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This paper aims to achieve the accurate prediction of box girder deformation in SCS-enhanced PSC continuous box girder bridges.
To this end, the authors proposed a box girder deformation prediction model based on unequal interval grey model (UIGM) and
residual composite correction (RCC). Firstly, the tension forces of cables and the deformation data of box girder were regarded
as the time sequence and the original unequal interval sequence, respectively, and the UIGM was constructed to predict the box
girder deformation. Secondly, the sine function was constructed on the average features of the residual sequence waveform, and the
periodic sequence functionwas generated by harmonic transform.The two functions were employed to extract the implicit periodic
information and overcome the limitation of the UIGM (i.e., the UIGM only generates the change rate of a single index). Finally, the
Markov chain method was adopted to treat the random fluctuations and further enhance the prediction accuracy and adaptability
of the model. Then, the proposed UIGM-RCC was applied to predict the box girder deformation of Dongming Huanghe River
Highway Bridge and forecast the settlement of a buildingmentioned in previous research.The results show that the proposedmodel
can reflect the exact periodicity and random fluctuations of box girder deformation in SCS-enhanced PSC continuous box girder
bridges. The research findings provide a meaningful reference for improving deformation prediction accuracy in SCS-enhanced
structures.

1. Introduction

Prestressed-concrete (PSC) continuous box girder bridges
often suffer from midspan lag and box girder cracking [1, 2].
These problems can be resolved by enhancing the bridges
with a stay cable system (SCS) [3]. However, it is immensely
difficult to predict the deformation of the SCS-enhanced box
girder because of the fuzzy, stochastic, and indeterminant
mechanical form and deformation mechanism of the bridges
under natural and anthropic factors [4]. Considering the
limits of existing theories and methods, the most practical
way to elevate prediction accuracy lies in the estimation of
girder deformation based on monitoring data [5–7].

In view of the indeterminacy, poor information, and
high cost of sample data, many scholars have successfully
introduced the grey system theory to solve engineering
problems [8–10]. Nevertheless, the common grey prediction
model only applies to strictly equal interval sequences, adding

to the difficulty of engineering application. Taking the SCS as
an example, the cable force control often relies on the force
difference of unequal interval cables, with the aim to make
tensioning more flexible. Moreover, the grey system theory
may have low prediction accuracy and increased error, owing
to the weak periodicity and strong randomfluctuations of the
box girder’s deformation sequence [11].

Based on the box girder deformation data of an SCS-
enhanced PSC continuous box girder bridge, this paper
discloses the relationship between the deformation pattern
and the grey theory and proposes a deformation prediction
model combining the unequal interval grey model (UIGM)
and the residual composite correction (RCC). On one hand,
the UIGM was adopted to solve the indeterminacy, poor
information, and high cost of the sample data. On the other
hand, the RCC was employed to enhance the low accuracy
of the UIGM and the adaptability of the whole prediction
model. Specifically, the sine function was constructed on
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the average features of the residual sequence waveform;
the periodic sequence function was generated by harmonic
transform. The two functions were employed to correct the
residual sequence, which is random and alternatively positive
and negative. Finally, the prediction results were compared
with the data of the previous research. The comparison
shows that the proposed prediction model has high accuracy
and strong adaptability. This research provides a new con-
trol method for box girder deformation on SCS-enhanced
bridges and boasts great theoretical and practical poten-
tial.

2. The Building and Solving of
Unequal Interval Grey Model

Based on unequal interval grey theory [13], the cable force in
tensioning phase was regarded as the original time sequence,
and the vertical deformation of box girder recorded at
the measuring points was deemed as the original unequal
interval sequence.Then, the authors created the deformation
prediction model of SCS-enhanced box girder in tensioning
phase. The monitoring data on box girder deformation were
processed by the sequential operators to disclose the change
pattern, generate data sequences with certain regularity, and
establish the corresponding differential equation, laying the
basis for quantitative prediction of change.

2.1. Deformation Prediction Model of SCS-Enhanced Box
Girder. Suppose the original sequence of box girder defor-
mation is

𝑋(0)
= (𝑋(0) (𝐹1) , 𝑋(0) (𝐹2) , ⋅ ⋅ ⋅, 𝑋(0) (𝐹𝑘) , ⋅ ⋅ ⋅, 𝑋(0) (𝐹𝑛)) (1)

If the cable force difference between the 𝑘th and the 𝑘 − 1th
tensioning phases is Δ𝐹𝑘, then

Δ𝐹𝑘 = 𝐹𝑘 − 𝐹𝑘−1 ̸= const, 𝑘 = 2, 3, ⋅ ⋅ ⋅, 𝑛 (2)

where Δ𝐹1 = 1.
Therefore, a one-time accumulated generation formula of

the original sequence is

𝑋(1) (𝐹1) = 𝑋(0) (𝐹1)
𝑋(1) (𝐹𝑘) = 𝑋(1) (𝐹𝑘−1) + Δ𝐹𝑘𝑋(0) (𝐹𝑘) ,

𝑘 = 2, 3, ⋅ ⋅ ⋅, 𝑛
(3)

According to formula (3), formula (1) can be rewritten as
an unequal interval time-varying monotonically increasing
sequence𝑋(1):
𝑋(1)
= (𝑋(1) (𝐹1) , 𝑋(1) (𝐹2) , ⋅ ⋅ ⋅, 𝑋(1) (𝐹𝑘) , ⋅ ⋅ ⋅, 𝑋(1) (𝐹𝑛)) (4)

Then, the differential equation of grey model can be estab-
lished by the first-order generation module𝑋(1):

𝑑𝑋(1)𝑑𝐹 + 𝑎𝑋(1) = 𝑢 (5)

where 𝑎 is the developing coefficient; 𝑢 is the grey activity.
The solution to the differential equation of the unequal

interval sequence is

𝑋(1) (𝐹𝑘) = [𝑋(1) (𝐹1) − 𝑢𝑎] 𝑒−𝑎(𝐹𝑘−𝐹1) + 𝑢𝑎 (6)

Since𝑋(1)(𝐹1) and 𝑎 and 𝑢 are constants, if 𝑞 = 𝑋(1)(𝐹1)−𝑢/𝑎,
then formula (6) can be transformed into

𝑋(1) (𝐹𝑘) = 𝑞 [𝑒−𝑎(𝐹𝑘−𝐹1) − 1] + 𝑋(1) (𝐹1) (7)

According to formula (3), perform a cumulative reduction
and the fitting value can be obtained as

𝑋(0) (𝐹1) = 𝑋(1) (𝐹1)
𝑋(0) (𝐹𝑘) = 𝑋(1) (𝐹𝑘) − 𝑋(1) (𝐹𝑘−1)Δ𝐹𝑘 , 𝑘 = 2, 3, ⋅ ⋅ ⋅, 𝑛 (8)

2.2. Solution to Grey Parameters. To make the fitting value𝑋(1)(𝐹𝑘) infinitely close to the original value𝑋(1)(𝐹𝑘), the grey
parameters 𝑎 and 𝑞 were solved by the relationship between
the fitting value and the accumulated data:

𝑋(1) (𝐹2) = 𝑋(1) (𝐹2) = 𝑞 [𝑒−𝑎(𝐹2−𝐹1) − 1] + 𝑋(1) (𝐹1)
𝑋(1) (𝐹3) = 𝑋(1) (𝐹3) = 𝑞 [𝑒−𝑎(𝐹3−𝐹1) − 1] + 𝑋(1) (𝐹1)

...
𝑋(1) (𝐹𝑛) = 𝑋(1) (𝐹𝑛) = 𝑞 [𝑒−𝑎(𝐹𝑛−𝐹1) − 1] + 𝑋(1) (𝐹1)

(9)

The grey parameters 𝑎 and 𝑞 are both constants. Formula (9)
contains 𝑛 − 1 equations; any two of these equations could be
constructed as simultaneous equation. For example, the 𝑖th
and 𝑗th equations are constructed as follows:

𝑋(1) (𝐹𝑖) = 𝑞 [𝑒−𝑎(𝐹𝑖−𝐹1) − 1] + 𝑋(1) (𝐹1)
𝑋(1) (𝐹𝑗) = 𝑞 [𝑒−𝑎(𝐹𝑗−𝐹1) − 1] + 𝑋(1) (𝐹1) (10)

Solving (10), the value of grey parameter can be gotten and
denoted as 𝑎𝑖𝑗; then

𝑎𝑖𝑗 = 1𝐹𝑗 − 𝐹𝑖 ln[
𝐹𝑗 − 𝐹1𝐹𝑖 − 𝐹1 ⋅

𝑋(1) (𝐹𝑖) − 𝑋(1) (𝐹1)𝑋(1) (𝐹𝑗) − 𝑋(1) (𝐹1)] (11)

where 𝑎𝑖𝑗 represents the grey parameter value obtained by the𝑖th and 𝑗th equations.
Construct simultaneous equation by any two equations in

formula (9); (𝑛 − 1)(𝑛 − 2)/2 grey parameters could be solved
out and the average value of them is
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𝑎 = 2(𝑛 − 1) (𝑛 − 2)
𝑛−1∑
𝑖=2

𝑛∑
𝑗=𝑖+1

𝑎𝑖𝑗

= 2(𝑛 − 1) (𝑛 − 2)
𝑛−1∑
𝑖=2

𝑛∑
𝑗=𝑖+1

{ ln [((𝐹𝑗 − 𝐹1) / (𝐹𝑖 − 𝐹1)) ⋅ ((𝑋(1) (𝐹𝑖) − 𝑋(1) (𝐹1)) / (𝑋(1) (𝐹𝑗) − 𝑋(1) (𝐹1)))]𝐹𝑗 − 𝐹𝑖 }
(12)

Literature [14] takes the average value 𝑎 as the final grey
parameter 𝑎 of the model and substitutes it into (9); then 𝑞𝑖
can be gotten, and the average value of them is

𝑞 = 1𝑛 − 1
𝑛∑
𝑖=2

𝑞𝑖 = 1𝑛 − 1
𝑛∑
𝑖=2

[𝑋(1) (𝐹𝑖) − 𝑋(1) (𝐹1)𝑒−𝑎(𝐹𝑖−𝐹1) − 1 ] (13)

where 𝑞𝑖 presents the grey parameter obtained by the 𝑖th
equation.

Take 𝑞 as the final grey parameter 𝑞 of the model,
substitute 𝑎 and 𝑞 into formula (7), and perform inverse
accumulated generating operation (IAGO). The resultant
fitting value𝑋(0)(𝐹𝑘) of the original sequence is

𝑋(0) (𝐹1) = 𝑋(1) (𝐹1)
𝑋(0) (𝐹𝑘) = 𝑞 (𝑒−𝑎𝐹𝑘 − 𝑒−𝑎𝐹𝑘−1)

𝑒−𝑎𝐹1Δ𝐹𝑘 , 𝑘 = 2, 3, ⋅ ⋅ ⋅, 𝑛 (14)

Then, the prediction value in the next tension stage is

𝑋(0) (𝐹𝑘+1) = 𝑋(1) (𝐹𝑘+1) − 𝑋(1) (𝐹𝑘)Δ𝐹𝑘+1
= 𝑞 (𝑒−𝑎𝐹𝑘+1 − 𝑒−𝑎𝐹𝑘)

𝑒−𝑎𝐹1Δ𝐹𝑘+1
(15)

3. The Residual Composite Correction (RCC)

3.1. The Sine and the Periodic Sequence Function Residual
Correction (SPSFRC). After the girder deformation trendwas
fitted and predicted by the UIGM, the residual sequence was
alternatively positive and negative, showing an unobvious
periodicity. For better fitting and prediction accuracy, the sine
function, constructed on the average features of the residual
sequence waveform, and the periodic sequence function,
generated by harmonic transform, were employed to modify
the residual sequence [15]. The two functions are collectively
referred to as the SPSFRC. Coupled with the UIGM, the
SPSFRC can extract the implicit periodic information and
overcome the limitation of the UIGM (i.e., the UIGM only
generates the change rate of a single index). The SPSFRC is
established in the following steps.

Step 1. Build the residual sequence 𝐸(0)(𝐹𝑘).
𝐸(0) (𝐹𝑘) = 𝑋(0) (𝐹𝑘) − 𝑋(0) (𝐹𝑘) , 𝑘 = 1, 2, ⋅ ⋅ ⋅, 𝑛 (16)

Step 2. Fit 𝐸(0)(𝐹𝑘) by sine function 𝐸1(0)(𝐹𝑘), constructed on
the average features of the residual sequence waveform.

𝐸1(0) (𝐹𝑘) = 𝐴 sin
2𝜋 (𝐹𝑘 + 𝑇/2)𝑇 (17)

where 𝐴 = (1/𝑛)∑𝑛𝑖=1 |𝐸(0)(𝐹𝑘)|; 𝑇 is the average value of
residual sequence 𝐸(0)(𝐹𝑘) wave time span; its optimal value
follows the principle of the minimum quadratic sum 𝑒1min of
the fitting values residual for sine function; that is, 𝑒1min =
min{𝑒11, 𝑒12, ⋅ ⋅ ⋅, 𝑒1𝑖, ⋅ ⋅ ⋅, 𝑒1𝑛} and 𝑒1𝑖 = ∑𝑛𝑘=1[𝐸1(0)(𝐹𝑘) −𝐸1(0)𝑖 (𝐹𝑘)]2.
Step 3. Fit 𝐸(0)(𝐹𝑘) by periodic sequence function 𝐸2(0)(𝐹𝑘)
generated by harmonic variation:

𝐸2(0) (𝐹𝑘) = 𝑎0 + 𝑚∑
𝑖=1

[𝑎𝑖 cos (𝜔𝑖𝐹𝑘) + 𝑏𝑖 sin (𝜔𝑖𝐹𝑘)] (18)

where 𝜔𝑖 = 2𝑖𝜋/𝐹𝑛, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚, 𝑎0 =(1/𝑛)∑𝑛𝑘=1 𝐸(0)(𝐹𝑘), 𝑎𝑖 = (2/𝑛)∑𝑛𝑘=1 𝐸(0)(𝐹𝑘) cos(𝜔𝑖𝐹𝑘), 𝑏𝑖 =(2/𝑛)∑𝑛𝑘=1 𝐸(0)(𝐹𝑘) sin(𝜔𝑖𝐹𝑘).
Step 4. Introduce the weight coefficient 𝜉 (0 ≤ 𝜉 ≤ 1) to
combine the weights with formulas (17) and (18) and obtain
the residual fitting value 𝐸(0)(𝐹𝑘).
𝐸(0) (𝐹1) = 𝐸(0) (𝐹1)
𝐸(0) (𝐹𝑘) = (1 − 𝜉) 𝐸1 (𝐹𝑘) + 𝜉𝐸2 (𝐹𝑘) ,

𝑘 = 2, 3, ⋅ ⋅ ⋅, 𝑛
(19)

Also, the optimal value of 𝜉 and𝑚 follows the principle of the
minimum quadratic sum 𝑒2min of the fitting values residual
by SPSFRC; that is, 𝑒2min = min{𝑒21, 𝑒22, ⋅ ⋅ ⋅, 𝑒2𝑖, ⋅ ⋅ ⋅, 𝑒2𝑛} and𝑒2𝑖 = ∑𝑛𝑘=1[𝐸(0)(𝐹𝑘) − 𝐸(0)𝑖 (𝐹𝑘)]2.
Step 5. Calculate the prediction value modified by the SPS-
FRC.

𝑋(0)1 (𝐹1) = 𝑋(0) (𝐹1)
𝑋(0)1 (𝐹𝑘) = 𝑋(0) (𝐹𝑘) + 𝐸(0) (𝐹𝑘) , 𝑘 = 2, 3, ⋅ ⋅ ⋅, 𝑛 (20)

The box girder deformation of the 𝑘 + 1th tensioning
phase can be predicted based on the data of the previous 𝑘
tensioning phases. Then, the residual composite correction
value of the 𝐹𝑘+1 tensioning phase is𝑋(0)1 (𝐹𝑘+1).
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3.2. Markov Chain Residual Correction. Theprediction based
on the Markov chain [16] mainly derives the possible future
state of a system based on the current state and the change
trend of system variables. This approach is particularly
suitable for problems with strong randomness. Under the
influence of various factors, the box girder deformation has
a stochastic growth rate and growth probability. Therefore,
the Markov chain-based prediction can enhance the random
features of the box girder deformation sequence and improve
the prediction results. Suppose that the random system 𝑋 is
in state 𝑖𝑛 at time 𝑡. Then, its state at time 𝑡 + 1 has nothing to
do with the state before time 𝑡:

𝑃 {𝑋𝑛+1 = 𝑖𝑛+1 | 𝑋0 = 𝑖0, 𝑋1 = 𝑖1, ⋅ ⋅ ⋅, 𝑋𝑛 = 𝑖𝑛} (21)

The actual sequence is rationally divided into several states𝑆1, 𝑆2, ⋅ ⋅ ⋅, 𝑆𝑛. Then, the state transition probability at step 𝑓 is

𝑃(𝑓)
𝑖𝑘

= 𝑁(𝑓)
𝑖𝑘∑𝑛𝑘=1𝑁(𝑓)𝑖𝑘 (22)

where 𝑁(𝑓)
𝑖𝑘

is the number of states transferred from 𝑆𝑖 to 𝑆𝑘
by𝑓 steps in the system sequence;∑𝑛𝑘=1𝑁(𝑓)𝑖𝑘 is the amount of
raw data in state 𝑆𝑖 of the sequence.

Define the state transition matrix at step 𝑓 as

𝑃(𝑓) =
[[[[[[[[
[

𝑃(𝑓)11 𝑃(𝑓)12 ⋅ ⋅ ⋅ 𝑃(𝑓)1𝑛
𝑃(𝑓)21 𝑃(𝑓)22 ⋅ ⋅ ⋅ 𝑃(𝑓)2𝑛... ... ...
𝑃(𝑓)𝑛1 𝑃(𝑓)𝑛2 ⋅ ⋅ ⋅ 𝑃(𝑓)𝑛𝑛

]]]]]]]]
]

(23)

where ∑𝑛𝑘=1 𝑃(𝑓)𝑖𝑘 = 1.
The division of the state interval is generally combined

with the mean value and standard deviation of the data
sequence [17]. The centre of each interval, that is, the average
value of the two endpoints, is recorded as the state centre𝜒𝑖. For Markov chain-based residual prediction, the residual
sequence 𝐸(0)(𝐹𝑘) was divided into 𝑛 states 𝑆. 𝑟 transition
probability vectors (the rows of a matrix) are needed to
consider the transition processes in 𝑟 steps.The probability of
residual state at the target moment is the sum of the 𝑟 vectors.
The elements of each vector are denoted as 𝜂1, 𝜂2, ⋅ ⋅ ⋅ , 𝜂𝑛. If
there are a total of 𝑛 intervals of state 𝑆, then the residual
correction prediction value of the target moment, that is, the
next moment, is

𝑀(𝐹𝑘+1) = 𝜆1𝜒1 + 𝜆2𝜒2 + ⋅ ⋅ ⋅ + 𝜆𝑛𝜒𝑛 (24)

𝜆𝑖 = 𝜂𝑖𝜂1 + 𝜂2 + ⋅ ⋅ ⋅ + 𝜂𝑛 (25)

where 𝜆𝑖 is the state weight; 𝜒𝑖 is the state interval centre.
After Markov chain-based prediction, the prediction

value of the UIGM-RCC is corrected as

𝑋(0)2 (𝐹𝑘+1) = 𝑋(0)1 (𝐹𝑘+1) + 𝑀(𝐹𝑘+1) (26)

Table 1: The deformation values of C21 in different tensioning
phases.

Tensioning phase Tensioning force/kN Deformation/mm
1 630 25.30
2 1,050 31.33
3 1,155 33.27
4 1,365 37.15
5 1,575 42.78
6 1,785 45.18
7 1,890 47.23

4. Case Study

4.1. Overview. Themain bridge of DongmingHuanghe River
Highway Bridge is a PSC continuous box girder bridge. The
990m long bridge has a total of nine spans within the lengths:
75m-120m-120m-120m-120m-120m-120m-120m-75m. To
overcome girder cracking and midspan sag, the main bridge
was reinforced by the SCS, marking the first project of its
kind in China. The bridge towers, the main beam, and the
cables are connected as follows. The cables are fixed onto the
top of bridge towers via steel anchor boxes and sliding cable
saddles. The trimmer beams, laid laterally beneath the box
girder, are attached to the bottom of the box girder by base
plate [3]. The force on the stay cables is transmitted to the
main beam through the trimmer beams and base plates. The
designed force of long cable is 2,700 kN and that of short
cable is 2,100 kN. During the construction, the cables were
tensioned symmetrically by 8 lifting jacks. Thus, the cables
become shorter and shorter from the middle towers (61#
and 62#) to the side towers (58# and 65#). To capture the
box girder deformation during the tensioning, 114 vertical
displacement measuring points were placed upstream and
downstream of the bridge. In the actual project, the cable
tensioning phases are divided into 7 stages, and the final
tension values of long and short cables are 90% of the design
cable values of the bridge, which are 2,430 kN and 1,890 kN,
respectively. This paper elaborates and studies according to
the tension force values of short cables, namely, 630 kN, 1,050
kN, 1,155 kN, 1,365 kN, 1,575 kN, 1,785 kN, and 1,890 kN.
The drawing of Dongming Huanghe River Highway Bridge
strengthened by the stay cable system is shown in Figure 1.

4.2. Example Analyzing. To verify the performance of the
proposed prediction model, the deformation values of the
box girder at C21 measuring point in the 1st∼7th tensioning
phases were selected for modelling analysis (Table 1). The
values of the first 6 tensioning phases were taken as the raw
data, and the deformation value of the 7th tensioning phase
was considered as the target of prediction.

(1) The fitting values𝑋(0)(𝐹𝑘) and preliminary prediction
values 𝑋(0)(𝐹𝑘+1) were obtained by the UIGM, and then the
residual sequence 𝐸(0)(𝐹𝑘) of the fitting values was figured
out.

Table 2 contains the fitting values of the first 6 tensioning
phases. It can be seen that the UIGM has a large error in
fitting, but the error is gradually decreasing. For the 7th
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Figure 1: Drawing of Dongming Huanghe River Highway Bridge strengthened by the stay cable system.

Table 2: The fitting values by UIGM.

Tensioning force/kN Measured values/mm Fitting values/mm Residual/mm Relative error/%
630 25.30 25.3000 0.0000 0.0000
1,050 31.33 32.4076 -1.0776 -3.4395
1,155 33.27 34.4138 -1.1438 -3.4379
1,365 37.15 35.6871 1.4629 3.9378
1,575 42.78 37.4548 5.3252 12.4479
1,785 45.18 39.3101 5.8699 12.9923
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Figure 2: Relationship between parameter 𝑇 and quadratic sum 𝑒1
of the fitting values.

tensioning phase, the predicted value of UIGM is
40.7586mm, which is quite different from measuring
value, and the relative error is 13.7019%.

(2) Calculate the optimal composite parameters of the
SPSFRC, the fitting values of the residual sequence, and the
prediction values𝑋(0)1 (𝐹𝑘+1) after one correction.

First, the sine function was used to modify 𝐸(0)(𝐹𝑘), and
the optimal parameter 𝑇best was determined by the quadratic
sum 𝑒1 of the fitting values. Let 𝑇 ∈ [1, 10, 000] and let the
step length be 1. The optimal result 𝑒1min = 27.2228mm2
was obtained at 𝑇 = 114s. Figure 2 shows the results of the
first 300 iterations. In Figure 2, the triangle represents the
corresponding point of the optimal result.

After that, the residual sequence was modified by the
periodic sequence function and sine function generated by
harmonic transform. The optimal parameters 𝜉best and 𝑚best
were still determined by the quadratic sum 𝑒2 of the fitting
values. Suppose that 𝜉 ∈ [0, 1] with a step length of 0.01

0
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Figure 3: Relationship between parameters 𝜉 and 𝑚 and quadratic
sum 𝑒2 of the fitting values at 𝑇best = 114s.

and 𝑚 ∈ [1, 10, 000] with a step length of 1. In this case, the
cumulative residual of the fitting values wasminimal (𝑒2min =3.0365mm2) at 𝑇 = 114s, 𝜉 = 0.17, and 𝑚 = 10. Figure 3
shows the results of the first 300 iterations. In Figure 3, the
triangle represents the corresponding point of the optimal
result.

There are 6 pieces of data in the residual sequence of the
first 6 tensioning phases. The fitting values modified by the
SPSFRC are

𝐸(0) (𝐹𝑘) = (𝐸(0) (𝐹1) , 𝐸(0) (𝐹2) , 𝐸(0) (𝐹3) , 𝐸(0) (𝐹4) ,
𝐸(0) (𝐹5) , 𝐸(0) (𝐹6)) = (0.0000, −2.3696,
− 2.2550, 1.5893, 5.5899, 5.6544)

(27)
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Table 3: States of residual sequence.

Tensioning force/kN Residual State
630 0.0000 S1
1,050 -1.7078 S1
1,155 -1.1438 S1
1,365 1.4629 S2
1,575 5.3252 S3
1,785 5.8699 S3

The 7th tensioning phase, that is, 1,890 kN, was substituted
into the SPSFRC, putting the correction value at 1.0441.Thus,
the prediction value after one correction is

𝑋(0)1 (𝐹7) = 𝑋(0) (𝐹7) + 𝐸(0) (𝐹7) = 40.7586 + 1.0441
= 41.8027 (28)

The above analysis shows that the SPSFRC improved the
prediction accuracy by lowering the relative error to 11.49%.

(3) Divide the residual sequence into different state
intervals according to the Markov chain, solve the state
transitionmatrix 𝑃(𝑓) of the residual sequence, and figure out
the Markov residual prediction value 𝑀(𝐹𝑘+1) and the final
prediction value𝑋(0)2 (𝐹𝑘+1).

The residual sequence was divided into 3 state intervals
based on the mean value 𝜇 and standard deviation 𝜎 of
the residual sequence: [𝜇-1.9𝜎,𝜇-0.6𝜎], [𝜇-0.6𝜎,𝜇+0.6𝜎], and
[𝜇+0.6𝜎,𝜇+1.9𝜎], corresponding to states 𝑆1, 𝑆2, and 𝑆3.These
states should cover the entire range of the residual sequence.
The range of the 3 states is [−3.71, 0.02], [0.02, 3.46], and
[3.46, 7.18], respectively. The corresponding states are shown
in Table 3.

𝑃(1) = [[[
[

23 13 0
0 0 0
0 0 1

]]]
]
,

𝑃(2) = [[[
[

13 13 130 0 1
0 0 0

]]]
]
,

𝑃(3) = [[[
[
0 13 230 0 0
0 0 0

]]]
]
.

(29)

The residual value of the 7th tensioning phase was
predicted based on the transitions of the first 6 tensioning
phases. The transition contains a total of 3 steps, and the
transition probabilities are listed in Table 4.

Solved by 𝜂, the state weights are 𝜆1 = 𝜆2 = 0 and𝜆3 = 1, and the state centres are 𝜒1 = −1.8425, 𝜒2 = 1.7394,

Table 4: State transition probabilities.

Transition step State Transition probability
S1 S2 S3

1 (1,785 kN) S3 0 0 1
2 (1,575 kN) S3 0 0 0
3 (1,365 kN) S2 0 0 0

Total probability 𝜆 0 0 1

and 𝜒3 = 5.3214. Then, the Markov chain-based residual
prediction value of the 7th tensioning phase is

𝑀(𝐹7) = 𝜆1 ⋅ 𝜒1 + 𝜆2 ⋅ 𝜒2 + 𝜆3 ⋅ 𝜒3
= 0 × (−1.8425) + 0 × 1.7394 + 1 × 5.3214
= 5.3214

(30)

Thus, the final deformation of the box girder of the 7th
tensioning phase is

𝑋(0)2 (𝐹7) = 𝑋(0)1 (𝐹7) + 𝑀(𝐹7) = 41.8027 + 5.3214
= 47.1241 (31)

The fitting accuracy of the proposed UIGM-RCC was com-
pared with the UIGM model and the measured values
(Table 5). It is clear that the proposed model outshines the
UIGM model in fitting accuracy. It can be seen from the
prediction result of the 7th deformation value that the relative
errors of UIGM-RCC and UIGM are 0.2243% and 13.7019%,
respectively. The results show that the fitting and predicted
values of the proposed model in this paper are close to the
measuring values.

In the same way, the deformation values of the 8th∼
12th times (i.e., 2,100 kN, 2,205 kN, 2,310 kN, 2,415 kN, and
2,520 kN tension forces) are extrapolated. Table 6 contains the
prediction values obtained by UIGM and UIGM-RCC. For
intuitiveness, the data in Tables 5 and 6 were converted into
graphs (Figure 4).

For further verification of the fitting effect, prediction
accuracy, and adaptability, the box girder deformation values
of other measuring points in the first 6 tensioning phases
were selected as the original data (Table 7) to predict the
deformation in the 7th tensioning phase. 𝐿 denotes distance
from center line of 57# pier in Table 7.

The optimal parameter values and prediction results are
shown in Tables 8 and 9, respectively.

As shown in Table 9, the UIGM-RCC achieved a small
deviation between the prediction values and the measured
values. The mean relative error was only 1.11%, far below
the 8.71% of the UIGM. Figure 5 compares the box girder
deformation predicted by the two models. Note that the
absolute deviation of predicted values from the measured
values is magnified 5 times.

Table 10 shows the 8th∼12th times’ prediction results of
the deformation obtained by UIGM-RCC. The results show
that the prediction value of the measuring point C21 is the
largest when the cable tension is drawn to the design tension
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Table 5: Comparison of the fitting values by the different prediction models.

Tensioning
phase

Tensioning
force/kN

Measured
values/mm

UIGM UIGM-RCC
Fitting values/mm Relative error/% Fitting values/mm Relative errors/%

1 630 25.30 25.3000 0.0000 25.3000 0.0000
2 1,050 31.33 32.4076 -3.4394 30.0380 4.1238
3 1,155 33.27 34.4138 -3.4380 32.1588 3.3400
4 1,365 37.15 35.6871 3.9377 37.2764 -0.3404
5 1,575 42.78 37.4548 12.4478 43.0448 -0.6189
6 1,785 45.18 39.3101 12.9923 44.9645 0.4769

Table 6: Comparison of the predicted values by the different
prediction models.

Tensioning
phase

Tensioning
force/kN

Predicted values/mm
UIGM UIGM-RCC

7 1,890 40.7586 47.1241
8 2,100 41.7640 48.1295
9 2,205 42.2790 48.6445
10 2,310 42.8025 49.1680
11 2,415 43.3345 49.7000
12 2,520 43.8754 50.2409
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Figure 4: Comparison of the different model results.

value of the bridge, and its value is 48.1295mm. When the
cable tension is drawn to the 1.2 times’ design tension value
of the bridge, the measuring point C21 is raised by 3.0109mm
compared with the span in the 7th tensioning phase, and the
prediction deformation is over 50mm.

In addition, the UIGM-RCC and the UIGM were also
applied to calculate the settlements of the building in liter-
atures [11, 12] in the 9th and 10th phases according to the
measured data of the first eight phases. Tables 11 and 12
compare the fitting, predicted results, and relative error of
UIGM: literature [11], literature [12], and ourmodel.Through
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Figure 5: Prediction results of measuring points.

the comparison of results, it is learned that the UIGM-RCC
has much higher prediction accuracy.

Note that the absolute deviation of calculated values from
the measured values is magnified 3 times. In Figure 6, it can
be seen that the results of the UIGM-RCC agree well with the
measured values.

According to the measured data of the first eight phases,
the UIGM-RCC is used to predict the settlement in the
160th∼210th days in this paper, as shown in Table 13. The
results show that the settlement is over 5mm in the 174th day
and the settlement is 5.6431mm in the 210th day.

5. Conclusion

The monitoring and prediction of box girder deformation
are essential to SCS-enhanced PSC continuous box girder
bridges.The effective and timely prediction can guarantee the
smoothness and intelligent control of tensioning. However,
the box girder deformation features periodicity and random
fluctuations under the joint action of environmental and
anthropic factors, making it difficult to predict the deforma-
tion with common models.

The UIGM can partially overcome the difficulty in
deformation prediction. However, this model faces a large
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Table 7: The measured values of C14∼C23 measuring points.

Measuring points L/m Measured values/mm
630 kN 1,050 kN 1,155 kN 1,365 kN 1,575 kN 1,785 kN 1,890 kN

C14 585.00 7.61 9.47 9.82 9.99 10.50 10.38 10.41
C15 615.00 18.98 23.55 24.76 27.17 30.49 32.11 34.15
C16 645.00 7.03 7.42 8.16 8.53 9.06 9.25 9.35
C17 705.00 8.04 12.30 12.64 13.33 14.02 16.45 17.01
C18 735.00 16.48 24.67 25.34 28.77 31.48 33.20 34.25
C19 765.00 4.18 6.01 8.05 9.68 10.03 11.45 11.45
C20 825.00 11.92 14.90 15.06 15.37 16.73 17.88 18.01
C21 855.00 25.30 31.33 33.27 37.15 42.78 45.18 47.23
C22 885.00 11.05 15.81 16.29 17.88 19.45 21.57 21.60
C23 952.50 6.09 7.14 7.83 8.06 8.24 8.26 8.45

Table 8: Optimal parameters of the different measuring points.

Measuring points 𝜉 T/s m Measuring points 𝜉 T/s m
C14 0.35 204 7 C19 0.33 204 7
C15 0.17 114 10 C20 0.17 114 14
C16 0.33 204 7 C21 0.17 114 10
C17 0.26 107 7 C22 0.17 114 12
C18 0.35 203 7 C23 0.07 203 7

Table 9: Prediction values of C14∼C23 measuring points.

Measuring points L/m Measured values/mm UIGM UIGM-RCC
Predicted values/mm Relative error/% Predicted values/mm Relative error/%

C14 585.00 10.41 10.2650 1.3929 10.3759 0.3276
C15 615.00 34.15 29.2886 14.2354 33.2063 2.7634
C16 645.00 9.35 8.9535 4.2406 9.3561 -0.0652
C17 705.00 17.01 14.7196 13.4650 16.9213 0.5215
C18 735.00 34.25 30.4025 11.2336 33.2873 2.8108
C19 765.00 11.45 10.8515 5.2271 11.2477 1.7668
C20 825.00 18.01 16.2766 9.6247 17.8585 0.8412
C21 855.00 47.23 40.7586 13.7019 47.1241 0.2242
C22 885.00 21.60 19.0744 11.6926 21.2667 1.5431
C23 952.50 8.45 8.2588 2.2627 8.4285 0.2544

Table 10: Prediction results of C14∼C23 measuring points.

Measuring points Prediction results/mm
2,100 kN 2,205 kN 2,310 kN 2,415 kN 2,520 kN

C14 10.4508 10.4885 10.5264 10.5645 10.6027
C15 33.8028 34.1071 34.4155 34.7281 35.0449
C16 9.5084 9.5859 9.6642 9.7434 9.8236
C17 16.5406 16.6357 16.7317 16.8284 16.9261
C18 33.8811 34.1838 34.4904 34.8010 35.1156
C19 11.8436 12.1578 12.4834 12.8208 13.1706
C20 17.9959 18.0653 18.1350 18.2051 18.2756
C21 48.1295 48.6445 49.1680 49.7000 50.2409
C22 21.6033 21.7746 21.9479 22.1232 22.3005
C23 8.5352 8.5892 8.6437 8.6986 8.7540
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Table 12: Predicted values of building settlements.

Time/d Measured
values/mm

UIGM Literature [11] model Literature [12] model UIGM-RCC
Predicted
values/mm

Relative
error/%

Predicted
values/mm

Relative
error/%

Predicted
values/mm

Relative
error/%

Predicted
values/mm

Relative
error/%

140 4.38 3.8847 11.3082 4.8500 -10.7306 4.5000 -2.7397 4.4436 -1.4521
154 4.68 4.0684 13.0684 5.5400 -18.3761 5.0100 -7.0513 4.5335 3.1303

Table 13: Prediction results of the 160th∼210th days byUIGM-RCC.

Time/d Predicted values/mm
160 4.8577
174 5.0603
185 5.2285
198 5.4383
210 5.6431

Measured values
Literature [11] model

Literature [12] model
UIGM-RCC

Prediction intervalFitting interval
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Figure 6: Comparison of predicted results by the different models.

deviation between the prediction value and the measured
value (mean relative error: 8.71%). In light of this, the
prediction results of the UIGM were firstly modified by the
SPSFRC and then corrected by the Markov chain. After the
two corrections, the mean relative error was reduced to 1.11%.
In this way, the author created a new method for long-term
deformation prediction of SCS-enhanced box girders. The
proposed model was applied to predict the settlement of a
building. The mean relative error of the prediction results
was only 2.29%, far lower than that of the UIGM and other
models. This further validates the prediction accuracy of the
UIGM-RCC and expands the application scope of the model.
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