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Co-Kriging (CK) modeling provides an efficient way to predict responses of complicated engineering problems based on a set of
sample data obtained bymethodswith varying degree of accuracy and computation cost. In this work, the Gaussian randomprocess
(GRP) is introduced to construct a novel combination CKmodel (CK-GRP) to improve the prediction accuracy of the conventional
CK model, in which all the sample information provided by different correlation models is well utilized. The features of the new
model are demonstrated and evaluated for a numerical case and an engineering application. It is shown that the CK-GRP model
proposed in this work is effective and can be used to improve the prediction accuracy and robustness of the CK model.

1. Introduction

Co-Kriging (CK) model is widely used in the optimization
design for complex products [1, 2], for its advantage on
reducing the computation cost in high-dimensional and
strong nonlinear problem. In order to improve the prediction
power of the CK model, the ordinary CK model needs to
be improved, and the accuracy of the optimization design
will be increased as well. Thus far, the majority of studies
on improving the fitting performance of the CK model have
focused on the following three aspects.

The first objective is to improve the prediction accuracy
of the CK model. For example, Han et al. improved the
computation accuracy and efficiency of the variable-fidelity
surrogate model, combining the gradient-enhanced Kriging
and a generalized hybrid bridge function [3]. To solve the
variance inflation problem of the collocated CK model,
a novel merged secondary variable approach is developed
to construct the intrinsic collocated CK model [4, 5]; the
prediction accuracy of the collocated CKSM is improved.
In order to solve the problems of insufficient samples or
too much computation expense of obtaining samples, Wang
et al. constructed the indicator CK model, in which the
training sample is extracted from the coarse samples using

deconvolution process. And the prediction accuracy and
efficiency of the indicator CK model are both improved [6].

The second objective is to improve the prediction effi-
ciency of the CK model. Rumpfkeil et al. presented a kind
of enhanced Kriging and CK model based on gradient and
Hessian information; the computation efficiency of the CK
model is improved [7]. Laurent et al. improved the modeling
efficiency of the gradient enhanced CK model using a novel
multiparametric strategy based on the Latin hyper cubic sam-
pling method [8, 9]. For the purpose of solving the problem
of the covariance, cross covariance cannot be calculated in
the modeling of a CKmodel; Furrer and Genton proposed an
aggregation CK model, which uses linear unbiased predictor
to obtain the variances, and the fitting efficiency of the
CK model is enhanced [10]. To improve the computation
efficiency of the analysis of static, free vibration, and buckling
for laminated composite plates, the moving Kriging (MK)
interpolation method with Gaussian correlation model is
chosen to interpolate kinematic variables, but the MKmodel
is the original one and is not improved [11–13].

The third objective is to improve the fitting robustness of
the CK model. Hoef J. M. et al. constructed a more flexible
correlation model (CM) using moving average function, and
the Fast Fourier Transform method is applied to solve the
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problems of large numbers of parameters and difficulties
with integration. The simulation results demonstrate that the
approach could improve the fitting robustness of the CK
model [14]. Pardo-Igúzquiza et al. adopted convolution and
deconvolution method to compute the CM and cross-CM,
and the fitting robustness of the CK model is improved [15].
Han et al. established a kind of variable-fidelity CK model,
and the effectiveness and fitting robustness are verified by
concrete aerodynamics cases [16].

The precious studies improved the fitting accuracy, fit-
ting efficiency, and the robustness of fitting results of the
CK model using different approaches. The effectiveness of
the corresponding modified CK model is demonstrated by
different engineering applications or numerical simulations.
However, the influence of CM on fitting performance is not
considered by most of the researches, and the differences of
the sample information obtained by differentCMare not real-
ized, too.The standard model of the CM is still determined by
artificial selection, and the sample information is provided by
the selected “optimal” CM, which restrict the fitting accuracy
of a CK model; the optimization accuracy of the CK model-
based complex product optimization cannot be guaranteed,
too.

Compared with other CK models, this work proposes a
combination CK model based on Gaussian random process
(CK-GRP), in which the Gaussian random process (GRP)
model is adopted as a multiple model fusion method to
make full use of sample information obtained by different
CMs. The effectiveness of the proposed CK-GRP model is
demonstrated using one numerical case and an engineering
application. It is shown that the proposed model has the
advantages of higher fitting accuracy and strong robustness
compared with other CK models in precious studies.

The rest of this work is organized as follows. In Section 2,
the basic form of a CK model and the fundament types of
CMs are presented. In Section 3, the GRP method is intro-
duced to construct the CK-GRP, and the construction of the
CK-GRP model is proposed. In Section 4, the effectiveness
of the presented CK-GRP model is verified by two examples:
one is a numerical case and the other is an engineering
application. In Section 4, a brief conclusion of this work is
provided.

2. CK Model and CMs

2.1. Basic Formof aCKModel. For an 𝑛 dimensional problem,
suppose both the high accuracy function 𝑦1 (expensive to
evaluate) and low accuracy function 𝑦2 (cheap to evaluate)
are used to predict the response in any unknown point 𝑥. Two
datasets are obtained at the sampling sites:

𝑆1 = {𝑥1,1, . . . , 𝑥1,𝑚1}T ∈ 𝑅𝑚1×𝑛
𝑆2 = {𝑥2,1, . . . , 𝑥2,𝑚2}T ∈ 𝑅𝑚2×𝑛; (1)

the corresponding response is

𝑦1 = {𝑦1(1), . . . , 𝑦1(𝑚1)}T ∈ 𝑅𝑚1
𝑦2 = {𝑦2(1), . . . , 𝑦2(𝑚2)}T ∈ 𝑅𝑚2 , (2)

where 𝑚1 and 𝑚2 are the number of sampling sites for the
high and low accuracy prediction function, respectively, and𝑚2 > 𝑚1 in general.

The prediction value of the CK model is

𝑦1 (𝑥) = 𝜆T𝑦S = 𝜆T
1𝑦1 + 𝜆T

2𝑦2, (3)

where 𝜆T
1 and 𝜆T

2 are the weighted factors of the high and
low accuracy prediction function, respectively. Suppose there
are 2 stationary random processes as shown in the following
equation corresponding to 𝑦1 and 𝑦2:

𝑌1 (𝑥) = 𝛽1 + 𝑍1 (𝑥)
𝑌2 (𝑥) = 𝛽2 + 𝑍2 (𝑥) . (4)

Then, the covariance and cross covariance of the random
variables in different sites of the design space are

cov [Z1 (𝑥1) ,Z1 (𝑥1)] = 𝜎21𝑅(11) (𝑥1,𝑥1)
cov [Z2 (𝑥2) ,Z2 (𝑥2)] = 𝜎22𝑅(22) (𝑥2,𝑥2)
cov [Z1 (𝑥1) ,Z2 (𝑥2)] = 𝜎1𝜎2𝑅(12) (𝑥1,𝑥2) ,

(5)

where 𝜎21 and 𝜎22 are the process variances of𝑌1(𝑥) and𝑌2(𝑥)
and the prediction value of the CK model could be deduced
in the similar approach to the Kriging model. The prediction
value of the CK model is (see [17] for the specific derivation)

𝑦1 (𝑥) = 𝜑T𝛽 + 𝑟T (𝑥)𝑅−1 (𝑦S − 𝐹𝛽) , (6)

where

𝜑 = [0
1] ,

𝛽 = [𝛽1𝛽2] = (𝐹T𝑅−1𝐹)−1 𝐹T𝑅−1𝑦S,

𝑟 = [𝑟1 (𝑥)𝑟2 (𝑥)] ,

𝑅 = [𝑅(11) 𝑅(12)
𝑅(21) 𝑅(22)

] ,

𝑦𝑆 = [
[

𝑦1𝜎1𝜎2𝑦2
]
]

,

𝐹 = [1 0
0 1] ∈ 𝑅(𝑚1+𝑚2)×2.

(7)

2.2. Fundament Types of CMs. CM is an important function
to describe the spatial correlations of sample variables, and
the prediction accuracy of the CK model is affected by it.
In the modeling of a conventional CK model, the spatial
correlation information of sample data is obtained using
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Table 1: Fundamental types of CMs in a CK model.

CMs 𝑅𝑘(𝜃, 𝑑𝑘)
Gaussian exp (−𝜃𝑘 󵄨󵄨󵄨󵄨𝑑𝑘󵄨󵄨󵄨󵄨2)
Exp exp (−𝜃𝑘 󵄨󵄨󵄨󵄨𝑑𝑘󵄨󵄨󵄨󵄨)
Spline

1 − 15𝜉2𝑘 + 30𝜉3𝑘 0 ≤ 𝜉𝑘 ≤ 0.21.25 (1 − 𝜉𝑘)3 0.2 ≤ 𝜉𝑘 ≤ 10 𝜉𝑘 ≥ 1
Linear max {0, 1 − 𝜃𝑘 󵄨󵄨󵄨󵄨𝑑𝑘󵄨󵄨󵄨󵄨}
Spherical 1 − 1.5𝜉𝑘 + 0.5𝜉3𝑘 , 𝜉𝑘 = min {1, 𝜃𝑘 󵄨󵄨󵄨󵄨𝑑𝑘󵄨󵄨󵄨󵄨}

the selected CM based on experiences, and the semivariable
function is calculated.Themost commonly usedCMs include
exponential function (Exp), Gaussian function (Gaussian),
spline function (Spline), linear function (Linear), and spher-
ical function (Spherical). The specific forms of these CMs
are illustrated in Table 1, in which 𝑑𝑘 represents the distance
between any two points 𝑥𝑖 and 𝑥𝑗 and 𝜃𝑘 is correlation
parameter.

Five CK models could be established based on one
sample, according to the five kinds of CMs illustrated in
Table 1. In the conventional modeling process of a CKmodel,
a most suitable CM is selected as a variation function to
extract sample information in general; then a CKmodel with
best fitting accuracy is constructed. In this modeling process,
the useful information provided by other CMs is ignored,
which results in a loss of sample information, and the fitting
accuracy of the CKmodel is relatively low.Therefore, in order
to improve the accuracy of the CK model, the information
provided by all the CMs needs to be extracted to establish a
CK model.

3. Combination CK Model (CK-GRP) Based on
Gaussian Random Process (GRP)

3.1. GRP Method. Gaussian random process has the char-
acteristic that the combination of finite variables obeys
multivariate normal distribution; it could be used to simulate
the nonlinear characteristic of various responses flexibly
[18]. Therefore, the Gaussian random process is adopted to
construct the combination model of different CK models.

Assume 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑝] ∈ 𝑅𝑝 is a p-dimensional
input variable; 𝑦: 𝑅𝑝 󳨀→ 𝑅 is the corresponding response
function; then 𝑦(𝑥) could be represented as a Gaussian
random process:

𝑦 (𝑥) ∼ 𝑔𝑝 (𝑚 (𝑥) , 𝑉 (𝑥, 𝑥󸀠)) , (8)

where 𝑚(𝑥) is a mean value function, expressed as ℎ(𝑥)T𝛽;ℎ(𝑥) is a default polynomial function column vectors; 𝛽 is
the corresponding unknown regression coefficients column
vectors; 𝑉(𝑥, 𝑥󸀠) = 𝜎2𝑅(𝑥, 𝑥󸀠) is covariance function, to
describe the spatial covariance of any two input variables 𝑥
and 𝑥󸀠 in a GRP, in which 𝜎 is a prior standard deviation,
and 𝑅(𝑥, 𝑥󸀠) is the spatial correlation function, which could

be calculated using Gaussian correlation function illustrated
in

𝑅 (𝑥, 𝑥󸀠) = exp{− 𝑝∑
𝑘=1

𝜔𝑘 (𝑥𝑘 − 𝑥󸀠𝑘)2} , (9)

where 𝜔 = [𝜔1, 𝜔2, . . . , 𝜔p]T is an unknown regression
coefficients column vectors, used to describe the correlation
decrement of the corresponding response values𝑦(𝑥) and𝑦(𝑥󸀠), with the separation of 𝑥 and 𝑥󸀠. Then, 𝜔, 𝛽, and 𝜎2
together form a hyperparameters space Φ = (𝛽, 𝜎2, 𝜔), which
could be calculated using maximum likelihood estimation
method [19].

For multidimensional response data Ψ = [𝑦(𝑥1), 𝑦(𝑥2),. . . , 𝑦(𝑥𝑛)]T, in which the input variable is X = [(𝑥1)T, . . . ,(x𝑛)T]T, the response data of every model obeys a multidi-
mensional Gaussian distribution as shown in the following
based on (8).

[[[[
[

𝑦 (x1)...
𝑦 (x𝑛)

]]]]
]

∼ 𝑁 (H𝛽, 𝜎2𝑅) = 𝑁
{{{{{{{{{

[[[[
[

ℎ (x1)T...
ℎ (x𝑛)T

]]]]
]
𝛽,

𝜎2 [[[[
[

𝑅 (𝑥1, 𝑥1) . . . 𝑅 (𝑥1, 𝑥𝑛)... d
...

𝑅 (𝑥1, 𝑥𝑛) ⋅ ⋅ ⋅ 𝑅 (𝑥𝑛, 𝑥𝑛)
]]]]
]

}}}}}}}}}
.

(10)

The response value 𝑦(𝑥𝑝) and mean square error (MSE)
MSE(𝑦(𝑥𝑝)) of any input data 𝑥𝑝 are calculated, as shown in
the following equations, respectively, after the hyperparame-
ters space Φ of GRP is calculated.

𝑦 (𝑥𝑝) = h (𝑥𝑝)𝑇 𝛽 + R (𝑥𝑝,X)R−1 (d − H𝛽) , (11)

MSE (𝑦 (𝑥𝑝)) = 𝜎2 {1 − R (𝑥𝑝,X)R−1R (𝑥𝑝,X)T

+ [h (𝑥𝑝)𝑇 − ΗR−1R (𝑥𝑝,X)T]T × (ΗR−1H)−1
× [h (𝑥𝑝)T − ΗR−1R (𝑥𝑝,X)T]} .

(12)

3.2. Construction of the CK-GRP. In order to improve the
integrity of sample information for a CK model, the GRP
model is introduced to improve and perfect the sample
information of a CK model. And the concrete construction
of the CK-GRP model is shown in Figure 1.

The basic steps of the construction are as follows:(1) Five different types of CMs are used to describe one
same sample data structure (cheap data and expensive data
contained), and five types of sample information 𝜑𝑖(𝑥) (𝑖 =1, 2, . . . , 5) are obtained(2) Five CK models 𝑦𝑖(𝑥,CM𝑖), 𝑖 = 1, 2, . . . , 5 are
established, based onfive types of singleCMcorrespondingly,
according to the sample information 𝜑𝑖(𝑥) (𝑖 = 1, 2, . . . , 5)
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Figure 1: Construction of the CK-GRP model.

(3) The Latin hypercubic sampling method is used to
obtain the input variables in the domain of definition X =[(𝑥1)T, . . . , (x5)T]T, and the corresponding response values
are calculated using five CK models, combined with the
expensive data of original sample ((𝑥6)T, 𝑦(𝑥6)T); then the
training sample Ψ = [𝑦(𝑥1), 𝑦(𝑥2), . . . , 𝑦(𝑥6)]T of the
combination CK model is formed(4) Taking Ψ = [𝑦(𝑥1), 𝑦(𝑥2), . . . , 𝑦(𝑥6)]T as a training
sample, five CK models based on one single CM correspond-
ingly are fused using GRP method, and the CK-GRP model𝑦(𝑥) = 𝑔𝑝(ℎ(⋅)T𝛽, 𝜎2𝑅(⋅, ⋅)) is established(5) Test the fitting accuracy of the CK-GRP model, and
the expected improvement (EI) algorithm will be used to
search a new filling point, if the response value do not satisfy
the convergence condition. Then the response values in the
new filling point are calculated in a different type of CK
model, and anew training sampleΨ is obtained.On this basis,
the CK-GRPmodel is reconstructed, and by testing the fitting
accuracy of theCK-GRPmodel again until the response value
satisfies the convergence condition, then the final CK-GRP
model is obtained.

In the modeling of the CK-GRP model using GRP
method, the weighted-sum method is adopted to construct
the correlation model of the real responses 𝑦(𝑥) and the
prediction values 𝑦𝑚(𝑥) of every model.

𝑦 (𝑥) = 𝑦𝑒 (𝑥) − 𝜀 = 𝑦𝑚 (𝑥) 𝜌 + 𝛿 (𝑥) , (13)

where 𝑦𝑒(𝑥) is the experiment response value (e.g., the
calculated value of simulation software); 𝜀 is random obser-
vation error; 𝜌 = [𝜌1, 𝜌2, . . . , 𝜌𝑖] is the unknown regression
coefficients column vectors, each regression coefficient to one
CKmodel; 𝛿(𝑥) is the whole residual deviation of𝑦𝑚(𝑥)𝜌 and
real response 𝑦(𝑥).

As the combination CKmodel is constructed with several
CK models, the multiresponse Gaussian process (MRGP)
is adopted to modeling the responses 𝑦𝑚(𝑥) of all the CK
models:

𝑦𝑚 (𝑥) ∼ 𝑔𝑝 (ℎ𝑚 (⋅)T B𝑚, 𝑚∑R𝑚 (⋅, ⋅)) , (14)

where ℎ𝑚(𝑥) is a vector of polynomial regression basis func-
tion; B𝑚 = {𝛽𝑚[1], 𝛽𝑚[2], . . . , 𝛽𝑚[𝑖]} is the unknown regression
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coefficient matrix, and 𝛽𝑚[𝑖] = [𝛽1𝑚[𝑖], 𝛽2𝑚[𝑖], . . . , 𝛽𝑛𝑚[𝑖]]; ∑𝑚
is the nonspatial covariance; R𝑚(𝑥, 𝑥󸀠) is the spatial correla-
tion function. Therefore, the covariance of any two CK mod-
els in the two points (𝑥, 𝑥󸀠) of the input space could be repre-
sented as cov(𝑦𝑚[𝑖](𝑥), 𝑦𝑚[𝑗](𝑥󸀠)) = ∑𝑚𝑖,𝑗 R𝑚(𝑥, 𝑥󸀠)). Similarly,
the whole residual deviation 𝛿(𝑥) could be expressed as a
Gaussian random process with one single response:

𝛿 (⋅) ∼ 𝑔𝑝 (ℎ𝛿 (⋅)T 𝛽𝛿, 𝜎2𝛿R𝛿 (⋅, ⋅)) , (15)

where the unknown hyperparameters Θ1𝛿 = {𝛽𝛿, 𝜎𝛿, 𝜔𝛿}
could be calculated with the formula shown in [19]. Accord-
ing to (14) and (15), theGaussian randomprocessmodel𝑦𝑒(𝑥)
of the experiment response value is

𝑦𝑒 (⋅) ∼ 𝑔𝑝 (ℎ𝑚 (⋅)T B𝑚𝜌 + ℎ𝛿 (⋅)T 𝛽𝛿, 𝑚∑𝜌R𝑚 (⋅, ⋅)
+ 𝜎2𝛿R𝛿 (⋅, ⋅)) .

(16)

The covariance of 𝑦𝑒(𝑥) and the response value of the 𝑖th
CK model are presented in the following from (13):

cov (𝑦𝑒 (𝑥) , 𝑦𝑚[𝑖] (𝑥󸀠))
= cov (𝑦𝑚 (𝑥) 𝜌 + 𝜎 (𝑥) + 𝜀, 𝑦𝑚 (𝑥󸀠) 𝑒𝑖) 12
= cov (𝑦𝑚 (𝑥) 𝜌 + 𝜎 (𝑥) + 𝜀, 𝑦𝑚 (𝑥󸀠) 𝑒𝑖)
= 𝜌T𝑒𝑖 𝑚∑R𝑚 (𝑥, 𝑥󸀠) ,

(17)

where 𝑒𝑖 is a unit column vector; all the values of the
elements are 0 except the 𝑖th element which is 1. Similarly, the
covariance of response values of the 𝑖th CKmodel and 𝑗th CK
model is

cov (𝑦𝑚[𝑖] (𝑥) , 𝑦𝑚[𝑗] (𝑥󸀠))
= cov (𝑦𝑚 (𝑥) 𝑒𝑖, 𝑦𝑚 (𝑥󸀠) 𝑒𝑗) = 𝑒T𝑖 𝑚∑𝑒𝑗R𝑚 (𝑥, 𝑥󸀠) , (18)

where 𝑒T𝑖 ∑𝑚 𝑒𝑗 is the covariance ∑𝑚 of the (𝑖, 𝑗) element
for the multiresponse Gaussian process. And the hyper-
parameters could be calculated using maximum likelihood
estimation method, which means that the covariance of the
response value 𝑦𝑒(𝑥𝑞) in the unknown point 𝑥𝑞 and other
sample point 𝑦𝑒(𝑥) could be calculated in the following:

cov (𝑦𝑒 (𝑥𝑞) , 𝑦𝑒 (𝑥))
= cov (𝑦𝑚 (𝑥𝑞)𝜌 + 𝛿 (𝑥𝑞) + 𝜀, 𝑦𝑚 (𝑥) 𝜌 + 𝛿 (𝑥) + 𝜀)
= 𝜌T 𝑚∑𝜌R𝑚 (𝑥𝑞, 𝑥) + 𝜎2𝛿R𝛿 (𝑥𝑞, 𝑥) .

(19)

Similarly, the autocovariance of 𝑦𝑒(𝑥𝑞) is
cov (𝑦𝑒 (𝑥𝑞) , 𝑦𝑒 (𝑥𝑞)) = cov (𝑦𝑚 (𝑥𝑞)𝜌 + 𝛿 (𝑥𝑞)

+ 𝜀, 𝑦𝑚 (𝑥𝑞)𝜌 + 𝛿 (𝑥𝑞) + 𝜀) = 𝜌T 𝑚∑𝜌R𝑚 (𝑥𝑞, 𝑥𝑞)
+ 𝜎2𝛿R𝛿 (𝑥𝑞, 𝑥𝑞) .

(20)

According to the superposition principle of the multire-
sponse Gaussian response, the experiment response value𝑦𝑒(𝑥𝑞) in the prediction point and the sample data d could
be described as a multidimensional Gaussian distribution:

[𝑦𝑒 (𝑥𝑞)
𝑑 ] ∼ 𝑔𝑝 ([H𝑞

H
] 𝛽, [ T𝑞 V𝑞

V𝑑 TT
𝑞

]) , (21)

where

H𝑞 = [𝜌[1]H𝑚 (𝑥𝑞)T ⋅ ⋅ ⋅ 𝜌[𝑖]H𝑚 (𝑥𝑞)T | H𝛿 (𝑥𝑞)T]
= [𝜌T ⊗ H𝑚 (𝑥𝑞)T | H𝛿 (𝑥𝑞)T] , (22)

T𝑞 = [𝜌T 𝑚∑𝑒1R𝑚 (𝑥𝑞, 𝑥𝑚[1])
⋅ ⋅ ⋅𝜌T 𝑚∑𝑒𝑖R𝑚 (𝑥𝑞, 𝑥𝑚[1]) | 𝜌T 𝑚∑𝜌R𝑚 (𝑥𝑞, 𝑥𝑒)
+ 𝜎2𝛿R𝛿 (𝑥𝑞, 𝑥e)T] ,

(23)

V𝑞 = 𝜌T 𝑚∑𝜌R𝑚 (𝑥𝑞, 𝑥𝑞) + 𝜎2𝛿R𝛿 (𝑥𝑞, 𝑥𝑞) . (24)

According to (21), taking 𝑑 as the sample data, the
prediction value 𝑦𝑒(𝑥𝑞) in any unknown point 𝑥𝑞 could be
calculated in the following:

𝑦𝑒 (𝑥𝑞) | d = H𝑞𝛽 + T𝑞V
−1
d (d − H𝛽) . (25)

The MSE of the corresponding prediction is

MSE [𝑦𝑒 (𝑥𝑞) | d]
= V𝑞 − T𝑞V

−1
d TT
𝑞

+ (HT
q − HTV−1d TT

q)T 𝜔 (HT
q − HTV−1d TT

q) .
(26)

4. Numerical Examples

4.1. One-Dimensional Numerical Analytical Case. In order
to verify the effectiveness and obtain the features of the
presented CK-GRP model, a numerical analytical case [17]
is adopted to analyze the effect on improving the prediction
accuracy of a CK model. The function 𝑦1 = (6𝑥 −2)2 sin(12𝑥 − 4), 𝑥 ∈ [0, 1] represents the high accu-
racy and large computation cost model. The low accuracy
and small computation cost model is given by 𝑦2 =
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Figure 2: Comparison of different CKmodels for one-dimensional numerical analytical case: (a) approximation response; (b) approximation
mean square error.

0.5𝑦1 + 10(𝑥 − 0.5) − 5. The 𝑥 locations of the high and
low accuracy samples are S1 = {0, 0.6, 1.0} and S2 ={0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, respectively. CK
models with different CMs are constructed based on samples
S1, S2 and the corresponding response values. The prediction
response values and their MSE are shown in Figure 2.

In Figure 2(a), all the CK models are able to pass through
the point 𝑦1 of the high prediction accuracy model, but
there is large difference of the prediction accuracy between
different CK models. The CK model based on Gaussian CM
model has the highest prediction accuracy, which basically
consists of the original function. According to Figure 2(b),
to the one-dimensional test function, the fitting accuracy
ordering fromhigh to lowof theCKmodels isCK-Gaussian>
CK-Exp>CK-Linear >CK-Spherical>CK-Spline. In order to
verify the prediction accuracy of the CK-GRPmodel further,
the CK-GRP model is used to predict the test function, and
the obtained prediction response results and theirMSEvalues
are shown in Figure 3.

From the analysis of Figure 3(a), the CK-GRP model has
higher prediction accuracy compared with the CK-Gaussian
model, and it almost coincides with the original test function.
According to Figure 3(b), the maximum MSE of the CK-
Gaussian model is 0.085. Otherwise, the maximum MSE
of the CK-GRP model is only 5.231 × 10−9, which means
that the prediction accuracy of the CK-GRP model has
been improved significantly. The derivative of the MSE is
illustrated in Figure 3(c); themaximumderivative value of the
CK-Gaussian model MSE is 1.05 × 104, but the one of the CK-
GRP model is only 4.51 × 10−4, which indicates that not only
the prediction accuracy of the CK-GRP model is improved
obviously, but also the prediction robustness is optimized.

The sample information obtained by different CMs needs
to be utilized using GPR first in the modeling of the CK-GRP
model.Thiswill cause the increase of the computation time of
the presented model. In order to analyze the computational
cost of the CK-GRP model, the computation time of the

CK-Gaussian model on 1000 test sample points is contrasted.
The simulation results show that the computation time of the
CK-Gaussian and the CK-GRP model are 0.85 seconds and
2.78 seconds separately. It means that the computational cost
of the CK-GPRmodel is higher than the CK-Gaussian model
significantly.

4.2. Modeling of Traveling Stability Indicator for a Rail Vehi-
cle Based on CK-GRP. Traveling stability is an important
indicator for the dynamic design of a rail vehicle. The full-
scale vehicle test will be complicated and time consuming;
as there is a strong nonlinear relation between the rail
vehicle traveling stability indicator and design parameters,
the number of design variables is large as well. However,
the computation time will be decreased if the CK model
is introduced to predict the values of the traveling stability
indicator in different design parameters combination, and
the design efficiency will be raised too. Taking the Chinese
electric multiple units CRH2 as an object, the prediction
accuracy of the CK-GRP model is verified using a full-scale
vehicle test data and the rail vehicle dynamical model [20].
The traveling stability analysis model is shown in Figure 4.

The Sperling index is adopted as the traveling stability
index of a rail vehicle; the concrete computational formula
[21] is

𝑊 = 0.896 10√ 𝑎3𝑓 ⋅ 𝐹 (𝑓), (27)

where 𝑎 is the vertical vibration acceleration (cm/s2); 𝑓 is
the vertical vibration frequency (Hz); F(𝑓) is the modifying
coefficient of frequency.

Suspension system is an important buffering member of
a rail vehicle to reduce the impact force from the irregularity
of the track, and the primary vertical stiffness k𝑝𝑧, primary
vertical damping C𝑝𝑧, secondary vertical stiffness k𝑠𝑧, and
secondary vertical damping C𝑠𝑧 are the parameters that
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Figure 3: Comparison of the CK-GRP model and the CK-Gaussian for the numerical analytical case: (a) approximation response; (b)
approximation mean square error; (c) derivative of approximation mean square error.
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Figure 4: Traveling stability analysis model of a rail vehicle.

influence the traveling stability of a rail vehicle directly. And
the secondary vertical stiffness k𝑠𝑧 and secondary vertical
damping C𝑠𝑧 are the most important parameters that influ-
ence the traveling stability [22]. Therefore, the parameters of
k𝑠𝑧 and C𝑠𝑧 are selected as the optimization variables X =(𝑥1, 𝑥2) of the vertical stability

Suppose the rail vehicle is traveling on the tracks at
200km/h, and the full-scale test and the dynamic simulation
method are used to obtain the Sperling index values 𝑊1 ={2.151; 2.203; 2.218}; 𝑊2 = {2.201; 2.184; 2.176; 2.160; 2.211;2.215; 2.192; 2.202; 2.171;2.213} in different combination of
suspension parameters combination S1 = {(98.7 58.8);

(106.6 22.1); (225 47.4)}, 𝑆2 = {(82.9 45.3); (90.8 51.6);(114.5 30.1); (122.3 26.3) (138.1 38.9); (146.1 60); (185.5 49.5);(201.3 24.2); (209.2 28.4); (218.9 21.7)}.
The CK-Gaussian model and CK-GRP model are estab-

lished, respectively, taking S1, S2 and the corresponding
traveling stability index 𝑊1, 𝑊2 as the training sample. Then,
the prediction response is obtained as shown in Figures 5(a)
and 5(b), and the corresponding contour map is shown in
Figures 5(c) and 5(d).

From the analysis of the prediction response in Figures
5(a) and 5(b), all the sample points are on the response
surface, which indicates that both the CK-Gaussian model
and the CK-GRP model could predict the Sperling index
value of a rail vehicle in different suspension parameters
combinations. The location of the maximum and minimum
value is not much different, according to the contour map of
Figures 5(c) and 5(d), which indicates that the predict trend of
the CK-Gaussianmodel and the CK-GRPmodel are basically
consistent.

In order to obtain the prediction feature of the CK-GRP
model further, taking the MSE as the evaluate index and
the CK-Gaussian model served as a contrast, the MSE of
the prediction results of the CK-Gaussian model and the



8 Mathematical Problems in Engineering

W
2.22

2.21

2.19

2.18

2.17

2.16

2.15
60

50

50
100

150
200

250
40

30
20

2.2

ksz (kN/m)
Csz (kN/s·m)

(a)

W

2.22

2.21

2.19

2.18

2.17

2.16

2.15
60

50

50
100

150
200

250
40

30
20

2.2

Csz (kN/s·m) ksz (kN/m)

(b)
60

2.21

2.250

40

30

100 120 140 160 180 200 220

55

45

35

25

ksz (kN/m)

Va
lu

e o
f S

pe
rli

ng
 in

de
x

Cs
z(

kN
/s
∗

m
)

2.19

2.18

2.17

2.16

(c)

60

2.21

2.250

40

30

100 120 140 160 180 200 220

55

45

35

25

ksz (kN/m)

Va
lu

e o
f S

pe
rli

ng
 in

de
x

Cs
z(

kN
/s
∗

m
)

2.19

2.18

2.17

2.16

(d)

Figure 5: Prediction response and contour map of the CK-Gaussian model and the CK-GRP model: (a) prediction response of the CK-
Gaussianmodel; (b) prediction response of the CK-GRPmodel; (c) contourmap of the CK-Gaussianmodel; (d) contourmap of the CK-GRP
model.

CK-GRPmodel is shown in Figures 6(a) and 6(b). According
to Figure 6(a), the maximumMSE of the CK-Gaussianmodel
is 6.950 × 10−4 and mean MSE is 3.153 × 10−4; while the
maximum MSE of the CK-GRP model is 4.828 × 10−4, mean
MSE is 3.611× 10−4. It indicates that the prediction error of the
CK-GRP model is comparatively low, and the effectiveness
of the CK-GRP model of improving the fitting accuracy is
verified.

5. Conclusion

In this work, a combination CKmodel (CK-GRP) to improve
the fitting accuracy of the ordinary CK is proposed. This
model is obtained by introducing the Gaussian random
process to take full advantage of the sample information
provided by different CKmodels, which are established based
on one single different correlation model. The proposed CK-
GRP model was demonstrated for a numerical analytical
case and a rail vehicle example of predicting the travel-
ing stability in different values of suspension parameters
combinations. The examples show that the CK-GRP model
has higher fitting accuracy and strong robustness compared
with other CK models. But the computational cost is higher

significantly, too. It means that the proposed CK-GRPmodel
can potentially be applied to efficient rail vehicle dynamics
data prediction as well as suspension parameters optimiza-
tion or any other research areas where the CK model is in
use.
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