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This paper provides new sufficient conditions on robust asymptotic stability for a class of uncertain discrete-time switchednonlinear
systems with time varying delays. The main focus will be dedicated to development of new algebraic criteria to break with classical
criteria in terms of linear matrix inequalities (LMIs). Firstly, by contracting a new common Lyapunov-Krasovskii functional as well
as resorting to the M-matrix proprieties, a novel robust stability criterion under arbitrary switching signals is derived. Secondly,
the obtained result is extended for a class of switched nonlinear systems modeled by a set of differences equations by applying
the aggregation techniques, the norm vector notion, and the Borne-Gentina criterion. Furthermore, a generalization for switched
nonlinear systems with multiple delays is proposed.Themain contribution of this work is that the obtained stability conditions are
algebraic and simple. In addition, they provide a solution of the most difficult problem in switched systems, which is stability under
arbitrary switching, and enable avoiding searching a common Lyapunov function considered as a very difficult task even for some
low-order linear switched systems. Finally, two examples are given, with numerical simulations, to show themerit and effectiveness
of the proposed approach.

1. Introduction

As a special class of hybrid dynamical systems, switched
systems [1] are interestingly used amongst a variety of engi-
neering domains particularly chemical processes, automotive
engine control and aircraft control, power systems, power
electronics, traffic control, network communications, and
many other fields [1–3].

From a theoretical point of view, stability represents
one of the most significant problems for switched systems.
Indeed, it has attracted a growing attention in literature
[1, 4–26]. Therefore, stability of switched systems is mainly
divided into two aspects: one is how to contract switching
laws under which switched systems are stable. In this con-
text, dwell time [4] and average dwell time [5] switching
signals methods still play a king role. The second aspect
is how to make switched systems stable under arbitrary
switching. In this framework, the individual stability of all
the subsystems is mandatory. Moreover, the existence of

a common Lyapunov function [6, 7] for all subsystems is
the unique sufficient condition to ensure stability under
arbitrary switching. Unfortunately, getting such a function
is a very hard task even for discrete-time switched linear
systems. Therefore, this problem becomes more complicated
when switched nonlinear systems are involved, and relatively
available results in this context are limited [6, 21]. It is worth
noting that, in a real frame, switching laws can be unknown,
even imposed under a random way. For this, stability under
arbitrary switching which will be considered in this paper
remains undoubtedly the most interesting issue.

On the other hand, time delays especially time varying
delays are frequently imposed in diverse real-world engineer-
ing systems, which would lead to performance deterioration
and, in some cases, it may lead to system malfunction and
instability. Consequently, wide efforts have been devoted
to address the challenge of switched systems with time
varying delays [10, 11, 13, 16, 17, 19, 22–26]. In addition, from
the practical standpoint, it is important to tackle uncertain
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switched systems [18, 19, 23, 25, 26]. Thus, in this investiga-
tion, uncertain switched nonlinear systems with time varying
delays with polytopic uncertainties type are considered to
give a strong practical aspect for this work.

Up to now, there are few results concerning stability
analysis of uncertain switched nonlinear systems with time
varying delays under arbitrary switching [23]. Thus, almost
all existing works deal with the linear case or the linearization
of the original nonlinear systems by using the TS fuzzy
models [19, 20]. It should be noted that in [20] sufficient
conditions are derived to ensure the robust stability for
discrete-time randomly switched fuzzy systems with known
sojourn probabilities, presented in the terms of linear matrix
inequalities (LMIs). However, to the best of our knowledge,
randomly uncertain switched nonlinear systems with time
varying delays have not been largely considered yet.

This paper seeks new algebraic practical stability cri-
teria. Firstly, a novel robust asymptotic stability criterion
for a class of discrete-time switched nonlinear systems with
time varying delays and subject to polytopic uncertainties
is established via constructing a new common Lyapunov
functional [9], according to the vector norm notion [9–
13, 27–31] and M - matrix properties [32]. Secondly, the
derived results are extended for a class of switched systems
given by a set of difference equations. In fact, new stability
conditions are obtained by transforming the considered
systems representation under the arrow form matrix [29]
and employing the discrete-time Borne andGentina practical
stability criterion [30, 31]. Finally, these proposed results are
generalized for a class of switched systems with multiple time
varying delays.

In contrast with some existing results on underlined
filed, the contributions of this paper are twofold. In fact,
the obtained results guarantee asymptotic stability of these
considered systems under arbitrary switching and may over-
come the conservatism of searching a common Lyapunov
function and the LMIs constraints. In addition, these stability
criteria are expressed in terms of simple algebraic conditions,
explicitly, and simple.

The rest of this paper is organized as follows. Section 2
presents the problem statement and some necessary prelim-
inaries. The main results are proposed in Section 3. New
delay-dependent sufficient robust stability conditions for a
class of uncertain switched nonlinear systems with time
varying delays described by a set of difference equations are
given in Section 4. Section 5 generalizes the obtained result
for switched systems with multiple delays. Finally, two case
studies are presented in Section 6 to show the effectiveness of
the provided results. Conclusions are given in Section 7.

Notation. The notation used here is fairly standard except
where otherwise stated. For a matrix 𝐴, we denote the
transpose by 𝐴𝑇. LetR denote the field of real numbers and
R𝑛 denote an 𝑛 dimensional linear vector space over the reals
with the norm ‖.‖. For any 𝑢 = (𝑢𝑖)1≤𝑖≤𝑛, V = (V𝑖)1≤𝑖≤𝑛 ∈ R𝑛,
we define the scalar product of the vectors 𝑢 and V as ⟨𝑢, V⟩ =∑𝑛𝑖=1 𝑢𝑖V𝑖, R𝑛×𝑛 the space of 𝑛 × 𝑛 matrices with real entries.
R+ is the set of positive real numbers. 𝐼 [𝑘1 𝑘2] denotes the
set of integers {𝑘1, 𝑘1 + 1, 𝑘1 + 2, ..., 𝑘2} and 𝐼𝑛 is the identity
matrix with appropriate dimension.

2. Problem Statement and Preliminaries

2.1. Problem Statement. Consider the following uncertain
discrete-time switched nonlinear system with time varying
delays described by𝑥 (𝑘 + 1) = 𝐴𝜎(𝑘) (.) 𝑥 (𝑘) + 𝐷𝜎(𝑘) (.) 𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))𝑥 (𝜃) = 𝜙 (𝜃)𝑠 = −𝑟2, −𝑟2 + 1, . . . , −1 (1)

where 𝑥(𝑘) ∈ R𝑛 denotes the state vector, 𝜎(𝑘) : [0,∞) 󳨀→𝐼 [1 𝐿] is the switching signal which is a piecewise constant
function, 𝐿 is the number of subsystems, and 𝜎(𝑘) = 𝑖 implies
that the 𝑖 − 𝑡ℎ subsystem is activated. 𝜏𝑖(𝑘), 𝑖 = 1, 2, ..., 𝐿 are
the time varying delays satisfying 0 ≤ 𝑟1 ≤ 𝜏𝑖(𝑘) ≤ 𝑟2, where𝑟1 and 𝑟2 are constant scalars.

Therefore, the switched system is composed of 𝐿 subsys-
tems which are expressed as𝑥 (𝑘 + 1) = 𝐴 𝑖 (.) 𝑥 (𝑡) + 𝐷𝑖 (.) 𝑥 (𝑘 − 𝜏 (𝑘)) ,𝑖 ∈ 𝐼 [1 𝐿] (2)

where 𝐴 𝑖(.) 𝑖 ∈ 𝐼 [1 𝐿] and 𝐷𝑖(.) 𝑖 ∈ 𝐼 [1 𝐿] are matrices
with appropriate dimensions having nonlinear elements.

Assuming that all subsystems are uncertain of polytopic
type which can be described as

𝐴 𝑖 (.) = 𝐿𝑝∑
𝑝=1

𝜇𝑖𝑝 (𝑘)𝐴 𝑖𝑝 (.) , 𝑖 ∈ 𝐼 [1 𝐿] (3)

𝐷𝑖 (.) = 𝐿𝑞∑
𝑞=1

𝜆𝑖𝑞 (𝑘)𝐷𝑖𝑞 (.) , 𝑖 ∈ 𝐼 [1 𝐿] (4)

where 𝐴 𝑖𝑝(.), 𝑝 ∈ 𝐼 [1 𝐿𝑝] and 𝐷𝑖𝑞(.) 𝑞 ∈ 𝐼 [1 𝐿𝑞] are,
respectively, the vertex matrices denoting the extreme points
of the polytope 𝐴 𝑖(.), 𝑖 ∈ 𝐼 [1 𝐿] and 𝐷𝑖(.), 𝑖 ∈ 𝐼 [1 𝐿],𝐿𝑝 is the number of the vertex matrices 𝐴 𝑖(.), 𝐿𝑞 is the
number of the vertexmatrices𝐷𝑖 (.), and theweighting factors𝜇𝑖𝑝(𝑘) 𝑝 ∈ 𝐼 [1 𝐿𝑝], 𝜆𝑖𝑞(𝑘) 𝑞 ∈ 𝐼 [1 𝐿𝑞] are unknown
polytopic uncertainties parameters for each 𝑖 ∈ 𝐼 [1 𝐿]
belonging to 𝜇𝑖(𝑘) : ∑𝐿𝑝𝑝=1 𝜇𝑖𝑝(𝑘) = 1, 𝜇𝑖𝑝(𝑘) ≥ 0 and 𝜆𝑖𝑞(𝑘):∑𝑁𝑞𝑞=1 𝜆𝑖𝑞(𝑘) = 1, 𝜆𝑖𝑞(𝑘) ≥ 0.
2.2. Preliminaries. Now, the following lemmas, criterion,
remark, and definitions are preliminarily presented for later
development.

Lemma 1 (see [32]). The matrix 𝐴(.) is said to be an 𝑀 −
matrix if the following properties are verified:

(i) All the eigenvalues of 𝐴(.) have a positive real part.
(ii) The real eigenvalues are positives.
(iii) The principal minors of 𝐴(.) are positive:(𝐴 (.)) (1 2 ⋅ ⋅ ⋅ 𝑗1 2 ⋅ ⋅ ⋅ 𝑗) > 0, ∀𝑗 ∈ 𝐼 [1 𝑛] . (5)
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(iv) For any positive vector 𝑥 = (𝑥1, ..., 𝑥𝑛)𝑇 the algebraic
equation 𝐴(.)𝑥 admits a positive solution 𝑤 = (𝑤1, ...,𝑤𝑛)𝑇.

In Kotelyanski lemma [33], the real parts of the eigenvalues of
the matrix 𝐴(.), with nonnegative off-diagonal elements, are
less than a real number𝜇 if and only if all those ofmatrix𝑀(.),
where𝑀(.) = 𝜇𝐼𝑛 − 𝐴(.), are positive, with 𝐼𝑛 the 𝑛 identity
matrix.

In this case, all the principal minors of matrix (−𝐴(.)) are
positive. Then, the Kotelyanski lemma permits deducing on
stability properties of the system given by 𝐴(.).

Now, we will introduce the discrete-time Borne and Gen-
tina practical stability criterion and the pseudo-overvaluing
matrix.

In discrete-time Borne and Gentina practical stability
criterion [30, 31], let us consider the discrete-time nonlinear
system 𝑥(𝑘 + 1) = 𝐴(.)𝑥(𝑘) and the overvaluing matrix𝑇𝑀(.) = {|𝑎𝑗,𝑘|} ∀𝑗, 𝑘 = 1, ..., 𝑛. If the nonlinearities are
isolated in either one row or one column of 𝑇𝑀(.), the
verification of the Kotelyanski condition would enable us to
achieve stability conclusion of the original system charac-
terized by 𝐴(.). The Kotelyanski lemma applied to the
overvaluing matrix obtained by the use of the regular vector
norm𝑝(𝑤) = [|𝑤1|, |𝑤2|, ...|𝑤𝑛|]with𝑤 = [𝑤1, 𝑤2, ...𝑤𝑛] leads
to the following sufficient conditions of asymptotic stability

of original system: (𝐼𝑛 − 𝑇𝑀(.)) ( 1 2 ⋅ ⋅ ⋅ 𝑗1 2 ⋅ ⋅ ⋅ 𝑗 ) > 0 (𝑗 =1, 2, ..., 𝑛).
Definition 2 (see [28]). The matrix 𝑇𝑀(.) is the comparison
matrix of the system given by a matrix 𝐴(.) with respect to
the vector norm 𝑝 if the inequality𝑝 (𝑥 (𝑘 + 1)) ≤ 𝑇𝑀 (.) 𝑝 (𝑥 (𝑘)) (6)∀𝑥 ∈ 𝐸 and 𝑘 > 0 is verified for each corresponding
component. Then, the stability of the comparison system𝑧(𝑘 + 1) = 𝑇𝑀(.)𝑧(𝑘) with the initial conditions such as𝑧0 = 𝑝(𝑥0).

In this case, the following properties are satisfying:

(i) If all the elements of 𝑇𝑀(.) are nonnegative, it is
assumed that the eigenvalue of 𝑇𝑀(.), the biggest in
module, is both real and positive and is called main
eigenvalue of 𝑇𝑀(.).

(ii) If all the elements of matrix 𝑇𝑀(.) are nonnegative, it
is assumed that the principal minors of (𝐼𝑛 − 𝑇𝑀(.))
are all positive, the spectral radius of 𝑇𝑀(.) is inferior
to the unit, and all the elements of (𝐼𝑛 − 𝑇𝑀(.))−1 are
nonnegative.

(iii) When 𝑇𝑀(.) is an irreducible matrix, the main eigen-
vector of 𝑇𝑀(.) is the same as of (𝑇𝑀(.))𝑇 and all their
elements are nonnegative.

Remark 3. A discrete-time system given by a matrix 𝐴(.)
is stable if matrix (𝐼𝑛 − 𝑇𝑀(.)) verified the Kotelyanski
conditions; in this case (𝐼𝑛 − 𝑇𝑀(.)) is an𝑀−matrix.

3. Main Results

In this subsection, we present our first result on robust
stability analysis for system (1).

Theorem 4. System (1) is robustly asymptotically stable under
arbitrary switching rule 𝜎(𝑘) and all admissible uncertainties
(3) and (4) if (𝐼𝑛 − 𝑇𝑀(.)) is an𝑀−matrix, where𝑇𝑀 (.) = max

𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]

(󵄨󵄨󵄨󵄨󵄨𝐴 𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨)
+ (𝑟2 − 𝑟1 + 1) max

𝑖∈𝐼[1 𝐿]
q∈𝐼[1 𝐿𝑞]

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝐷𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) (7)

Proof. Let us consider system (1) for all admissible uncertain-
ties (3) and (4); let 𝑤 ∈ R𝑛 with components (𝑤𝑝 > 0, ∀𝑝 =1, ..., 𝑛) and 𝑥(𝑘) ∈ R𝑛 be the state vector.

Choose the common Lyapunov-Krasovskii functional:𝑉 (𝑥 (𝑘) , 𝑘) = 𝑉1 (𝑥 (𝑘) , 𝑘) + 𝑉2 (𝑥 (𝑘) , 𝑘)+ 𝑉3 (𝑥 (𝑘) , 𝑘) (8)

where 𝑉1 (𝑥 (𝑘) , 𝑘) = ⟨|𝑥 (𝑘)| , 𝑤⟩ (9)

𝑉2 (𝑥 (𝑘) , 𝑘) = 𝑘−1∑
𝑗=𝑘−𝜏𝜎(𝑘)(𝑘)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩ (10)

𝑉3 (𝑥 (𝑘) , 𝑘) = −𝑟1+1∑
𝑚=−𝑟2+2

𝑘−1∑
𝑑=𝑘+𝑚+1

⟨𝐷𝑀 |𝑥 (𝑙)| , 𝑤⟩ (11)

with 𝐷𝑀 = max
𝑖∈𝐼[1 𝐿]
𝑞∈𝐼[1 𝐿𝑞]

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝐷𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) . (12)

We can easily verify that 𝑉(𝑥(𝑘), 𝑘) ≥ 0.
Hence, we get that the difference of the Lyapunov func-

tional 𝑉1(𝑥(𝑘), 𝑘) alongside the trajectories of system (1) has
the following form:Δ𝑉1 (𝑥 (𝑘) , 𝑘) = ⟨|𝑥 (𝑘 + 1)| , 𝑤⟩ − ⟨|𝑥 (𝑘)| , 𝑤⟩= ⟨󵄨󵄨󵄨󵄨𝐴𝜎(𝑘) (.) 𝑥 (𝑘) + 𝐷𝜎(𝑘) (.) 𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))󵄨󵄨󵄨󵄨 , 𝑤⟩− ⟨|𝑥 (𝑘)| , 𝑤⟩ ≤ ⟨󵄨󵄨󵄨󵄨𝐴𝜎(𝑘) (.)󵄨󵄨󵄨󵄨 |𝑥 (𝑘)|+ 󵄨󵄨󵄨󵄨𝐷𝜎(𝑘) (.)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))󵄨󵄨󵄨󵄨 , 𝑤⟩ − ⟨|𝑥 (𝑘)| , 𝑤⟩= ⟨󵄨󵄨󵄨󵄨𝐴𝜎(𝑘) (.)󵄨󵄨󵄨󵄨 |𝑥 (𝑘)| , 𝑤⟩+ ⟨󵄨󵄨󵄨󵄨𝐷𝜎(𝑘) (.)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))󵄨󵄨󵄨󵄨 , 𝑤⟩ − ⟨|𝑥 (𝑘)| , 𝑤⟩≤ ⟨𝐴𝑀 (.) |𝑥 (𝑘)| , 𝑤⟩+ ⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))󵄨󵄨󵄨󵄨 , 𝑤⟩ − ⟨|𝑥 (𝑘)| , 𝑤⟩

(13)
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with 𝐴𝑀 (.) = max
𝑖∈𝐼[1 𝐿]
𝑝∈𝐼[1 𝐿𝑝]

(󵄨󵄨󵄨󵄨󵄨𝐴 𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨) . (14)

Moreover, Δ𝑉2(𝑥(𝑘), 𝑘) is given as follows:

Δ𝑉2 (𝑥 (𝑘) , 𝑘) = 𝑘∑
𝑗=𝑘+1−𝜏𝜎(𝑘+1)(𝑘+1)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩
− 𝑘−1∑
𝑗=𝑘−𝜏𝜎(𝑘)(𝑘)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩
= 𝑘−𝑟1∑
𝑗=𝑘+1−𝜏𝜎(𝑘+1)(𝑘+1)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩+ ⟨𝐷𝑀 |𝑥 (𝑘)| , 𝑤⟩− ⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))󵄨󵄨󵄨󵄨 , 𝑤⟩+ 𝑘−1∑
𝑗=𝑘+1−𝑟1

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩
− 𝑘−1∑
𝑗=𝑘+1−𝜏𝜎(𝑘)(𝑘)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩ .

(15)

Since 𝜏𝜎(𝑘)(𝑘) ≥ 𝑟1 one can have

𝑘−1∑
𝑗=𝑘+1−𝑟1

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩
− 𝑘−1∑
𝑗=𝑘+1−𝜏𝜎(𝑘)(𝑘)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩ ≤ 0. (16)

From (15), we have

Δ𝑉2 (𝑥 (𝑘) , 𝑘) ≤ 𝑘−𝑟1∑
𝑗=𝑘+1−𝜏𝜎(𝑘+1)(𝑘+1)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩+ ⟨𝐷𝑀 |𝑥 (𝑘)| , 𝑤⟩− ⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))󵄨󵄨󵄨󵄨 , 𝑤⟩ .
(17)

Finally, Δ𝑉3(𝑥(𝑘), 𝑘) is estimated asΔ𝑉3 (𝑥 (𝑘) , 𝑘)= −𝑟1+1∑
𝑚=−𝑟2+2

𝑘∑
𝑙=𝑘+𝑚

⟨𝐷𝑀 |𝑥 (𝑙)| , 𝑤⟩
− −𝑟1+1∑
𝑚=−𝑟2+2

𝑘−1∑
𝑙=𝑘+𝑚+1

⟨𝐷𝑀 |𝑥 (𝑙)| , 𝑤⟩

= −𝑟1+1∑
𝑚=−𝑟2+2

𝑘−1∑
𝑙=𝑘+𝑚

⟨𝐷𝑀 |𝑥 (𝑙)| , 𝑤⟩ + ⟨𝐷𝑀 |𝑥 (𝑘)| , 𝑤⟩
− −𝑟1+1∑
𝑚=−𝑟2+2

𝑘−1∑
𝑙=𝑘+𝑚

⟨𝐷𝑀 |𝑥 (𝑙)| , 𝑤⟩
− −𝑟𝑚+1∑
𝑚=−𝑟2+2

𝑘−1∑
𝑙=𝑘+𝑚

⟨𝐷𝑀 |𝑥 (𝑘 + 𝑚 − 1)| , 𝑤⟩
= −𝑟1+1∑
𝑚=−𝑟2+2

⟨𝐷𝑀 |𝑥 (𝑘)| , 𝑤⟩
− −𝑟1+1∑
𝑚=−𝑟2+2

⟨𝐷𝑀 |𝑥 (𝑘 + 𝑚 − 1)| , 𝑤⟩= (𝑟2 − 𝑟1) ⟨𝐷𝑀 |𝑥 (𝑘)| , 𝑤⟩− 𝑘−𝑟1∑
𝑚=𝑘+1+𝑟2

⟨𝐷𝑀 |𝑥 (𝑚)| , 𝑤⟩ .
(18)

Since 𝜏𝜎(𝑘)(𝑘) ≤ 𝑟2, we have
𝑘−𝑟1∑

𝑗=𝑘+1−𝜏𝜎(𝑘+1)(𝑘+1)

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩
− 𝑘−𝑟1∑
𝑗=𝑘+1−𝑟2

⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩ ≤ 0. (19)

Thus, it follows from (17) and (18) thatΔ𝑉3 (𝑥 (𝑘) , 𝑘) + Δ𝑉2 (𝑥 (𝑘) , 𝑘)≤ (𝑟2 − 𝑟1) ⟨𝐷𝑀 |𝑥 (𝑘)| , 𝑤⟩ + ⟨𝐷𝑀 |𝑥 (𝑘)| , 𝑤⟩− ⟨𝐷𝑀 󵄨󵄨󵄨󵄨𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))󵄨󵄨󵄨󵄨 , 𝑤⟩ . (20)

Combining (13) and (20) givesΔ𝑉 (𝑥 (𝑘) , 𝑘)≤ ⟨𝐴𝑀 (.) |𝑥 (𝑘)| , 𝑤⟩+ ⟨𝐷𝑀 (𝑟2 − 𝑟1 + 1) |𝑥 (𝑘)| , 𝑤⟩ − ⟨|𝑥 (𝑘)| , 𝑤⟩= ⟨(𝐴𝑀 (.) + (𝑟2 − 𝑟1 + 1)𝐷𝑀 − 𝐼𝑛) |𝑥 (𝑘)| , 𝑤⟩= ⟨(𝑇𝑀 (.) − 𝐼𝑛) |𝑥 (𝑘)| , 𝑤⟩
(21)

where 𝑇𝑀(.) is given in (4).
On the other hand, we assume that (𝐼𝑛 −𝑇𝑀(.)) is an𝑀−

matrix. Indeed, we can give a vector 𝜌 ∈ R∗𝑛+ (𝜌𝑝 ∈ R∗+ 𝑝 =1, ..., 𝑛) such that (𝐼𝑛 − 𝑇𝑀(.))𝑇𝑤 = 𝜌, ∀𝑤 ∈ R∗𝑛+ .
Thus, we get⟨(𝐼𝑛 − 𝑇𝑀 (.)) |𝑥 (𝑘)| , 𝑤⟩= ⟨(𝐼𝑛 − 𝑇𝑀 (.))𝑇𝑤, |𝑥 (𝑘)|⟩ = ⟨𝜌, |𝑥 (𝑘)|⟩ . (22)
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Then we have⟨(𝑇𝑀 (.) − 𝐼𝑛) |𝑥 (𝑘)| , 𝑤⟩ = ⟨−𝜌, |𝑥 (𝑘)|⟩ . (23)

Finally, we obtain

ΔV (𝑘) ≤ ⟨(𝑇𝑀 (.) − 𝐼𝑛) |𝑥 (𝑘)| , 𝑤⟩ ≤ − 𝑛∑
𝑝=1

𝜌𝑝 󵄨󵄨󵄨󵄨󵄨𝑥𝑝 (𝑘)󵄨󵄨󵄨󵄨󵄨< 0. (24)

The proof is completed.

According to the Lyapunov theory, robust stability condi-
tion of system (1), under switching law 𝜎(𝑘) = 𝑖 ∈ 𝐼 [1 𝐿] by
Theorem 4, is immediately derived.

4. Application to Discrete-Time
Uncertain Switched Nonlinear Systems with
Time Varying Delays Defined by
Difference Equations

In the sequel, to illustrate the effectiveness of the obtained
results, as application of discrete-time uncertain switched
nonlinear systems with time varying delays modeled by
difference equations will be proposed.

Let us consider the following functional difference equa-
tion for all the subsystems:

𝑆𝑖 : 𝑦 (𝑘 + 𝑛) + ( 𝐿𝑝∑
𝑝=1

𝜇𝑖𝑝 (𝑘) 𝑛−1∑
𝑚=0

𝑎𝑛−𝑚𝑖𝑝 (.) 𝑦 (𝑘 + 𝑚)+
⋅ 𝐿𝑞∑
𝑞=1

𝜆𝑖𝑞 (𝑘) 𝑛−1∑
𝑚=0

𝑑𝑛−𝑚𝑖𝑞 (.) 𝑦 (𝑘 + 𝑚 − 𝜏𝑖 (𝑘))) = 0 (25)

where 𝜇𝑖𝑝(𝑘) 𝑝 ∈ 𝐼 [1 𝐿𝑝] and 𝜆𝑖𝑞(𝑘) 𝑞 ∈ 𝐼 [1 𝐿𝑞] denote
the polytopic uncertain parameters as defined in (3) and (4)
for each 𝑖 ∈ 𝐼 [1 𝐿]. 𝑦(𝑘) ∈ R is the output and 𝑛 is the
subsystem order. 𝑎𝑛−𝑚𝑖𝑝 (.) and 𝑑𝑛−𝑚𝑖𝑞 (.) are nonlinear coeffi-
cients.

Consider the following change of variable:𝑥𝑚 (𝑘 + 1) = 𝑥𝑚+1 (𝑘) , 𝑚 = 1, . . . , 𝑛 − 1. (26)

Combining (25) and (26) leads to𝑥𝑛 (𝑘 + 1)
= − 𝐿𝑝∑
𝑝=1

𝜇𝑖𝑝 (𝑘) 𝑛−1∑
𝑚=0

𝑎𝑛−𝑚𝑖𝑝 (.) 𝑥𝑚+1 (𝑘)
− 𝐿𝑞∑
𝑞=1

𝜆𝑖𝑞 (𝑘) 𝑛−1∑
𝑚=0

𝑑𝑛−𝑚𝑖𝑝 (.) 𝑥𝑚+1 (𝑘 − 𝜏𝑖 (𝑘)) .
(27)

From (27), subsystems 𝑆𝑖, 𝑖 ∈ 𝐼 [1 𝐿] will be given under
matrix representation as follows:

𝑥 (𝑘 + 1) = 𝐿 𝑙∑
𝑝=1

𝜇𝑖𝑝 (𝑘) 𝐴 𝑖𝑝 (.) 𝑥 (𝑘)
+ 𝐿𝑞∑
𝑞=1

𝜆𝑖𝑞 (𝑘)𝐷𝑖𝑞 (.) 𝑥 (𝑘 − 𝜏𝑖 (𝑘))𝑥 (𝜃) = 𝜙 (𝜃)𝑠 = −𝑟2, −𝑟2 + 1, . . . , −1
(28)

𝐴 𝑖𝑝 (.) = [[[[[[[[[
0 1 ⋅ ⋅ ⋅ 00 0 d

...... ... d 1−𝑎𝑛𝑖𝑝 (.) −𝑎𝑛−1𝑖𝑝 (.) ⋅ ⋅ ⋅ −𝑎1𝑖𝑝 (.)
]]]]]]]]]
,

∀𝑖 ∈ 𝐼 [1 𝐿] , ∀𝑝 ∈ 𝐼 [1 𝐿𝑝]
(29)

𝐷𝑖𝑞 (.) = [[[[[[[[[
0 0 ⋅ ⋅ ⋅ 00 0 d

...... ... d 0−𝑑𝑛𝑖𝑞 (.) −𝑑𝑛−1𝑖𝑞 (.) ⋅ ⋅ ⋅ −𝑑1𝑖𝑞 (.)
]]]]]]]]]∀𝑖 ∈ 𝐼 [1 𝐿] , ∀𝑞 ∈ 𝐼 [1 𝐿𝑞] .

(30)

According to the switching signal 𝜎(𝑘), the resultant switched
system will be given by𝑥 (𝑘 + 1) = 𝐴𝜎(𝑘) (.) 𝑥 (𝑘) + 𝐷𝜎(𝑘) (.) 𝑥 (𝑘 − 𝜏𝜎(𝑘) (𝑘))𝑥 (𝜃) = 𝜙 (𝜃)𝑠 = −𝑟2, −𝑟2 + 1, . . . , −1. (31)

The regular basis changeP permits characterizing the dynam-
ics of subsystems 𝑆𝑖 by the change of coordinate defined by𝑧 (𝑘) = 𝑃𝑥 (𝑘) (32)

with

𝑃 =
[[[[[[[[[[[[

1 1 . . . 1 0𝛼1 𝛼2 . . . 𝛼𝑛−1 0(𝛼1)2 (𝛼2)2 . . . (𝛼𝑛−1)2 ...... ... . . . ... 0(𝛼1)𝑛−1 (𝛼2)𝑛−1 . . . (𝛼𝑛−1)𝑛−1 1

]]]]]]]]]]]]𝛼𝑗 ̸= 𝛼𝑞 ∀𝑗, 𝑞.
(33)
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Combining (30), (31), and (32) leads to the following state
representation:

𝑧 (𝑘 + 1) = 𝐿𝑝∑
𝑝=1

𝜇𝑖𝑝 (𝑘) 𝐸𝑖𝑝 (.) 𝑧 (𝑘)
+ 𝐿𝑞∑
𝑞=1

𝜆𝑖𝑞 (𝑘) 𝐹𝑖𝑞 (.) 𝑧 (𝑘 − 𝜏𝑖 (𝑘))𝑧 (𝜃) = 𝑃𝜙 (𝜃)𝑠 = −𝑟2, . . . , −1, 0
(34)

where 𝐸𝑖𝑝 (.) = 𝑃−1𝐴 𝑖𝑝 (.) 𝑃
=
[[[[[[[[[[[[

𝛼1 0 ⋅ ⋅ ⋅ 0 𝛽10 d d
... ...... d d 0 ...0 ⋅ ⋅ ⋅ 0 𝛼𝑛−1 𝛽𝑛−1𝛾1𝑖𝑝 (.) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛾𝑛−1𝑖𝑝 (.) 𝛾𝑛𝑖𝑝 (.)

]]]]]]]]]]]]
. (35)

The elements of the vertex matrix 𝐸𝑖𝑝(.) are defined by𝛾𝑗𝑖𝑝 (.) = −𝐺𝑖𝑝 (𝛼𝑗) , ∀𝑗 = 1, . . . , 𝑛 − 1𝛾𝑛𝑖𝑝 (.) = −𝑎1𝑖𝑝 (.) − 𝑛−1∑
𝑗=1

𝛼𝑗 (36)

where 𝐺𝐴𝑖𝑝(.) (𝑠,.) = 𝑠𝑛 + 𝑛−1∑
𝑚=0

𝑎𝑛−𝑚𝑖𝑝 (.) 𝑠𝑚 (37)

and 𝛽𝑗 = 𝑛−1∏
𝑞=1
𝑞 ̸=𝑗

(𝛼𝑗 − 𝛼𝑞)−1 , ∀𝑗 = 1, . . . , 𝑛 − 1. (38)

The vertex matrix 𝐹𝑖𝑞(.)is given by

𝐹𝑖𝑞 (.) = 𝑃−1𝐷𝑖𝑞 (.) 𝑃 = [ 0𝑛−1,𝑛−1 ⋅ ⋅ ⋅ 0𝑛−1,1𝛿1𝑖𝑞 (.) ⋅ ⋅ ⋅ 𝛿𝑛−1𝑖𝑞 (.) 𝛿𝑛𝑖𝑞 (.)] (39)

with 𝛿𝑗𝑖𝑞 (.) = −𝑁𝐷𝑖𝑞(.) (𝛼𝑗) , ∀𝑗 = 1, . . . , 𝑛 − 1𝛿𝑛𝑖𝑞 (.) = −𝑑1𝑖𝑞 (.) (40)

and 𝑁𝐷𝑖𝑞(.) (𝑠,.) = 𝑛−1∑
𝑚=0

𝑑𝑛−𝑚𝑖𝑞 (.) 𝑠𝑚. (41)

Thus, the matrix 𝑇𝑖(.) is given as follows:

𝑇𝑖 (.) =
[[[[[[[[[[[[

󵄨󵄨󵄨󵄨𝛼1󵄨󵄨󵄨󵄨 0 ⋅ ⋅ ⋅ 0 󵄨󵄨󵄨󵄨𝛽1󵄨󵄨󵄨󵄨0 d d
... ...... d d 0 ...0 ⋅ ⋅ ⋅ 0 󵄨󵄨󵄨󵄨𝛼𝑛−1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝛽𝑛−1󵄨󵄨󵄨󵄨𝑡1𝑖 (.) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑡𝑛−1𝑖 (.) 𝑡𝑛𝑖 (.)

]]]]]]]]]]]]
,
∀𝑖 ∈ 𝐼 [1 𝐿]

(42)

with𝑡𝑗𝑖,𝑝,𝑞 (.) = 󵄨󵄨󵄨󵄨󵄨𝛾𝑗𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑗𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,𝑗 = 1, . . . , 𝑛 − 1𝑡𝑛𝑖,𝑝,𝑞 (.) = 󵄨󵄨󵄨󵄨󵄨𝛾𝑛𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑛𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(43)

Finally, the comparison matrix 𝑇𝑀(.) of system (31) will be
given as follows:

𝑇𝑀 (.) =
[[[[[[[[[[[[

󵄨󵄨󵄨󵄨𝛼1󵄨󵄨󵄨󵄨 0 ⋅ ⋅ ⋅ 0 󵄨󵄨󵄨󵄨𝛽1󵄨󵄨󵄨󵄨0 d d
... ...... d d 0 ...0 ⋅ ⋅ ⋅ 0 󵄨󵄨󵄨󵄨𝛼𝑛−1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝛽𝑛−1󵄨󵄨󵄨󵄨𝑡𝑛 (.) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑡𝑛 (.) 𝑡𝑛 (.)

]]]]]]]]]]]]
(44)

with 𝑡𝑛 (.) = max
𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]
𝑞∈𝐼[1 𝐿𝑞]

(𝑡𝑛𝑖,𝑝,𝑞 (.))
𝑡𝑗 (.) = max

𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]
𝑞∈𝐼[1 𝐿𝑞]

(𝑡𝑗𝑖,𝑝,𝑞 (.)) , 𝑗 = 1, . . . , 𝑛 − 1. (45)

Now, based on the Borne and Gentina practical stability
criterion, we are in a position to give sufficient robust stability
conditions of system (31) that are illustrated in the following
theorem.

Theorem 5. System (31) is robustly asymptotically stable,
under arbitrary switching signal 𝜎(𝑘) and all admissible uncer-
tainties (3) and (4), if there exist 𝛼𝑗 (𝑗 = 1, ..., 𝑛 − 1), 𝛼𝑗 ̸=𝛼𝑞, ∀𝑗 ̸= 𝑞, satisfying the following conditions:(𝑖) 1 − 󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨 > 0,𝑗 = 1, . . . 𝑛 − 1 (46)

(𝑖𝑖) 1 − (𝑡𝑛 (.)) − 𝑛−1∑
𝑗=1

(𝑡𝑗 (.)) 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 (1 − 󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨)−1 > 0 (47)
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Proof. For an arbitrary choice |𝛼𝑗| < 1 (𝑗 = 1, ..., 𝑛 − 1), 𝛼𝑗 ̸=𝛼𝑞, ∀𝑗 ̸= 𝑞 and from (44), it is clear that all the elements of𝑇𝑀(.) are isolated in one row and positive. The verification
of the Borne and Gentina practical stability criterion enables
concluding to the stability of the original system (31).

Therefore, it comes the following sufficient robust asymp-
totic stability conditions:

(𝐼𝑛 − 𝑇𝑀 (.)) (1 2 ⋅ ⋅ ⋅ 𝑗1 2 ⋅ ⋅ ⋅ 𝑗) > 0 (𝑗 = 1, . . . , 𝑛) . (48)

It is clear that, for 𝑗 = 1, ...𝑛 − 1, condition (46) is verified as
follows: 0 < |𝛼𝑗| < 1. The last condition 𝑗 = 𝑛 gives us

det (𝐼𝑛 − 𝑇𝑀 (.))
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 󵄨󵄨󵄨󵄨𝛼1󵄨󵄨󵄨󵄨 0 ⋅ ⋅ ⋅ 0 − 󵄨󵄨󵄨󵄨𝛽1󵄨󵄨󵄨󵄨0 d d
... ...... d d 0 ...0 ⋅ ⋅ ⋅ 0 1 − 󵄨󵄨󵄨󵄨𝛼𝑛−1󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝛽𝑛−1󵄨󵄨󵄨󵄨−𝑡1 (.) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝑡𝑛−1 (.) 1 − 𝑡𝑛 (.)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (49)

This implies 1 − (𝑡𝑛(.)) − ∑𝑛−1𝑗=1(𝑡𝑗(.))|𝛽𝑗|(1 − |𝛼𝑗|)−1 > 0.
This completes this proof.

To simplify the use of the obtained stability conditions,
Theorem 5 can be reduced to Corollary 6.

Corollary 6. If system (31) is robustly asymptotically stable
under arbitrary switching 𝜎(𝑘) and all admissible uncertainties
(3) and (4), the following conditions are satisfied ∀𝛼𝑗 ∈] 0 1 [ (𝑗 = 1, ..., 𝑛 − 1) 𝛼𝑗 ̸= 𝛼𝑞 ∀𝑗 ̸= 𝑞, for each 𝑖 ∈ 𝐼 [1 𝐿],𝑝 ∈ 𝐼 [1 𝐿𝑝], and 𝑞 ∈ 𝐼 [1 𝐿𝑞]:
(𝑖) 𝛽𝑗 (𝐺𝐴𝑖𝑝(.) (𝛼𝑗,.) + (𝑟2 − 𝑟1 + 1) sup

[.]

(𝑁𝐷𝑖𝑞(.) (𝛼𝑗,.))) < 0 (50)

(𝑖𝑖) (𝐺𝐴𝑖𝑝(.) (𝑠 = 1,.) + (𝑟2 − 𝑟1 + 1) sup
[.]

(𝑁𝐷𝑖𝑞(.) (𝑠 = 1,.)))> 0 (51)

(𝑖𝑖𝑖) (𝛾𝑛𝑖𝑝 (.) + (𝑟2 − 𝑟1 + 1) sup
[.]

(𝛿𝑛𝑖𝑞 (.))) > 0 (52)

Proof (see [9]). By (47), we can obtain the following result:

max
𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]
𝑞∈𝐼[1 𝐿𝑞]

(󵄨󵄨󵄨󵄨󵄨𝛾𝑛𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑛𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)

+ 𝑛−1∑
𝑗=1

( max
𝑖∈𝐼[1 𝐿]
𝑝∈𝐼[1 𝐿𝑝]

𝑞∈𝐼[1 𝐿𝑞]

(󵄨󵄨󵄨󵄨󵄨𝛾𝑗𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨
+ (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑗𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨))󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 (1 − 󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨)−1
< 1.

(53)

This implies

1 − max
𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]
𝑞∈𝐼[1 𝐿𝑞]

(󵄨󵄨󵄨󵄨󵄨𝛾𝑛𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑛𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)

− 𝑛−1∑
𝑗=1

( max
𝑖∈𝐼[1 𝐿]
𝑝∈𝐼[1 𝐿𝑝]

𝑞∈𝐼[1 𝐿𝑞]

(󵄨󵄨󵄨󵄨󵄨𝛾𝑗𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨
+ (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑗𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨))󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 (1 − 󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨)−1
> 0.

(54)

It is easy to deduce that the relation below is more restrictive
than (54)1 − (󵄨󵄨󵄨󵄨󵄨𝛾𝑛𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑛𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)

− 𝑛−1∑
𝑗=1

((󵄨󵄨󵄨󵄨󵄨𝛾𝑗𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝛿𝑗𝑖𝑞 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨))
⋅ 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 (1 − 󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨)−1 > 0.

(55)

Therefore, In order to deduce the stability conditions of
system (31), we consider (50) and (52) to find (51).

Thus, we deduce from (50), (52), and (55) that

1 + (𝑎1𝑖𝑝 (.) + (𝑟2 − 𝑟1 + 1) sup
[.]

(𝑑1𝑖𝑞 (.))) + 𝑛−1∑
𝑗=1

𝛼𝑗
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+ 𝑛−1∑
𝑗=1

( 1(1 − 𝛼𝑗) ((𝑠 − 𝛼𝑗) (𝐺𝐴𝑖𝑝(.) (𝑠,.) + (𝑟2 − 𝑟1 + 1) sup[.] (𝑁𝐷𝑖𝑞(.) (𝑠,.)))𝐻 (𝑠) ))
𝑠=𝛼𝑗

> 0
(56)

with 𝐻(𝑠) = 𝑛−1∏
𝑗=1

(𝑠 − 𝛼𝑗) . (57)

To complete this proof, let us first observe that

(𝐺𝐴𝑖𝑝(.) (s,.) + (𝑟2 − 𝑟1 + 1) sup[.] (𝑁𝐷𝑖𝑞(.) (s,.)))𝐻 (𝑠)= 𝑠 + (𝑎1𝑖𝑝 (.) + (𝑟2 − 𝑟1 + 1) sup[.] (𝑑1𝑖𝑞 (.))) + 𝑛−1∑
𝑗=1

𝛼𝑗
+ 𝑛−1∑
𝑗=1

((𝑠 − 𝛼𝑗) (𝐺𝐴𝑖𝑝(.) (s,.) + (𝑟2 − 𝑟1 + 1) sup[.] (𝑁𝐷𝑖𝑞(.) (s,.)))(1 − 𝛼𝑗)𝐻 (𝑠) )
𝑠=𝛼𝑗

.
(58)

From (56), (57), and (58), we have

(𝐺𝐴𝑖𝑝(.) (s,.) + (𝑟2 − 𝑟1 + 1) sup[.] (𝑁𝐷𝑖𝑞(.) (s,.))𝐻 (𝑠) )
𝑠=1> 0. (59)

By a simple verification, we obtain

𝐻(𝑠 = 1) = 𝑛−1∏
𝑗=1

(1 − 𝛼𝑗) > 0 ∀𝛼𝑗 ∈ ]0 1[ (60)

which yields(𝐺𝐴𝑖𝑝(.) (𝑠 = 1,.)
+ (𝑟2 − 𝑟1 + 1) sup

[.]

(𝑁𝐷𝑖𝑞(.) (𝑠 = 1,.))) > 0. (61)

This ends the proof.

5. Extension Results for Uncertain
Switched Nonlinear Systems with
Multiple Varying Delays

This subsection is aimed at generalizing the previously
reached results to uncertain switched nonlinear systems with
multiple varying delays systems.

Considering a class of uncertain switched nonlinear
systems withmultiple varying delays formed by 𝐿 subsystems
given by𝑥 (𝑘 + 1) = 𝐴𝜎(𝑘) (.) 𝑥 (𝑘)+ ℎ∑

𝑙=1

𝐷𝜎(𝑘),𝑙 (.) 𝑥 (𝑘 − 𝜏𝑙,𝜎(𝑘) (𝑘))𝑥 (𝜃) = 𝜙 (𝜃)𝜃 = −max
1≤𝑙≤𝑚

(𝑟2,𝑙) , −max
1≤𝑙≤𝑚

(𝑟2,𝑙) + 1, . . . , −1
(62)

where 𝜎(𝑘) is the switching signal given in (1), 𝐴 𝑖(.) ∈ R𝑛×𝑛

and 𝐷𝑙,𝑖(.) ∈ R𝑛×𝑛(𝑙 = 1, ...ℎ) are matrices of appropriate
dimensions with nonlinear elements of appropriate dimen-
sions. 𝜏𝑖,𝑙(𝑘), 𝑖 ∈ 𝐼 [1 𝐿] and 𝑙 ∈ 𝐼 [1 ℎ] are the time varying
delays satisfying 0 ≤ 𝑟1,𝑙 ≤ 𝜏𝑖,𝑙(𝑘) ≤ 𝑟2,𝑙, where 𝑟1,𝑙 and𝑟2,𝑙 𝑙 ∈ 𝐼 [1 ℎ] are constant scalars.

We assume that𝐴 𝑖 (.) and𝐷𝑙,𝑖(.) are uncertain of polytopic
type described by

𝐴 𝑖 (.) = 𝐿𝑝∑
𝑝=1

𝜇𝑖𝑝 (𝑘)𝐴 𝑖𝑝 (.) , 𝑖 ∈ 𝐼 [1 𝐿] (63)

𝐷𝑖,𝑙 (.) = 𝐿𝑞,𝑙∑
𝑞=1

𝜆𝑖𝑞,𝑙 (𝑘)𝐷𝑖𝑞,𝑙 (.) , 𝑖 ∈ 𝐼 [1 𝐿] . (64)
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Now, it became easier to establish the following sufficient sta-
bility conditions for system (62) by generalizing the common
Lyapunov-Krasovskii functional (8).

Theorem 7. System (62) is globally robustly asymptotically
stable under arbitrary switching 𝜎(𝑘) and all admissible uncer-
tainties (63) and (64) if (𝐼𝑛 − 𝑇𝑙,𝑀(.)) is an𝑀−matrix, where𝑇𝑀,𝑙 (.)= max

𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]

(󵄨󵄨󵄨󵄨󵄨𝐴 𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨)
+ (𝑟2 − 𝑟1 + 1) max

𝑖∈𝐼[1 𝐿]
q∈𝐼[1 𝐿𝑞]

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] ( ℎ∑𝑙=1 (𝐷𝑖𝑞,𝑙 (.)))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
(65)

with 𝑟2 = max𝑙∈𝐼[ 1 ℎ ](𝜏2,𝑙) and 𝑟1 = min𝑙∈𝐼[ 1 ℎ ](𝜏1,𝑙).
Proof. It suffices to choose the following Lyapunov function𝑉(𝑥(𝑘), 𝑘) and follow the same steps as given in the proof of
Theorem 5.𝑉 (𝑥 (𝑘) , 𝑘) = 𝑉1 (𝑥 (𝑘) , 𝑘) + 𝑉2 (𝑥 (𝑘) , 𝑘)+ 𝑉3 (𝑥 (𝑘) , 𝑘) (66)

where𝑉1 (𝑥 (𝑘) , 𝑘) = ⟨|𝑥 (𝑘)| , 𝑤⟩ (67)

𝑉2 (𝑥 (𝑘) , 𝑘) = ℎ∑
𝑙=1

𝑘−1∑
𝑗=𝑘−𝜏𝑙,𝜎(𝑘)

⟨𝐷𝑀,𝑙 󵄨󵄨󵄨󵄨𝑥 (𝑗)󵄨󵄨󵄨󵄨 , 𝑤⟩ (68)

𝑉3 (𝑥 (𝑘) , 𝑘)= ℎ∑
𝑙=1

𝑘−1∑
𝑗=𝑘−𝜏𝑙,𝜎(𝑘)

−𝑟1,𝑙+1∑
𝑚=−𝑟𝑙,2+2

𝑘−1∑
𝑑=𝑘+𝑚+1

⟨𝐷𝑀,𝑙 |𝑥 (𝑙)| , 𝑤⟩ (69)

with 𝐷𝑀,𝑙 = max
𝑖∈𝐼[1 𝐿]
𝑞∈𝐼[1 𝐿𝑞,𝑙]

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] (𝐷𝑖𝑞,𝑙 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) . (70)

Hence, wewill apply this result to determine delay-dependent
stability criteria for systems described by a set of difference
equations with multiple time varying delays:

𝑆𝑖 : 𝑦 (𝑘 + 𝑛) + ( 𝐿𝑝∑
𝑝=1

𝜇𝑖𝑝 (𝑘) 𝑛−1∑
𝑚=0

𝑎𝑛−𝑚𝑖𝑝 (.) 𝑦 (𝑘 + 𝑚)+
⋅ ℎ∑
𝑙=1

𝐿𝑞,𝑙∑
𝑞=1

𝜆𝑖𝑞,𝑙 (𝑘) 𝑛−1∑
𝑚=0

𝑑𝑛−𝑚𝑖𝑞,𝑙 (.) 𝑦 (𝑘 + 𝑚 − 𝜏𝑖,𝑙 (𝑘)))= 0
(71)

where 𝑦(𝑘) ∈ R is the output and 𝑎𝑛−𝑚𝑖𝑝 (.) and 𝑑𝑛−𝑚𝑖𝑞,𝑙 (.)are
nonlinear coefficients.

From (26) and taking into consideration the switched rule
signal 𝜎(𝑘), the resulting studied switched nonlinear system
can be described by the following state space representation:𝑥 (𝑘 + 1) = 𝐴𝜎(𝑘) (.) 𝑥 (𝑘)+ ℎ∑

𝑙=1

𝐷𝜎(𝑘),𝑙 (.) 𝑥 (𝑘 − 𝜏𝑙,𝜎(𝑘) (𝑘))𝑥 (𝜃) = 𝜙 (𝜃)𝜃 = − max
𝑙∈𝐼[1 ℎ]

(𝑟2,𝑙) , − max
𝑙∈𝐼[1 ℎ]

(𝑟2,𝑙) + 1, . . . , −1.
(72)

The matrix 𝐷𝑖𝑞,𝑙(.) is represented by

𝐷𝑖𝑞,𝑙 (.) = [[[[[[[[[
0 0 ⋅ ⋅ ⋅ 00 0 d

...... ... d 0−𝑑𝑛𝑖𝑞,𝑙 (.) −𝑑𝑛−1𝑖𝑞,𝑙 (.) ⋅ ⋅ ⋅ −𝑑1𝑖𝑞,𝑙 (.)
]]]]]]]]]

(73)

and 𝐴 𝑖𝑝(.) is given in (29).
Therefore, the new polynomial𝑁𝐷𝑙,𝑖𝑞(.)(𝑠, .) for 𝑖 ∈ 𝐼 [1 𝑙],𝑙 ∈ 𝐼 [1 ℎ] and 𝑞 ∈ 𝐼 [1 𝐿𝑞] is defined by

𝑁𝐷𝑙,𝑖𝑞(.) (𝑠,.) = 𝑛−1∑
𝑚=0

𝑑𝑚𝑙,𝑖𝑞 (.) 𝑠𝑚. (74)

Then, according to (30), system (72)will be represented in the
arrow form, ∀𝑖 ∈ 𝐼 [1 𝑙], ∀𝑝 ∈ 𝐼 [1 𝐿𝑝], ∀𝑙 ∈ 𝐼 [1 ℎ], and∀𝑞 ∈ 𝐼 [1 𝐿𝑞] as follows:
𝑧 (𝑘 + 1) = 𝐿𝑝∑

𝑝=1

𝜇𝑖𝑝 (𝑘) 𝐸𝑖𝑝 (.) 𝑧 (𝑘)
+ ℎ∑
𝑙=1

𝐿𝑞∑
𝑞=1

𝜆𝑖𝑞 (𝑘) 𝐹𝑖𝑞,𝑙 (.) 𝑧 (𝑘 − 𝜏𝑖,𝑙 (𝑘))𝑧 (𝜃) = 𝑃𝜙 (𝜃)𝜃 = − max
𝑙∈𝐼[1 ℎ]

(𝑟2,𝑙) , − max
𝑙∈𝐼[1 ℎ]

(𝑟2,𝑙) + 1, . . . , −1
(75)

where 𝐹𝑖𝑝(.) is given in (35) and 𝐸𝑖𝑞,𝑙(.) is represented by

𝐸𝑖𝑞,𝑙 (.) = 𝑃−1𝐷𝑙,𝑖 (.) 𝑃 = [ 0𝑛−1,𝑛−1 ⋅ ⋅ ⋅ 0𝑛−1,1𝛿1𝑖𝑞,𝑙 (.) ⋅ ⋅ ⋅ 𝛿𝑛−1𝑖𝑞,𝑙 (.) 𝛿𝑛𝑖𝑞,𝑙 (.)] (76)

with𝛿𝑗𝑖𝑞,𝑙 (.) = −𝑁𝐷𝑖𝑞(.) (𝑠,.) , ∀𝑗 = 1, . . . , 𝑛 − 1, 𝑙 = 1, . . . , ℎ𝛿𝑛𝑖𝑞,𝑙 (.) = −𝑑1𝑖𝑞,𝑙 (.) . (77)
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Consequently, matrix 𝑇𝑖𝑝𝑞,𝑙(.), ∀𝑖 ∈ 𝐼 [1 𝐿], ∀𝑝 ∈ 𝐼 [1 𝐿𝑝],∀𝑞 ∈ 𝐼 [1 𝐿𝑞], and ∀𝑙 ∈ 𝐼 [1 ℎ], is given as follows:

𝑇𝑖𝑝𝑞,𝑙 (.) =
[[[[[[[[[[[[

𝛼1 0 ⋅ ⋅ ⋅ 0 󵄨󵄨󵄨󵄨𝛽1󵄨󵄨󵄨󵄨0 d d
... ...... d d 0 ...0 ⋅ ⋅ ⋅ 0 𝛼𝑛−1 󵄨󵄨󵄨󵄨𝛽𝑛−1󵄨󵄨󵄨󵄨𝑡1𝑖𝑝𝑞,𝑙 (.) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑡𝑛−1𝑖𝑝𝑞,𝑙 (.) 𝑡𝑛𝑖𝑝𝑞,𝑙 (.)

]]]]]]]]]]]]
(78)

𝑡𝑗
𝑖𝑝𝑞,𝑙 (.) = 󵄨󵄨󵄨󵄨󵄨𝛾𝑗𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sup[.] ( ℎ∑𝑙=1𝛿𝑗𝑖𝑞,𝑙 (.))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,𝑗 = 1, . . . , 𝑛 − 1
𝑡𝑛𝑖𝑝𝑞,𝑙 (.) = 󵄨󵄨󵄨󵄨󵄨𝛾𝑛𝑖𝑝 (.)󵄨󵄨󵄨󵄨󵄨 + (𝑟2 − 𝑟1 + 1) sup

[.]

( ℎ∑
𝑙=1

𝛿𝑛𝑖𝑞,𝑙 (.)) .
(79)

Finally, the comparison matrix 𝑇𝑀(.) of system (72) is given
by

𝑇𝑀 (.) =
[[[[[[[[[[[[

󵄨󵄨󵄨󵄨𝛼1󵄨󵄨󵄨󵄨 0 ⋅ ⋅ ⋅ 0 󵄨󵄨󵄨󵄨𝛽1󵄨󵄨󵄨󵄨0 d d
... ...... d d 0 ...0 ⋅ ⋅ ⋅ 0 󵄨󵄨󵄨󵄨𝛼𝑛−1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝛽𝑛−1󵄨󵄨󵄨󵄨𝑡𝑛 (.) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑡𝑛 (.) 𝑡𝑛 (.)

]]]]]]]]]]]]
(80)

where𝑡𝑛 (.) = max
𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]
𝑞∈𝐼[1 𝐿𝑞]

(𝑡𝑛𝑖𝑝𝑞,𝑙 (.))
𝑡𝑗 (.) = max

𝑖∈𝐼[1 𝐿]
p∈𝐼[1 𝐿𝑝]
𝑞∈𝐼[1 𝐿𝑞]

(𝑡𝑗
𝑖𝑝𝑞,𝑙 (.)) , 𝑗 = 1, . . . , 𝑛 − 1. (81)

Thus, using the special form of system (72) we can announce
the following Theorem.

Theorem 8. System (72) is globally robustly asymptotically
stable, for any arbitrary switching 𝜎(𝑘) and all admissible
uncertainties (63) and (64), if there exist 𝛼𝑗 (𝑗 = 1, ..., 𝑛 − 1),𝛼𝑗 ̸= 𝛼𝑞, ∀𝑗 ̸= 𝑞, such as (𝑖) 1 − 󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨 > 0,𝑗 = 1, . . . 𝑛 − 1 (82)

(𝑖𝑖) 1 − (𝑡𝑛 (.)) − 𝑛−1∑
𝑗=1

(𝑡𝑗 (.)) 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 (1 − 󵄨󵄨󵄨󵄨󵄨𝛼𝑗󵄨󵄨󵄨󵄨󵄨)−1 > 0. (83)

Next, Theorem 8 can be simplified to the following
corollary.

Corollary 9. System (72) is globally robustly asymptotically
stable under arbitrary switching rule 𝜎(𝑘) and all admissible
uncertainties (63) and (64), if there exist𝛼𝑗 ∈ R− (𝑗 = 1, ..., 𝑛−1), 𝛼𝑗 ̸= 𝛼𝑞, ∀𝑗 ̸= 𝑞 and ∀𝑖 ∈ 𝐼 [1 𝐿], ∀𝑝 ∈ 𝐼 [1 𝐿𝑝],∀𝑞 ∈ 𝐼 [1 𝐿𝑞], ∀𝑙 ∈ 𝐼 [1 ℎ], such as

(𝑖) 𝛽𝑗(𝐺𝐴𝑖𝑝(.) (𝛼𝑗,.) + (𝑟2 − 𝑟1 + 1) sup
[.]

( ℎ∑
𝑙=1

𝑁𝐷𝑖𝑞,𝑙(.) (𝛼𝑗,.))) < 0 (84)

(𝑖𝑖) (𝐺𝐴𝑖𝑝(.) (𝑠 = 1,.) + (𝑟2 − 𝑟1 + 1) sup
[.]

( ℎ∑
𝑙=1

𝑁𝐷𝑖𝑞(.) (𝑠 = 1,.))) > 0 (85)

(𝑖𝑖𝑖) (𝛾𝑛𝑖𝑝 (.) + (𝑟2 − 𝑟1 + 1) sup
[.]

( ℎ∑
𝑙=1

𝛿𝑛𝑖𝑞,𝑙 (.))) > 0 (86)

6. Illustrative Examples

Example 1. Let us consider system (72) with three subsys-
tems, where the randomly switched model is given as

𝐴11 (.) = [[ 0 1−0.45 + 0.08𝑓 (.) 0.95 − 0.43Φ (.)]] ,
𝐴12 (.) = [[ 0 1−0.6 + 0.08𝑓 (.) 0.9 − 0.4Φ (.)]] ,

𝐴21 (.) = [ 0 1−0.4 + 0.085𝑓 (.) 1 − 0.5Φ (.)] ,
𝐴22 (.) = [ 0 1−0.5 + 0.07𝑓 (.) 1.2 − 0.8Φ (.)] ,
𝐴31 (.) = [ 0 1−0.55 + 0.085𝑓 (.) 0.9 − 0.55Φ (.)] ,
𝐴32 (.) = [ 0 1−0.6 + 0.075𝑓 (.) 1 − 0.6Φ (.)]



Mathematical Problems in Engineering 11

𝐷11,1 (.) = [ 0 0−0.012 + 0.02𝜓 (.) 0.04 − 0.03𝜓 (.)] ,
𝐷11,2 (.) = [ 0 0−0.018 + 0.015𝜓 (.) 0.037 − 0.035𝜓 (.)]
𝐷12,1 (.) = [ 0 0−0.01 + 0.02𝜓 (.) 0.04 − 0.023𝜓 (.)] ,
𝐷12,2 (.) = [ 0 0−0.01 + 0.025𝜓 (.) 0.037 − 0.04𝜓 (.)] ,
𝐷21,1 (.) = [ 0 0−0.015 + 0.02𝜓 (.) 0.05 − 0.03𝜓 (.)] ,
𝐷21,2 (.) = [ 0 0−0.01 + 0.017𝜓 (.) 0.04 − 0.035𝜓 (.)] ,
𝐷22,1 (.) = [ 0 0−0.013 + 0.01𝜓 (.) 0.03 − 0.01𝜓 (.)] ,
𝐷22,2 (.) = [ 0 0−0.02 + 0.0184𝜓 (.) 0.04 − 0.0357𝜓 (.)]𝐷31,1 (.)= [ 0 0−0.015 + 0.025𝜓 (.) 0.045 − 0.024𝜓 (.)] ,
𝐷31,2 (.) = [ 0 0−0.02 + 0.03𝜓 (.) 0.03 − 0.045𝜓 (.)] ,
𝐷32,1 (.) = [ 0 0−0.007 + 0.017𝜓 (.) 0.021 − 0.043𝜓 (.)]
and 𝐷32,2 (.)= [ 0 0−0.013 + 0.04𝜓 (.) 0.03 − 0.02𝜓 (.)]

(87)

with 𝑓(.) Φ(.) and 𝜓(.) being general nonlinear functions.
Hence, we suppose that 𝜓(.) ∈ 𝐸([0.8, 1, 1.2]) and the

corresponding delay functions are listed as follows: 𝑟1,1(𝑘) =4 + sin2(𝑘𝜋/2), 𝑟1,2(𝑘) = 3 + sin2(𝑘𝜋/2), 𝑟2,1(𝑘) = 4 +
sin2(𝑘𝜋/2), 𝑟2,2(𝑘) = 2 + sin2(𝑘𝜋/2) 𝑟3,1(𝑘) = 3 + sin2(𝑘𝜋/2),𝑟3,2(𝑘) = 2 + sin2(𝑘𝜋/2) 𝑘 = 0, 1, 2.....

Thus, by Corollary 9, with 𝛼 = 0.2, we obtain the
following stability conditions:Φ(.) < −2.04 + 0.5𝑓 (.)Φ (.) > −0.54 + 0.17𝑓 (.)Φ (.) < 1.254. (88)

Figure 1: Stability domain for Example 1 obtained fromCorollary 9.

Random switched sequence

3

2.5

2

1.5

1

0.5
32.521.510 0.5

sw
itc

he
d 

sig
na

l

time (s)

Figure 2: Random switching signal for system given in Example 1.

Due to those inequalities, the robust stability domain given by
the nonlinear Φ(.) relative to the nonlinear 𝑓(.) is illustrated
in Figure 1.

By fixing the sampling time at 𝑇𝑒 = 0.1𝑠, consider the
random switching sequence depicted in Figure 2; the initial
conditions are 𝜙(𝑘) = [−0.8 0.7]𝑇, the nonlinearities 𝑓(.) =4.5, 𝜑(.) = 0.5, and 𝜓(.) = 1, and the incertitude parameters
are chosen as 𝜇11(𝑘) = 𝜇21(𝑘) = 𝜇31(𝑘) = 0.6 and 𝜆11(𝑘) =𝜆21(𝑘) = 𝜆31(𝑘) = 0.7. The simulation results, respectively,
given in Figures 3 and 4 hint about the state responses of the
system and state normwhere the switching signal is randomly
generated.

Noting that, due to the complexity of this randomly
switched system alongside the important number of the sub-
systems, it is hard to find a common Lyapunov function, then,
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The state responses
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Figure 3:The state responses of the system given in Example 1.
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Figure 4: The state norm of the system given in Example 1.

we cannot guarantee stability of this switched system under
randomly switching that values our proposed approach.

Example 2 (see [27, 34]). Consider a randomly switched
system represented by a set of differential equations given as
follows:𝑥̈ (𝑡) + 2∑

𝑝=1

𝜇𝑖𝑝 (𝑡) 𝑎𝑖𝑝𝑥̇ (𝑡) + 2∑
𝑝=1

𝜇𝑖𝑝 (𝑡) 𝜑𝑖𝑝 (𝑥)𝑥 𝑥 (𝑡)
+ 2∑
𝑞=1

𝜆𝑖𝑞 (𝑡) 𝑏𝑖𝑞𝑥̇ (𝑡 − 𝜏𝑖 (𝑡))
+ 2∑
𝑞=1

𝜆𝑖𝑞 (𝑡) 𝑐𝑖𝑞𝑥 (𝑡 − 𝜏𝑖 (𝑡)) = 0,
(89)

where 𝑎𝑖𝑝, 𝑏𝑖𝑞, and 𝑐𝑖𝑞 are parameters and 𝑖 ∈ {1, 2}.
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Figure 5: Random switching signal for system given in Example 2.

By the Taylor-Young formula, 𝑥̈(𝑘) = (𝑥(𝑘 + 2) − 2𝑥(𝑘 +1) + 𝑥(𝑘))/(𝑇𝑒)2 and 𝑥̇(𝑘) = (𝑥(𝑘 + 1) − 𝑥(𝑘))/𝑇𝑒, where 𝑇𝑒 is
the sampling time.

According to (25), all subsystems can be represented
under the following matrix representation: 𝑥(𝑘 + 1) =𝐴 𝑖(.)𝑥(𝑘)+𝐷𝑖𝑥(𝑘−𝜏𝑖(𝑘)), where𝑥(𝑘) is the state vector and the
matrices 𝐴 𝑖(.) = ∑2𝑝=1 𝜇𝑖𝑝(𝑘)𝐴 𝑖𝑝(.) and 𝐷𝑖 = ∑2𝑞=1 𝜆𝑖𝑞(𝑘)𝐷𝑖𝑞
are given by

𝐴 𝑖𝑝 (.) = ( 0 1−1 + 𝑎𝑖𝑝𝑇𝑒𝜑𝑖𝑝 (𝑥)𝑥 2 − 𝑎𝑖𝑝𝑇𝑒)
and 𝐷𝑖𝑞 = ( 0 0𝑏𝑖𝑞𝑇𝑒 − 𝑐𝑖𝑞 (𝑇𝑒)2 −𝑏𝑖𝑞𝑇𝑒) .

(90)

Let us consider the following particular values: { 𝑎11=8𝑏11=0.01
𝑐11=0.2

,{ 𝑎12=7.5𝑏12=0.017
𝑐12=0.35

, { 𝑎21=7.2𝑏21=0.013
𝑐21=0.25

, and { 𝑎21=8.5𝑏21=0.015
𝑐21=0.3

. The sampling time 𝑇𝑒 is
fixed at 0.2𝑠 and the time varying delays functions are 𝜏1(𝑘) =1 + 3cos2(𝑘𝜋/2), 𝑘 = 0, 1, 2.... and 𝜏2(𝑘) = 1 + 2cos2(𝑘𝜋/2),𝑘 = 0, 1, 2.....

By Corollary 6, with 𝛼 = 0.2, the following stability
conditions can be deduced:

(i) 𝜑∗11min(.) = 0.616 < 𝜑11(𝑥)/𝑥 < 𝜑∗11max(.) = 1.02.
(ii) 𝜑∗12min(.) = 0.65 < 𝜑12(𝑥)/𝑥 < 𝜑∗12max(.) = 1.03.
(iii) 𝜑∗21min(.) = 0.66 < 𝜑21(𝑥)/𝑥 < 𝜑∗21max(.) = 1.027.
(iv) 𝜑∗22min(.) = 0.59 < 𝜑22(𝑥)/𝑥 < 𝜑∗22max(.) = 1.0282.

According to the previous stability conditions and with a
particular choice of functions 𝜑11(𝑥)/𝑥 = 0.6, 𝜑12(𝑥)/𝑥 = 0.8,𝜑21(𝑥)/𝑥 = 0.9, and 𝜑22(𝑥)/𝑥 = 1 and by considering the
random switching sequence given in Figure 5, the vector-
valued initial function 𝜙(𝑠) = [1 0.6]𝑇 and the incertitude
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Figure 7: The state norm of the system given in Example 2.

parameters 𝜇11(𝑘) = 𝜇21(𝑘) = 0.6 and𝜆11(𝑘) = 𝜆21(𝑘) = 0.7.
Then, the simulation results are obtained as follows: a typical
result plotted in Figures 6 and 7 shows that the system state
and the norm state converge to zero, where the switching
signal is randomly generated.Thus, the simulation affirms the
theoretical results.

7. Conclusion

In this paper, we have interestingly addressed the stability
issue for a class of discrete-time switched nonlinear systems
with time varying delays and with polytopic uncertainties.
New sufficient stability conditions have been yielded by con-
structing a new common Lyapunov-Krasovskii functional
alongside resorting to the 𝑀 − matrix properties, Borne-
Gentina practical stability criterion, the aggregation tech-
niques, and the vector norms notion. Numerical simulations

are given to illustrate the effectiveness of our results. It is
expected that the idea and the technique in this paper will
be worth of use for the future research works on that filed.
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