + 𝑤𝑛∗
𝑒 + 𝑤𝑄∗

𝑒 + 𝑤𝑐∗
𝑒 ) 𝑑𝜔 (42)

where 𝑤𝑠∗
𝑒 , 𝑤𝑛∗

𝑒 , 𝑤𝑄∗
𝑒 , and 𝑤𝑐

𝑒 are the surface densities of
elastic energy due to in-plane stresses 𝜎𝛼𝛽, elastic energy
due to normal out-of-plane stresses 𝜎33, elastic energy due
to out-of-plane shear stresses 𝜎𝛼3, and elastic energy due to
coupling between in-plane stresses and normal out-of-plane
stresses, respectively. Let us point out that inmoderately thick
plate models and shell models, 𝑤𝑐

𝑒 is neglected; this energy
accounts for the 3D Poisson’s effect of normal stresses 𝜎33
on in-plane strains. Owing to the definitions of compliance
tensors and constants in (9), these surface densities of energy
are defined by

𝑤𝑠∗
𝑒 = 12 ∫ℎ/2

−ℎ/2
𝜎
∗ : S : 𝜎∗ (1 + 𝜉3𝜅1) (1 + 𝜉3𝜅2) 𝑑𝜉3

𝑤𝑛∗
𝑒 = 12 ∫ℎ/2

−ℎ/2
𝜎∗33𝑆𝜎𝜎∗33 (1 + 𝜉3𝜅1) (1 + 𝜉3𝜅2) 𝑑𝜉3,
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𝑒= 12 2∑

𝛼=1

2∑
𝛽=1

∫ℎ/2

−ℎ/2
𝜎∗𝛼3𝑆𝑄𝛼𝛽𝜎∗𝛽3 (1 + 𝜉3𝜅1) (1 + 𝜉3𝜅2) 𝑑𝜉3

and 𝑤𝑐∗
𝑒= 12 ∫ℎ/2

−ℎ/2
(𝜎∗ : Sc) 𝜎∗33 (1 + 𝜉3𝜅1) (1 + 𝜉3𝜅2) 𝑑𝜉3.

(43)

Let us express the surface densities of energy as algebraic
functions of the generalized forces, the third component of
the body load (𝑓3), and the components of the stress vectors
applied at the shell faces (s+ and s−). Let us first apply in
the equations above the stress approximation detailed in
(15)–(17) and its corresponding stress coefficients determined
in (A.1)–(A.3) in Appendix A, B, and C. Some terms in these
stress coefficients yield directly the desired algebraic combi-
nations, and the others involve the following divergences:

(i) divQ∗, ℎ div (𝜅󸀠 ⋅Q∗), ℎ div (𝜅 ⋅Q∗),
(ii) dik (M∗ ⋅ 𝜅󸀠), ℎ div [dik (M∗ ⋅ 𝜅󸀠)],
(iii) div 𝜏+, div 𝜏−, div (𝜅󸀠 ⋅𝜏+), div (𝜅 ⋅𝜏+), div (𝜅󸀠 ⋅𝜏−) and

div (𝜅 ⋅ 𝜏−).
These divergences can be expressed as linear algebraic func-
tions of the generalized forces and 𝑓3. In this manner, one
obtains that𝑤∗

𝑒 is a quadratic function of the algebraic values
of the components of f , s+, s− and the generalized forces.

By making use of the stationarity of the H.R. functional
with respect to the generalized forces, one obtains the
generalized constitutive equations in a tensor form. It is easier
to write the generalized constitutive equations in terms of
the following engineering vectors of generalized forces q and
strains 𝜖:

q = (N̂

M̂
) ,

𝜖 = ( 𝜀̂
𝜒̂
) , (44)

where

N̂ = (𝑁11𝑁22𝑁12𝑁21

),
M̂ = (𝑀11𝑀22𝑀12𝑀21

),

𝜀̂ = (𝜀11𝜀22𝜀12𝜀21),
and 𝜒̂ = (𝜒11𝜒22𝜒12𝜒21).

(45)

In this manner, the constitutive equations can be grouped
in two vector equations:

𝜖 = Cq + 𝜎+c+ + 𝜎−c− + 𝑓3c3
and d = DQ +D+

𝜏
+ +D−
𝜏
−, (46)

where

(i) C is an 8 × 8 compliance matrix,
(ii) c+, c−, and c3 are 8-component compliance vector,
(iii) D,D+, andD− are 2 × 2 compliance matrices.

The components of these matrices and vectors are provided
in Appendix B.

Appendix C proves that there is an alternative form of
the constitutive equations which expresses the generalized
forces as linear combinations of the generalized strains and
the applied loads.

The constitutive equations can be grouped in the follow-
ing two vector equations:

q = K𝜖 + 𝜎+k+ + 𝜎−k− + 𝑓3k3,
Q = Ld + L+𝜏+ + L−𝜏−. (47)

The expressions of the above matrices (K, L, L+, and L−)
and vectors (k+, k−, and k3) are shown in Appendix C.
The resulting 𝑁21 and 𝑀21 generalized forces obtained by
means of (47) verify (21) and the supplementary algebraic
“equilibrium” (36) included in Sanders model [14].

The stationarity of the H.R. functional (in (11)) with
respect to the generalized forces also provides in the−∫

𝜕Ωu
(𝜎∗ ⋅n) ⋅ (u∗ −ug)𝑑𝑆 term the generalized displacement

boundary conditions on the edge of the shell:

U = ∫ℎ/2

−ℎ/2

𝑃0ℎ (𝑢𝑔1e1 + 𝑢𝑔2e2) 𝑑𝜉3,𝑈3 = ∫ℎ/2

−ℎ/2

𝑃0ℎ 𝑢𝑔3𝑑𝜉3,
Φ = ∫ℎ/2

−ℎ/2

12𝑃1ℎ2 (𝑢𝑔1e1 + 𝑢𝑔2e2) 𝑑𝜉3.
(48)
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6. Results and Discussion

6.1. Main Differences with a Classical Model of Shells. In [19],
Reddy builds a model of homogeneous general shells (from
thin tomoderately thick) which generalizes Sanders shell the-
ory [14].The generalization consists of including vonKármán
nonlinear strains. In order to compare the linear SAM-H
model to Reddy’s model, the nonlinear terms are not con-
sidered herein. Hereafter, the linear version of Reddy’s model
will be referred to as the classical shell model (CSmodel).The
CS model is based on an approximation of the 3D displace-
ment field components in the curvilinear coordinate system:𝑢𝛼 (𝜉1, 𝜉2, 𝜉3) = 𝑈𝑐

𝛼 (𝜉1, 𝜉2) + ℎ𝜙𝑐𝛼𝑃1 (𝜉3)𝑢3 (𝜉1, 𝜉2, 𝜉3) = 𝑈𝑐
3 (𝜉1, 𝜉2) (49)

which involves 5 generalized displacements (𝑈𝑐
1, 𝑈𝑐

2, 𝑈𝑐
3, 𝜙𝑐1,𝜙𝑐2).The first 3 generalized displacements are the 3D displace-

ments at the middle surface.The 5 generalized displacements
can be expressed as thickness integrals of the 3D displace-
ments in a similar manner to that in (29) and (30). In this
sense, the generalized displacements of the SAM-Hmodel are
equivalent to those of the classical shell model (CS model).
SAM-H model does not propose an approximation of the
3D displacements but it has the same number of generalized
displacements as the CS model. From SAM-H generalized
displacements, one may obtain some characteristics of the
3D displacement field. By applying the 3D gradient to the 3D
displacement field in (49), one obtains the 3D strains of the
CS model. Let us point out that the 3D linear normal strain
component 𝜀33 is zero. These 3D strains can be expressed as
linear algebraic combinations of the generalized strains of
the CS model. The generalized strains are related to the 2D
gradients of the generalized displacements of the CS model
in a similar manner as in the SAM-H model (see (41)):

𝜀
𝑐 = grad Uc + 𝑈𝑐

3𝜅,
𝜒
𝑐 = grad Φ𝑐,

d𝑐 = grad 𝑈𝑐
3 +Φ𝑐 − 𝜅 ⋅ Uc. (50)

Let us point out that the SAM-H model does not propose
any approximation of the 3D strain tensor. By applying
Hamilton’s variational principle to the shell, Reddy obtains
the generalized equilibrium equations of the CS model [19].

dik Nc + 𝜅 ⋅Qc + feq = 0

divQc − 𝑁𝑐
11𝜅1 − 𝑁𝑐

22𝜅2 + 𝑓𝑒𝑞
3 = 0

dik Mc −Qc = 0

(51)

where Nc, Qc, and Mc are the generalized forces of the CS
model and have a definition similar to those of the SAM-H
model in (18) to (20); feq and 𝑓𝑒𝑞

3 are the equivalent middle
surface in-plane and out-of-plane loads, respectively. The
additional equilibrium equation (36) in Sanders model [14]
is also considered.

The equivalent middle surface loads can model the effect
of the body loads and the loads applied at the faces of the
shell. Let us point out that in SAM-H model, the body loads
and the applied stresses on the faces appear explicitly in its
equations. Besides, in SAM-H model, in some terms of the
equilibrium equations, these loads and stresses aremultiplied
by the principal curvatures, and the loads applied on the inner
and outer faces of the shell are distinguished.

In the CS model, after obtaining the approximate 3D
strains, the 3D constitutive equations for a homogeneous shell
yield the stress field approximation. The CS model neglects
out-of-plane normal stresses 𝜎33. An integration through the
thickness yields the generalized constitutive equations:

(N̂c

M̂c
) = (Ac Bc

Bc Dc) ⋅ (𝜀𝑐
𝜒𝑐
)

and Qc = Kc ⋅ dc, (52)

where N̂c, M̂c, 𝜀𝑐, and 𝜒𝑐 have definitions analogue to those
in (45); Ac, Bc,Dc, and Kc are stiffness matrices. Let us point
out that in the CS model an “ABBD” stiffness matrix appears
while an “ABCD” stiffness matrix is expected in the SAM-
H model (see the expression of the generalized compliance
matrices in (B.1)). Another difference is the fact that in the
CS model, the constitutive equations do not involve the body
loads and the loads applied at the faces of the shell; in SAM-
H model, these loads appear explicitly in the constitutive
equations. The Poisson’s effects of the out-of-plane normal
stresses on in-plane strains are considered in the SAM-H
model but not in the CS model.

6.2. Analytical Results. Let us now compare the analytical
solutions of the CS and SAM-Hmodels in the case of a hollow
sphere subjected to an internal pressure 𝑝. The thickness of
the sphere is ℎ; the radius of the middle surface is 𝑅. The
material is isotropic, and its Young’s modulus and Poisson’s
ratio are, respectively, 𝐸 and ]. Vector e3 points from inside
to outside the sphere. The analytical resolution of the 3D
problem with spherical symmetry leads to the following
radial displacement (𝑢3) and normal stress 𝜎33:

𝑢3𝐷3 (𝜉3) = 𝑝𝑅𝐸 [[[(1 − 𝜂/2)3 (2 (1 − 2]) (1 + 𝜂𝜉3)3 + (1 + ]) (1 + 𝜂/2)3)2 ((1 + 𝜂/2)3 − (1 − 𝜂/2)3) (1 + 𝜂𝜉3)2 ]]] ,



10 Mathematical Problems in Engineering

and 𝜎3𝐷33 (𝜉3) = 𝑝 (1 − 𝜂/2)3(1 + 𝜂/2)3 − (1 − 𝜂/2)3 (1 − (1 + 𝜂/21 + 𝜂𝜉3)3) ,
(53)

where 𝜂 = ℎ/𝑅 is the thickness to radius ratio and 𝜉3 =𝜉3/ℎ is the normalized position through the thickness. The
analytical resolution of the equations of the CS model yields
the generalized displacement and the normal stress:𝑈𝐶𝑆

3 = 𝑝𝑅𝐸 [1 − ]2𝜂 ]
and 𝜎𝐶𝑆33 = 0. (54)

The generalized displacement and normal stress of the SAM-
H model are𝑈𝑆𝐴𝑀

3 = 𝑈𝐶𝑆
3 − 𝑝𝑅𝐸 (1 − 2]2 + 3140𝜂 + 13]30 𝜂 + ]10𝜂2) ,

and 𝜎𝑆𝐴𝑀33 (𝜉3)= 𝑝(−1 − 𝜂2 + 𝜉3 − 2𝜉23𝜂 + 𝜂28 − 𝜂2𝜉232 ) .
(55)

Let us first compare the displacement solutions of the CS
and SAM-H models with the mean 3D displacement𝑈3𝐷

3 = ∫ℎ/2

−ℎ/2

𝑃0ℎ 𝑢3𝐷3 (𝜉3ℎ )𝑑𝜉3
= 𝑝𝑅𝐸 [[2 (1 − 𝜂/2)3 (1 − 2]) + (1 − 𝜂/2)2 (1 + 𝜂/2)2 (1 + ])2 ((1 + 𝜂/2)3 − (1 − 𝜂/2)3) ]] . (56)

Let us define the relative errors𝛿𝑈𝑆𝐴𝑀
3 = 𝑈𝑆𝐴𝑀

3 − 𝑈3𝐷
3𝑈3𝐷

3

and 𝛿𝑈𝐶𝑆
3 = 𝑈𝐶𝑆

3 − 𝑈3𝐷
3𝑈3𝐷

3

(57)

in the evaluation of the mean displacement for the CS and
SAM-H models. These errors only depend on 𝜂 and ]. In
Figures 2(a) and 2(b), the relative errors 𝛿𝑈𝑆𝐴𝑀

3 and 𝛿𝑈𝐶𝑆
3 are

plotted against the thickness to radius ratio 𝜂 for five values of
the Poisson’s ratio (-0.4, -0.2, 0, 0.2, and 0.4), respectively.The
maximum value of the thickness to radius ratio considered in
this example is 0.5; formoderately thick shells, this ratio is less
than 0.3 (this limit will be justified below).The absolute value
of the relative error 𝛿𝑈𝑆𝐴𝑀

3 of the SAM-H model increases
as 𝜂 and ] increase but is less than 4% for moderately thick
shells and less than 14% for thicker shells. The relative error𝛿𝑈𝐶𝑆

3 of the CSmodel increase as 𝜂 increases and ] decreases;

itmay bemore than 50% formoderately thick shells andmore
than 100% for thicker shells. The SAM-H model provides a
far better approximation than the CS model for the mean
normal displacement. Let us point out that SAM-H accuracy
in the prediction of 𝑈3 is mainly due to the consideration of
the elastic energy𝑤𝑐

𝑒 (see (43)) corresponding to the coupling
between in-plane stresses and normal out-of-plane stresses.
In Figure 3, the relative error 𝛿𝑈𝑆𝐴𝑀

3 in the calculation of𝑈3 without taking into account 𝑤𝑐
𝑒 is plotted against 𝜂 for

five values of the Poisson’s ratio (-0.4, -0.2, 0, 0.2, and 0.4).
Neglecting 𝑤𝑐

𝑒 can make this error greater than 20% for the
thickest moderately thick shell (𝜂 = 0.3); this value is 5 times
greater than that considering 𝑤𝑐

𝑒. This confirms the utility
of taking into account 𝑤𝑐

𝑒 (the Poisson’s effect of the out-of-
plane normal stresses on in-plane strains). In what follows,
this energy is taken into account in the SAM-Hmodel results.

Let us now analyze the normal stresses 𝜎33. In the CS
model, these stresses are zero. The SAM-H model predicts
nonzero 𝜎33 stresses and in order to compare the SAM-H
model results to those of the 3D case, the normalized stresses𝜎33/𝑝 are analyzed. In Figure 4, the normalized stresses
calculated by the SAM-Hmodel and the 3Dmodel are plotted
against the dimensionless position 𝜉3 for three values of the
thickness to radius ratio: 𝜂 = 0.1, 0.3, and 0.5. One can
observe that the accuracy of the SAM-H results decreases
as 𝜂 increases. In spite of this, the SAM-H results are very
accurate even for the thickest case (𝜂 = 0.5) and the boundary
conditions at the inner (𝜉3 = −0.5) and outer (𝜉3 = 0.5) faces
of the shell are verified.

6.3. Numerical Results. In this subsection, SAM-H model
equations are solved by means of the finite element method
implemented in COMSOL Multiphysics software (5.3 ver-
sion). To test the accuracy of SAM-H model, its results are
compared to those obtained with

(i) solid finite elements (SFE) available in COMSOL
Multiphysics;

(ii) the classical shell model (CS model); its equations are
implemented in COMSOL Multiphysics in a similar
manner to how SAM-H equations were treated;

(iii) MITC6 shell finite elements [33] (triangular ele-
ments) available in COMSOL Multiphysics.

Let us consider a 2m tall hollow cylinder. The radius
of the midsurface and the wall thickness are 1m and 0.3m,
respectively. A 1MPa pressure is applied on a 0.25m tall
circumferential section at the outer face of the cylinder. The
resolution of the problem using solid finite elements (SFE)
can be simplified due to symmetries as shown in Figure 5(a).
The shell-type computations (SAM-H, CS, and MITC6) use
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Figure 4: Normalized 3D and SAM-H normal stresses 𝜎33/𝑝 vs
dimensionless position 𝜉3.
the mesh shown in Figure 5(b). The material is isotropic and
its Young’s modulus and Poisson’s ratio are 200GPa and 0.3.

The resolution of the generalized equations of SAM-H
and CS models allows building the approximate 3D stress
field and plotting the stress components on the cross section
of the cylinder drawn in Figure 5. COMSOL Multiphysics
offers the possibility of obtaining from theMITC6 results the
3D stress field in a given position through the thickness of the
solid. In Figure 6, the normal stresses 𝜎𝑟𝑟 calculated by solid
finite elements (SFE), the shell models (SAM-H and CS), and
MITC6 shell elements are plotted on the cross section. The𝜎𝑟𝑟 stresses calculated by the CS model and MITC6 method
are neglectedwhereas that calculated by SAM-Hvaries across
the thickness in a similar manner to the SFE stress. The
pressure application on a delimited portion of the outer face
provokes the existence of a 𝜎𝑟𝑧 shear stress. In Figure 7, the
color maps of the calculated 𝜎𝑟𝑧 stresses by SFE, SAM-H,
CS, and MITC6 methods are plotted on the cross section
of the cylinder. The CS model predicts a constant through
thickness shear stresswhereas SAM-Hmodel yields a variable
shear stress that verifies the boundary conditions at the inner
and outer faces, in a similar manner to the MITC6 method.
The values of the 𝜎𝑟𝑧 stress calculated with SAM-H model
seem more to the SFE results than those calculated with
the CS model. In Figure 8, the von Mises stresses obtained
by SFE, SAM-H, CS, and MITC6 are plotted on the cross
section of the cylinder. Once again, one can note that SAM-
H results are more accurate than those of the CS model
and MITC6 method. The maximum von Mises stress at the
inner face of the cylinder calculated by SFE, SAM-H, CS,
and MITC6 methods is 2.15MPa, 2.10MPa, 1.91 MPa, and
1.63MPa, respectively. In Figure 8, it can be seen that the
location of the maximum value of the von Mises stress is at
the inner face of the shell for SFE and SAM-H models while

that for CS model is at the outer face of the shell. SAM-
H provides a better stress approximation than the CS and
MITC6 methods for this mechanical problem.

7. Conclusions

To conclude, a new model of linear homogeneous shells
(from thin tomoderately thick) called SAM-Hwas developed
in this paper. Hellinger-Reissner’s functional was applied to
build the model equations and fields. The model is based
on a polynomial approximation of the stress field across the
shell thickness. The stress field verifies the 3D equilibrium
equation, and the coefficients of the stress polynomials are the
generalized forces (membrane and shear forces) and bending
moments of the model. The 3D stress boundary conditions
at the faces of the shell are also verified. Hellinger-Reissner’s
functional allowed identifying the generalized displacements
(3 displacements and 2 rotations) and strains.The stationarity
of this functional with respect to the generalized displace-
ments yielded 5 generalized equilibrium equations and the
generalized boundary conditions on the forces at the edges
of the shell. The stationarity with respect to the generalized
forces provided the generalized constitutive equations and
displacement boundary conditions at the shell’s edges. As
compared to the classical linear model (CS model) of general
moderately thick shells adapted from Reddy’s model in [19],
SAM-H model involves the same number of generalized
displacements, strains, and forces. The stress approximation
of the CS model does not verify the 3D equilibrium equation
and the 3D stress boundary conditions at the faces of the
shell. SAM-H model involves, explicitly in its equilibrium
and constitutive equations, the body loads and the applied
stress vector at the shell faces, while the CS model involves
only an equivalent middle surface load in the equilibrium
equations. The constitutive equations of the SAM-H model
are more accurate since they involve Poisson’s effects of out-
of-plane loads on in-plane strains. To prove the accuracy of
the SAM-H model, the case of a pressurized hollow sphere
was considered and the analytical results of the SAM-H and
CS models for displacements and 𝜎33 stress were compared
to a 3D solid model solution. The SAM-H proved to be very
accurate for moderately thick shells having a thickness to
radius ratio less than 0.3. Its results are by far more accurate
than theCSmodel. SAM-Hmodel equationswere also imple-
mented in a finite element commercial software, and the case
of the constriction of a cylinder was analyzed.The numerical
results were compared to those of solid finite elements (SFE),
the classical shell model (CS model), and MITC6 shell finite
elements. SAM-H proved to be very accurate, it gives a better
approximation of SFE results than the other shell models.

From a resolution point of view, the SAM-H model
proposed in this paper is not more complex than a CS model
(both have the same number of generalized displacements)
but is more complete since it is able to calculate the normal
out-of-plane stresses which should not be neglected in the
failure prediction of shells. The higher polynomial degree
of out-of plane stresses does not complicate the resolution
of the SAM-H model equations; the calculation of these
stresses is performed in a postprocessing stage. Another



Mathematical Problems in Engineering 13

0.
12

5m

0.3 m

1m

z

r

0.85m

axial symmetry

symmetry

1MPa

(a)

e3

e1

e2

z

symmetry

(b)

Figure 5: Constriction of a thick hollow cylinder: modelling using solid finite elements (a) and mesh for shell models (b).

SFE MITC6CSSAM-H

r

z

r

z

r

z z

r

0

−0.2

−0.4

−0.6

−0.8

−1

Figure 6: Normal stress 𝜎𝑟𝑟 (in MPa) in the cross section of a
constricted cylinder (SFE, SAM-H, CS, and MITC6 results).

r

z

r

z

r

z z

r

SFE MITC6CSSAM-H

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
−0.05

Figure 7: Shear stress 𝜎𝑟𝑧 (in MPa) in the cross section of a
constricted cylinder (SFE, SAM-H, CS, and MITC6 results).

important advantage of the SAM-Hmodel is that, while being
applied to plates, it is equivalent to the extended Reissner’s
plate model in [13] (adapted to a homogeneous plate) that
includes the above-mentioned Poisson’s effects. For these
reasons, the SAM-H model can be applied by engineers and
implemented in commercial finite element software to obtain
more accurate predictions of the structural behavior and
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Figure 8: Von Mises stress (in MPa) in the cross section of a
constricted cylinder (SFE, SAM-H, CS, and MITC6 results).

strength of linear homogeneous shells having a moderate
thickness (𝜂 ≤ 0.3).

In subsequent papers, the static model developed herein
will be extended so as to include dynamic effects and calculate
vibration modes and eigenfrequencies of shells. Also, the
same stress approachwill be applied to develop newmodels of
laminated composite shells. The consideration of geometric
nonlinearities is an important topic that will also be treated
in a future work.

Appendix

A. Coefficients of the Polynomial
Approximation of Stresses

In this subsection, the stress coefficients in the polyno-
mial approximations in (15)–(17) are detailed. The following
expressions are obtained:

(i) for 𝜎𝑛𝛼𝛽 (0 ≤ 𝑛 ≤ 1):𝜎0𝛼𝛽 = 1ℎ [(N −M ⋅ 𝜅󸀠) ⋅ e𝛽] ⋅ e𝛼
and 𝜎1𝛼𝛽 = [(12ℎ2M −N ⋅ 𝜅󸀠) ⋅ e𝛽] ⋅ e𝛼; (A.1)
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(ii) for 𝜎𝑛𝛼3 (0 ≤ 𝑛 ≤ 3):𝜎0𝛼3 = [1ℎQ − ℎ12𝜅󸀠 ⋅ (𝜏+ + 𝜏−)] ⋅ e𝛼,𝜎1𝛼3 = (𝜏+ + 𝜏−) ⋅ e𝛼 + 15𝜎3𝛼3,𝜎2𝛼3 = [1ℎQ − 12 (𝜏+ − 𝜏−) − ℎ12𝜅󸀠 ⋅ (𝜏+ + 𝜏−)] ⋅ e𝛼
and 𝜎3𝛼3 = [2dik (M ⋅ 𝜅󸀠) − (4𝜅 + 3𝜅󸀠)⋅ (Q − ℎ2 (𝜏+ − 𝜏−))] ⋅ e𝛼;

(A.2)

(iii) for 𝜎𝑛33 (0 ≤ 𝑛 ≤ 4):𝜎033 = 𝜎+ − 𝜎−2 + 𝜎233 + 115𝜎433,𝜎133 = 𝜎+ + 𝜎− + 15𝜎333,𝜎233= ℎ30div [dik (M ⋅ 𝜅󸀠) − 2𝜅 ⋅Q] − 1ℎM : 𝜅+ ℎ12div [𝜏+ + 𝜏− + ℎ10 (4𝜅 + 5𝜅󸀠) ⋅ (𝜏+ − 𝜏−)]+ ℎ12 [(𝜅1 + 𝜅2) (2𝜎133 − 35𝜎333 + ℎ𝑓3) − 45ℎ𝜎433] ,𝜎333 = −divQ + ℎ4div [2 (𝜏+ − 𝜏−) − ℎ𝜅 ⋅ (𝜏+ + 𝜏−)]
and 𝜎433= −3ℎ14div [dik (M ⋅ 𝜅󸀠)] + 3ℎ7 div [(2𝜅 + 𝜅󸀠) ⋅Q]− 3ℎ214 div [(2𝜅 + 𝜅󸀠) ⋅ (𝜏+ − 𝜏−)] .

(A.3)

B. Generalized Compliances

In this section, the components of the compliance matrices
and vectors appearing in (46) are determined. Matrix C is
defined by

C = ( CA CB1 + CB2

CC1 + CC2 12ℎ2CA ) (B.1)

where

CA = 1ℎ (𝑆1111 𝑆1122 𝑆1112 𝑆1121𝑆2211 𝑆2222 𝑆2212 𝑆2221𝑆1211 𝑆1222 𝑆1212 𝑆1221𝑆2111 𝑆2122 𝑆2112 𝑆2121),

CB1 = CC1 = 𝜅1 − 𝜅2ℎ (𝑆1111 0 0 𝑆11210 −𝑆2222 −𝑆2212 00 −𝑆1222 −𝑆1212 0𝑆2111 0 0 𝑆2121),
CB2 = − 110ℎ

⋅( 6𝑆C11𝜅1 𝑆𝐶22𝜅1 + 5𝑆𝐶11𝜅2 𝑆𝐶12𝜅1 𝑆𝐶21𝜅1𝑆𝐶11𝜅2 + 5𝑆𝐶22𝜅1 6𝑆𝐶22𝜅2 𝑆𝐶12𝜅2 𝑆𝐶21𝜅25𝑆𝐶12𝜅1 5𝑆𝐶12𝜅2 0 05𝑆𝐶21𝜅1 5𝑆𝐶21𝜅2 0 0 ),
CC2 = − 110ℎ

⋅( 6𝑆𝐶11𝜅1 5𝑆𝐶22𝜅1 + 𝑆𝐶11𝜅2 5𝑆𝐶12𝜅1 5𝑆𝐶21𝜅15𝑆𝐶11𝜅2 + 𝑆𝐶22𝜅1 6𝑆𝐶22𝜅2 5𝑆𝐶12𝜅2 5𝑆𝐶21𝜅2𝑆𝐶12𝜅1 𝑆𝐶12𝜅2 0 0𝑆𝐶21𝜅1 𝑆𝐶21𝜅2 0 0 ).
(B.2)

Vectors c+ and c− are defined by

c+ = − 𝑆𝜎140 (3ℎca70ca)
+ 160 ( CS (15cb + 8ℎcc + 5ℎcd)1ℎCS (36cb + 18ℎcc + 3ℎcd)) (B.3)

and

c− = 𝑆𝜎140 (−3ℎca70ca )
+ 160 ( CS (−15cb + 8ℎcc + 5ℎcd)1ℎCS (36cb − 18ℎcc − 3ℎcd)) , (B.4)

where

ca (𝜅1𝜅200),
CS = (𝑆𝐶11 0 0 00 𝑆𝐶22 0 00 0 𝑆𝐶12 00 0 0 𝑆𝐶21),

cb = (1111),
(B.5)



Mathematical Problems in Engineering 15

cc = (𝜅1𝜅2𝜅2𝜅1),
and cd = (𝜅2𝜅1𝜅1𝜅2).

(B.6)

The compliance vector c3 is

c3 = −ℎ2𝑆𝜎210 ( ca0 ⋅ ca) + 1120 (ℎ2CS (6cc + 5cd)12CScb
) . (B.7)

The components of the shearing compliance matrices D,
D+, andD− are given by

D = 65ℎ (𝑆𝑄11 𝑆𝑄12𝑆𝑄21 𝑆𝑄22) , (B.8)

D+ = − 160⋅ ( 𝑆𝑄11 (6 + 5ℎ𝜅2) 𝑆𝑄12 (6 + 6ℎ𝜅1 − ℎ𝜅2)𝑆𝑄21 (6 − ℎ𝜅1 + 6ℎ𝜅2) 𝑆𝑄22 (6 + 5ℎ𝜅1) ) (B.9)

and

D− = 160⋅ ( 𝑆𝑄11 (6 − 5ℎ𝜅2) 𝑆𝑄12 (6 − 6ℎ𝜅1 + ℎ𝜅2)𝑆𝑄21 (6 + ℎ𝜅1 − 6ℎ𝜅2) 𝑆𝑄22 (6 − 5ℎ𝜅1) ) . (B.10)

C. Alternative Form of the Generalized
Constitutive Equations

In this section, a method to obtain the alternative form (47)
of the two generalized constitutive equations (46) is shown.

The constitutive equation

d̃ = DQ̃ +D+
𝜏̃
+ +D−
𝜏̃
− (C.1)

is transformed directly by multiplying it by the shearing
stiffness matrix L (it is the inverse of the shearing compliance
matrixD) and one obtains

Q̃ = Ld̃ + L+𝜏̃+ + L−𝜏̃− (C.2)

where L+ = −LD+ and L− = −LD−.
For the other constitutive equation:

𝜖 = Cq + 𝜎+c+ + 𝜎−c− + 𝑓3c3, (C.3)

the task is more complicated because the compliance matrix
C is not invertible. Its fourth and eighth columns are linear

combinations of the third and seventh columns. This is due
to the fact that 𝑁21 and 𝑀21 are linearly dependent of 𝑁12

and𝑀12 as shown in (21). Matrix operations allow obtaining
the alternative form of the generalized constitutive equation

q = K𝜖 + 𝜎+k+ + 𝜎−k− + 𝑓3k3, (C.4)

where the stiffness matrix K and vectors k+, k−, and k3 are
defined by

K = H2 (H1CH2)−1 H1

k+ = −Kc+,
k− = −Kc−,

and k3 = −Kc3.
(C.5)

In the previous definition, the components of matrices H1

andH2 are

H1 = (((((
(

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 1
)))))
)

(C.6)

and

H2 =
((((((((((((
(

1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 1 0 0 𝛿𝜅0 0 0 1 0 00 0 0 0 1 00 0 0 0 0 10 0 ℎ212𝛿𝜅 0 0 1

))))))))))))
)

. (C.7)

One can verify that with these matrices, (21) and the sup-
plementary “equilibrium” equation (36) included in Sanders
model [14] are satisfied.
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