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In this article, we propose the new iterative method and introduce the integral iterative method to solve linear and nonlinear
Fokker-Planck equations and some similar equations. The results obtained by the two methods are compared with those obtained
by both Adomian decomposition and variational iteration methods. Comparison shows that the two methods are more effective
and convenient to use and overcome the difficulties arising in calculating Adomian polynomials and Lagrange multipliers, which
means that the considered methods can simply and successfully be applied to a large class of problems.

1. Introduction

In the last years, many of the new methods were used for
solving linear and nonlinear functional equations arising
from the mathematical} modeling of problems in math-
ematics, physics, engineering, and other different science
branches which have important applications in life such
as Adomian decomposition method (ADM) [1, 2], varia-
tional iteration method (VIM) [3–7], homotopy perturbation
method (HPM) [8–13], homotopy analysis method (HAM)
[8, 14], new iterative method (NIM) [15–21], differential
transform method (DTM) [22], Laplace transform method
(LTM) [1, 22], integral iterative method (IIM) [23, 24], and
other methods [25–29].

NIM, proposed first by Daftardar-Gejji and Jafari in
2006 [15–21], is used simply and accurately for solving a
variety of linear and nonlinear equations such as algebraic
equations, integral equations, integrodifferential equations,
ordinary and partial differential equations of integer and
fractional order, and systems of equations as well.

IIM [23, 24] is a new iterative method based explicitly on
the integral operator; the inverse of the differential operator
in the problem under consideration, this method is an
accurate and reliable method, which can be used simply and
accurately to a large class of problems better than the NIM,
ADM, and VIM as will be seen in Applications.

These two methods are very convenient, effective, and
accurate. The basic ideas of the two methods are considered
in Section 3.

Fokker-Planck equation (FPE), first applied to investigate
the Brownian motion of particles, is now largely employed
in various generalized forms, in physics, engineering biology,
and chemistry.

Themotivation of this work is to extend the application of
the NIM and IIM for solving linear and nonlinear FPEs and
comparing the results obtained by these methods with those
obtained by ADM and VIM. In [2, 7], ADM, VIM, and HPM
were applied to solve FPE.

2. Fokker-Planck Equation (FPE)

The general form of FPE for variables 𝑥 and 𝑡 is as follows
[2, 7, 13, 28, 29]:

𝜕𝑢𝜕𝑡 = [− 𝜕𝜕𝑥𝐴 (𝑥) + 𝜕
2

𝜕𝑥2𝐵 (𝑥)] 𝑢 (𝑥, 𝑡) , (1)

with the initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ Re, (2)
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where 𝐴(𝑥) is the drift coefficient and 𝐵(𝑥) > 0 is the
diffusion coefficient. The drift and diffusion coefficients can
also be functions of 𝑥 and 𝑡; that is,

𝜕𝑢𝜕𝑡 = [− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡) + 𝜕
2

𝜕𝑥2𝐵 (𝑥, 𝑡)] 𝑢 (𝑥, 𝑡) . (3)

Equation (1) is a linear second-order partial differential
equation of parabolic type, called Kolmogorov equation,
which is an equation for the motion of a concentration field𝑢(𝑥, 𝑡).The backward Kolmogorov equation can be written in
the following form:

𝜕𝑢𝜕𝑡 = − [𝐴 (𝑥, 𝑡) 𝜕𝜕𝑥 + 𝐵 (𝑥, 𝑡) 𝜕
2

𝜕𝑥2 ]𝑢 (𝑥, 𝑡) . (4)

A generalized form of (1) to𝑁 variables 𝑥1, . . . , 𝑥𝑁 can be
written as follows:

𝜕𝑢𝜕𝑡 = [[−
𝑁∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥) +
𝑁∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥)]]𝑢 (𝑥, 𝑡) , (5)

with the initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) ∈ 𝑅𝑁, (6)

where the drift vector 𝐴 𝑖 and the diffusion tensor 𝐵𝑖,𝑗 in (5)
depend on𝑁 variables 𝑥1, . . . , 𝑥𝑁.

There is a more general form of FPE, which is nonlinear
FPE. Nonlinear FPE has important applications in various
areas such as plasma physics, surface physics, population
dynamics, biophysics, engineering, neurosciences, nonlinear
hydrodynamics, polymer physics, laser physics, pattern for-
mation, psychology, and marketing. The nonlinear FPE for
one variable is in the following form:

𝜕𝑢𝜕𝑡 = [− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡, 𝑢) + 𝜕
2

𝜕𝑥2𝐵 (𝑥, 𝑡, 𝑢)] 𝑢 (𝑥, 𝑡) . (7)

Equation (7) for𝑁 variables 𝑥1, . . . , 𝑥𝑁 is in the following
form:

𝜕𝑢𝜕𝑡 = [[−
𝑁∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥, 𝑡, 𝑢) +
𝑁∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥, 𝑡, 𝑢)]]
⋅ 𝑢 (𝑥, 𝑡) , 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) ∈ 𝑅𝑁.

(8)

3. Analysis of the Methods

In this section, we introduce the analysis of the two consid-
ered methods.

3.1. New Iterative Method (NIM). To illustrate the basic
idea of NIM, we consider the following general functional
equation [15–21]:

𝑢 (𝑥) = 𝑓 (𝑥) + 𝑁 (𝑢 (𝑥)) , (9)

where𝑁 is a nonlinear operator from a Banach space𝐵 → 𝐵
and 𝑓 is a known function (element) of the Banach space 𝐵.
We are looking for a solution 𝑢(𝑥) of (9) having the series
form:

𝑢 (𝑥) = ∞∑
𝑖=0

𝑢𝑖 (𝑥) . (10)

The nonlinear operator𝑁 can be decomposed as

𝑁(∞∑
𝑖=0

𝑢𝑖) = 𝑁 (𝑢0)

+ ∞∑
𝑖=1

{{{𝑁(
𝑖∑
𝑗=0

𝑢𝑗) −𝑁(𝑖−1∑
𝑗=0

𝑢𝑗)}}} .
(11)

From (10) and (11), (9) is equivalent to

∞∑
𝑖=0

𝑢𝑖 = 𝑓 + 𝑁(𝑢0)

+ ∞∑
𝑖=1

{{{𝑁(
𝑖∑
𝑗=0

𝑢𝑗) −𝑁(𝑖−1∑
𝑗=0

𝑢𝑗)}}} .
(12)

The required solution 𝑢(𝑥) for (9) can be obtained recur-
rencely from the recurrence relation:

𝑢0 = 𝑓,
𝑢1 = 𝑁 (𝑢0) ,
𝑢𝑟+1 = 𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑟)

− 𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑟−1) ,
𝑟 = 1, 2, . . . .

(13)

Then

(𝑢1 + 𝑢2 + ⋅ ⋅ ⋅ + 𝑢𝑟+1) = 𝑁 (𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑟) ,
𝑟 = 1, 2, . . . (14)

and

∞∑
𝑖=0

𝑢𝑖 = 𝑓 + 𝑁(∞∑
𝑖=0

𝑢𝑖) . (15)

The r-term approximate solution of (9) and (10) is given by𝑢(𝑥) = ∑𝑟−1𝑖=0 𝑢𝑖.
Remark 1. If𝑁 is a contraction, that is, ‖𝑁(𝑥)−𝑁(𝑦)‖ ≤ 𝑘‖𝑥−𝑦‖, 0 < 𝑘 < 1, then

𝑢𝑟+1 ≤ 𝑘𝑟+1 𝑢0 , 𝑟 = 0, 1, 2, . . . . (16)
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Proof. From (13), we have

𝑢0 = 𝑓,𝑢1 = 𝑁 (𝑢0) ≤ 𝑘 𝑢0 ,𝑢2 = 𝑁 (𝑢0 + 𝑢1) − 𝑁 (𝑢0) ≤ 𝑘 𝑢1 ≤ 𝑘2 𝑢0 ,𝑢3 = 𝑁 (𝑢0 + 𝑢1 + 𝑢2) − 𝑁 (𝑢0 + 𝑢1) ≤ 𝑘 𝑢2
≤ 𝑘3 𝑢0 ,

...𝑢𝑟+1 = 𝑁 (𝑢0 + ⋅ ⋅ ⋅ + 𝑢𝑟) − 𝑁 (𝑢0 + ⋅ ⋅ ⋅ + 𝑢𝑟−1)
≤ 𝑘 𝑢𝑟 ≤ 𝑘𝑟+1 𝑢0 ,

(17)

𝑟 = 0, 1, 2, . . ., and the series∑∞𝑖=0 𝑢𝑖 absolutely and uniformly
converges to a solution of (9) [30], which is unique in view of
the Banach fixed-point theorem [31].

3.2. Solving Differential Equations Using NIM. After the
above presentation of theNIM,we present a reliable approach
of this method. To illustrate the basic idea of the new algo-
rithm, we consider the general partial differential equation of
arbitrary order:

𝜕𝑛𝑢 (𝑥, 𝑡)𝜕𝑡𝑛 = 𝐴 (𝑢, 𝜕𝑢) + 𝐵 (𝑥, 𝑡) , 𝑛 ∈ 𝑁, (18)

𝜕𝑘𝑢 (𝑥, 0)𝜕𝑡𝑘 = ℎ𝑘 (𝑥) , 𝑘 = 0, 1, 2, . . . , 𝑛 − 1, (19)

where 𝐴 is a nonlinear function of 𝑢, 𝜕𝑢 (partial derivatives
of 𝑢 with respect to 𝑥 and 𝑡) and 𝐵 is the source function. In
view of the integral operators, the initial value problem in (18)
and (19) is equivalent to the following integral equation:

𝑢 (𝑥, 𝑡) = 𝑛−1∑
𝑘=0

ℎ𝑘 (𝑥) 𝑡𝑘𝑘! + 𝐼𝑛𝑡 𝐵 + 𝐼𝑛𝑡 𝐴 = 𝑓 + 𝑁 (𝑢) , (20)

where𝑓 = ∑𝑛−1𝑘=0 ℎ𝑘(𝑥)(𝑡𝑘/𝑘!) + 𝐼𝑛𝑡 𝐵, 𝑁(𝑢) = 𝐼𝑛𝑡 𝐴, and 𝐼𝑛𝑡 is an
nth-order (n-fold) integral operator.

Remark 2. When the general functional equation (9) is linear,
that is,𝑁 is a linear operator, the recurrence relation (13) can
be simplified in the following form:

𝑢0 = 𝑓,
𝑢𝑟+1 = 𝑁 (𝑢𝑟) , 𝑟 = 0, 1, 2, . . . . (21)

The required solution 𝑢(𝑥, 𝑡) for (20) and hence for
(18) and (19) can be obtained recurrently by employing the
recurrence relation (13) or (21).

3.3. Integral Iterative Method (IIM). The IIM is a new iterative
method that depends explicitly on the integral operator, the
inverse of the differential operator in the problem under

consideration [23, 24]. To illustrate the basic idea of this
method, we consider again the general partial differential
equation (18)-(19). Also, in view of the integral operators, the
initial value problem (18)-(19) is equivalent to the integral
equation (20).The required solution𝑢(𝑥, 𝑡) for (20) and hence
for (18) and (19) can be obtained recurrently by employing the
simple recurrence relation:

𝑢0 = 𝑓,
𝑢𝑟+1 = 𝑢0 + 𝑁(𝑢𝑟) , 𝑟 = 0, 1, 2, . . . , (22)

in place of recurrence relation (13) or recurrence relation (21),
where 𝑢(𝑥, 𝑡) = lim𝑟→∞𝑢𝑟(𝑥, 𝑡).

Recurrence relation (22) is the recurrence relation for IIM
[23, 24, 32].The IIMmay be considered as a new approach for
Picard method (PM), where in PM the terms 𝑓 and 𝑁(𝑢) in
(20) take the forms 𝑓 = ∑𝑛−1𝑘=0 ℎ𝑘(𝑥)(𝑡𝑘/𝑘!) and𝑁(𝑢) = 𝐼𝑛𝑡 [𝐴+𝐵]. By this change, the r-order term approximate solution for
(18)-(19) by IIM is the same r-term approximate solution for
it by NIM but without calculating the values: 𝑁(∑𝑟𝑖=0 𝑢𝑖) −𝑁(∑𝑟−1𝑖=0 𝑢𝑖), 𝑟 = 1, 2, . . . (see (13)) or the r-term approximate
solution from the relation 𝑢(𝑥, 𝑡) = ∑𝑟−1𝑖=0 𝑢𝑖, 𝑟 = 1, 2, . . .,
which simplify and reduce the computational procedures
and time. Also, by this change, there is no need to calculate
the integral of the source function 𝐵(𝑥, 𝑡) for every iteration𝑟, 𝑟 = 1, 2, . . . as done in PM, which also simplifies and
reduces the computational procedures and time. In addition
to the above advantages of IIM over both NIM and PM, there
are more advantages of both IIM and NIM over the other
methods which are the fact that there is no need to calculate
Adomian’s polynomials as done in ADM or the value of
Lagrange’s multiplier as done in VIM or to equate the terms
of equal powers of the embedding parameter 𝑝 as done in
HPM and HAM. Moreover, the considered methods can be
used successfully without linearization or small perturbation
as done in the perturbation methods.Therefore, IIM is better
and easier than NIM, PM, and IIM; NIM is better and easier
than the other methods.

Themain advantage of the considered methods, as wewill
see in the next section, is that they can be applicable simply
and accurately to a large class of partial differential equations.

4. Applications

To illustrate the reliability of the considered methods, six
important cases of the FPE will be investigated.

4.1. Example 1. Consider (1) with the initial condition

𝑢 (𝑥, 0) = 𝑥, 𝑥 ∈ Re. (23)

Let in (1) 𝐴(𝑥) = −1, 𝐵(𝑥) = 1.
By theNIM, according to (20), the considered initial value

problem is equivalent to the integral equation:

𝑢 (𝑥, 𝑡) = 𝑥 + 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥) + 𝜕
2

𝜕𝑥2𝐵 (𝑥)) 𝑢 (𝑥, 𝑡)] . (24)
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Let

𝑁(𝑢) = 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥) + 𝜕
2

𝜕𝑥2𝐵 (𝑥)) 𝑢 (𝑥, 𝑡)] . (25)

In view of (13) or (21), we have the following first few
components of the new iterative solution for the considered
problem:

𝑢0 (𝑥, 𝑡) = 𝑥,
𝑢1 (𝑥, 𝑡) = 𝑡,
𝑢𝑗 (𝑥, 𝑡) = 0, 𝑗 ≥ 2.

(26)

The (r+1)-term new iterative approximate solution for this
problem is given by

𝑢 (𝑥, 𝑡) = 𝑟∑
𝑖=0

𝑢𝑖 (𝑥, 𝑡) = 𝑥 + 𝑡, (27)

which is the exact solution.
By the IIM, according to (20) and the initial value

problem (1), (23) is equivalent to the integral equation:

𝑢𝑟+1 (𝑥, 𝑡)
= 𝑢0 (𝑥, 𝑡)
+ 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥) + 𝜕

2

𝜕𝑥2𝐵 (𝑥)) 𝑢𝑟 (𝑥, 𝑡)] ,
𝑟 ≥ 0.

(28)

Therefore, from (22), we can obtain the following first few
components of the integral iterative solution for (1) and (23):

𝑢0 (𝑥, 𝑡) = 𝑥,
𝑢1 (𝑥, 𝑡) = 𝑥 + 𝑡,
𝑢𝑟 (𝑥, 𝑡) = 0, 𝑟 ≥ 2.

(29)

Hence,

𝑢 (𝑥, 𝑡) = lim
𝑟→∞

𝑢𝑟 (𝑥, 𝑡) = 𝑥 + 𝑡, (30)

which is the same result as that obtained by NIM in (27) but
without calculating 𝑁(∑𝑟𝑖=0 𝑢𝑖) − 𝑁(∑𝑟−1𝑖=0 𝑢𝑖), 𝑟 = 1, 2, . . .,
and the r-term approximate solution: 𝑢(𝑥) = ∑𝑟−1𝑖=0 𝑢𝑖, which
simplifies and reduces the computational procedures and
hence reduces the computational time. Therefore, IIM is
easier than NIM.

It is clear that the above results obtained by the NIM and
IIM in (27) and (30)were obtained byADMandVIM in [2, 7]
but without calculating Adomian polynomials and Lagrange
multiplier value, which means that these methods simplify
and reduce the computational procedures and hence reduce
the computational time more than those methods.Therefore,
NIM and IIM are better than ADM and VIM.

4.2. Example 2. Consider (3) with the initial condition

𝑢 (𝑥, 0) = sinh 𝑥. (31)

Let in (3)

𝐴 (𝑥, 𝑡) = 𝑒𝑡 [coth 𝑥 cosh 𝑥 + sinh 𝑥] − coth 𝑥,
𝐵 (𝑥, 𝑡) = 𝑒𝑡 cosh 𝑥. (32)

By theNIM, according to (20), the considered initial value
problem is equivalent to the integral equation:

𝑢 (𝑥, 𝑡)
= sinh 𝑥
+ 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡) + 𝜕

2

𝜕𝑥2𝐵 (𝑥, 𝑡)) 𝑢 (𝑥, 𝑡)] .
(33)

Let

𝑁(𝑢) = 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡) + 𝜕
2

𝜕𝑥2𝐵 (𝑥, 𝑡)) 𝑢 (𝑥, 𝑡)] . (34)

In view of (13) or (21), we have the following first few
components of the new iterative solution for the considered
problem:

𝑢0 (𝑥, 𝑡) = sinh 𝑥,
𝑢1 (𝑥, 𝑡) = sinh 𝑥.𝑡,
𝑢2 (𝑥, 𝑡) = sinh 𝑥. 𝑡22 ,
𝑢3 (𝑥, 𝑡) = sinh 𝑥. 𝑡36 ,

...

(35)

and so on. In the same manner, the rest of components can
be obtained. The (r+1)-term approximate solution for this
problem, in series form, is given by

𝑢 (𝑥, 𝑡) = 𝑟∑
𝑖=0

𝑢𝑖 (𝑥, 𝑡)
= sinh 𝑥. (1 + 𝑡 + 𝑡22! + 𝑡

3

3! + ⋅ ⋅ ⋅ + 𝑡
𝑟

𝑟!) ,
(36)

which in closed form is equivalent to the exact solution:

𝑢 (𝑥, 𝑡) = 𝑒𝑡 sinh 𝑥. (37)

By the IIM, according to (20), the initial value problem
((3) and (31)) is equivalent to the integral equation:

𝑢𝑟+1 (𝑥, 𝑡)
= 𝑢0 (𝑥, 𝑡)
+ 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡) + 𝜕

2

𝜕𝑥2𝐵 (𝑥, 𝑡)) 𝑢𝑟 (𝑥, 𝑡)] ,
𝑟 ≥ 0.

(38)
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Therefore, from (22), we can obtain the following first few
components of the integral iterative solution for (3) and (31):

𝑢0 (𝑥, 𝑡) = sinh 𝑥,
𝑢1 (𝑥, 𝑡) = sinh 𝑥. (1 + 𝑡) ,

𝑢2 (𝑥, 𝑡) = sinh 𝑥. (1 + 𝑡 + 𝑡22 ) ,
𝑢3 (𝑥, 𝑡) = sinh 𝑥. (1 + 𝑡 + 𝑡22 + 𝑡

3

6 ) ,
...

(39)

and so on. In the same manner, the rest of components can
be obtained. Hence,

𝑢𝑟 (𝑥, 𝑡) = sinh 𝑥. (1 + 𝑡 + 𝑡22! + 𝑡
3

3! + ⋅ ⋅ ⋅ + 𝑡
𝑟

𝑟!) . (40)

In closed form, this gives

𝑢 (𝑥, 𝑡) = lim
𝑟→∞

𝑢𝑟 = 𝑒𝑡 sinh 𝑥, (41)

which is the same result as that obtained by NIM in (37) but
without calculating𝑁(∑𝑟𝑖=0 𝑢𝑖)−𝑁(∑𝑟−1𝑖=0 𝑢𝑖), 𝑟 = 1, 2, . . ., and𝑢(𝑥) = ∑𝑟−1𝑖=0 𝑢𝑖. Also, it is the same result as that obtained
by ADM and VIM in [2, 7] but without calculating Adomian
polynomials and Lagrange multiplier value.Therefore, IIM is
easier than NIM and NIM; IIM is better than ADMand VIM.

4.3. Example 3. Consider the backward Kolmogorov equa-
tion (4) with the initial condition:

𝑢 (𝑥, 0) = 1 + 𝑥, 𝑥 ∈ Re. (42)

Also, let in (4)

𝐴 (𝑥, 𝑡) = − (1 + 𝑥) ,
𝐵 (𝑥, 𝑡) = 𝑥2𝑒𝑡. (43)

By theNIM, according to (20), the considered initial value
problem is equivalent to the integral equation:

𝑢 (𝑥, 𝑡)
= 1 + 𝑥
− 𝐼𝑡 [(𝐴 (𝑥, 𝑡) 𝜕𝜕𝑥 + 𝐵 (𝑥, 𝑡) 𝜕

2

𝜕𝑥2)𝑢 (𝑥, 𝑡)] .
(44)

Let

𝑁(𝑢) = −𝐼𝑡 [(𝐴 (𝑥, 𝑡) 𝜕𝜕𝑥 + 𝐵 (𝑥, 𝑡) 𝜕
2

𝜕𝑥2)𝑢 (𝑥, 𝑡)] . (45)

As the above examples, we have the following first few
components of the new iterative solution for the considered
problem:

𝑢0 (𝑥, 𝑡) = 1 + 𝑥,
𝑢1 (𝑥, 𝑡) = (1 + 𝑥) .𝑡,
𝑢2 (𝑥, 𝑡) = (1 + 𝑥) . 𝑡22 ,
𝑢3 (𝑥, 𝑡) = (1 + 𝑥) . 𝑡36 ,

...

(46)

and so on. The (r+1)-term approximate solution for this
problem, in series form, is given by

𝑢 (𝑥, 𝑡) = 𝑟∑
𝑖=0

𝑢𝑖 (𝑥, 𝑡)
= (1 + 𝑥) . (1 + 𝑡 + 𝑡22! + 𝑡

3

3! + ⋅ ⋅ ⋅) ,
(47)

which in closed form gives the exact solution:

𝑢 (𝑥, 𝑡) = (1 + 𝑥) .𝑒𝑡. (48)

By the IIM, according to (20), the initial value problem
((4) and (42)) is equivalent to the integral equation:

𝑢𝑟+1 (𝑥, 𝑡)
= 𝑢0 (𝑥, 𝑡)
− 𝐼𝑡 [(𝐴 (𝑥, 𝑡) 𝜕𝜕𝑥 + 𝐵 (𝑥, 𝑡) 𝜕

2

𝜕𝑥2)𝑢𝑟 (𝑥, 𝑡)] ,
𝑟 ≥ 0.

(49)

As the above examples, we can have the following first
few components of the integral iterative solution for the
considered problem:

𝑢0 (𝑥, 𝑡) = 1 + 𝑥,
𝑢1 (𝑥, 𝑡) = (1 + 𝑥) . (1 + 𝑡) ,

𝑢2 (𝑥, 𝑡) = (1 + 𝑥) . (1 + 𝑡 + 𝑡22 ) ,
𝑢3 (𝑥, 𝑡) = (1 + 𝑥) . (1 + 𝑡 + 𝑡22 + 𝑡

3

6 ) ,
...

(50)

and so on. In the same manner, the rest of components can
be obtained. Hence,

𝑢𝑟 (𝑥, 𝑡) = (1 + 𝑥) . (1 + 𝑡 + 𝑡22! + 𝑡
3

3! + ⋅ ⋅ ⋅ + 𝑡
𝑟

𝑟!) . (51)
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In closed form, this gives

𝑢 (𝑥, 𝑡) = lim
𝑟→∞

𝑢𝑟 = (1 + 𝑥) .𝑒𝑡, (52)

which is the same result as that obtained by the NIM in (48)
and by both ADM and VIM in [2, 7]. It is clear that the
present two methods simplify the computational procedures
and hence reduce the computational timemore than the other
methods. Therefore, IIM and NIM are better than ADM and
VIM.

4.4. Example 4. Consider (5) with the initial condition

𝑢 (𝑥, 0) = 𝑥1, 𝑥 = (𝑥1, 𝑥2)𝑇 ∈ 𝑅2. (53)

Also, let

𝐴1 (𝑥1, 𝑥2) = 𝑥1,
𝐴2 (𝑥1, 𝑥2) = 5𝑥2,
𝐵1,1 (𝑥1, 𝑥2) = 𝑥21,
𝐵1,2 (𝑥1, 𝑥2) = 1,
𝐵2,1 (𝑥1, 𝑥2) = 1,
𝐵2,2 (𝑥1, 𝑥2) = 𝑥22.

(54)

By the NIM, the considered problem is equivalent to the
integral equation:

𝑢 (𝑥, 𝑡) = 𝑥1 + 𝐼𝑡[[(−
2∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥1, 𝑥2)

+ 2∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥1, 𝑥2)) 𝑢 (𝑥, 𝑡)]] .
(55)

Let

𝑁(𝑢) = 𝐼𝑡[[(−
2∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥1, 𝑥2)

+ 2∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥1, 𝑥2)) 𝑢 (𝑥, 𝑡)]] .
(56)

As the above examples, we have the following successive
approximations:

𝑢0 (𝑥, 𝑡) = 𝑥1,
𝑢1 (𝑥, 𝑡) = 𝑥1.𝑡,
𝑢2 (𝑥, 𝑡) = 𝑥1. 𝑡22 ,
𝑢3 (𝑥, 𝑡) = 𝑥1. 𝑡36 ,

...

(57)

and so on. In closed form, the (r+1)-term approximate
solution is given by

𝑢 (𝑥, 𝑡) = 𝑟∑
𝑖=1

𝑢𝑖 (𝑥, 𝑡) = 𝑥1. (1 + 𝑡 + 𝑡22 + 𝑡
3

6 + ⋅ ⋅ ⋅) . (58)

In closed form, this gives the exact solution:

𝑢 (𝑥, 𝑡) = 𝑥1.𝑒𝑡. (59)

By the IIM, the considered problem is equivalent to the
integral equation:

𝑢𝑟+1 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + 𝐼𝑡[[(−
2∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥1, 𝑥2)

+ 2∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥1, 𝑥2)) 𝑢𝑟 (𝑥, 𝑡)]] , 𝑟 ≥ 0.
(60)

Also, as above, we have the following successive approxima-
tions:

𝑢0 (𝑥, 𝑡) = 𝑥1,
𝑢1 (𝑥, 𝑡) = 𝑥1. (1 + 𝑡) ,

𝑢2 (𝑥, 𝑡) = 𝑥1. (1 + 𝑡 + 𝑡22 ) ,
𝑢3 (𝑥, 𝑡) = 𝑥1. (1 + 𝑡 + 𝑡22 + 𝑡

3

6 ) ,
...

(61)

and so on. In the same manner, the rest of components can
be obtained. Hence,

𝑢𝑟 (𝑥, 𝑡) = 𝑥1. (1 + 𝑡 + 𝑡22 + 𝑡
3

6 + ⋅ ⋅ ⋅ + 𝑡
𝑟

𝑟!) (62)

In closed form, this gives

𝑢 (𝑥, 𝑡) = lim
𝑟→∞

𝑢𝑟 = 𝑥1.𝑒𝑡, (63)

which is the same result as that obtained by the NIM in (59)
and by both ADM and VIM in [2, 7]. It is clear that the
present two methods simplify the computational procedures
and hence reduce the computational timemore than the other
methods. Therefore, IIM and NIM are better than ADM and
VIM.

4.5. Example 5. Consider the nonlinear FPE (7), such that

𝑢 (𝑥, 0) = 𝑥2, 𝑥 ∈ Re,
𝐴 (𝑥, 𝑡, 𝑢) = 4𝑥𝑢 − 𝑥3 ,
𝐵 (𝑥, 𝑡, 𝑢) = 𝑢.

(64)
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By the NIM, this problem is equivalent to the integral
equation:
𝑢 (𝑥, 𝑡)
= 𝑥2
+ 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡, 𝑢) + 𝜕

2

𝜕𝑥2𝐵 (𝑥, 𝑡, 𝑢)) 𝑢 (𝑥, 𝑡)] .
(65)

Let𝑁(𝑢)
= 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡, 𝑢) + 𝜕

2

𝜕𝑥2𝐵 (𝑥, 𝑡, 𝑢)) 𝑢 (𝑥, 𝑡)] .
(66)

In view of (13), we can have the following successive approx-
imations: 𝑢0 (𝑥, 𝑡) = 𝑥2,

𝑢1 (𝑥, 𝑡) = 𝑥2.𝑡,
𝑢2 (𝑥, 𝑡) = 𝑥2. 𝑡22 ,
𝑢3 (𝑥, 𝑡) = 𝑥2. 𝑡36 ,

...

(67)

and so on.The (r +1)-term new iterative approximate solution
for this problem takes the form

𝑢 (𝑥, 𝑡) = 𝑟∑
𝑖=0

𝑢𝑖 = 𝑥2. (1 + 𝑡 + 𝑡22! + 𝑡
3

3! + ⋅ ⋅ ⋅) , (68)

which in closed form gives the exact solution:

𝑢 (𝑥, 𝑡) = 𝑥2.𝑒𝑡. (69)
By the IIM, the initial value problem ((7) and (64)) is

equivalent to the integral equation:
𝑢𝑟+1 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡)
+ 𝐼𝑡 [(− 𝜕𝜕𝑥𝐴 (𝑥, 𝑡, 𝑢) + 𝜕

2

𝜕𝑥2𝐵 (𝑥, 𝑡, 𝑢)) 𝑢𝑟 (𝑥, 𝑡)] ,
𝑟 ≥ 0.

(70)

Also, as above, we can have the following successive approxi-
mations: 𝑢0 (𝑥, 𝑡) = 𝑥2,

𝑢1 (𝑥, 𝑡) = 𝑥2. (1 + 𝑡) ,
𝑢2 (𝑥, 𝑡) = 𝑥2. (1 + 𝑡 + 𝑡22 ) ,

𝑢3 (𝑥, 𝑡) = 𝑥2. (1 + 𝑡 + 𝑡22 + 𝑡
3

6 ) ,
...

(71)

and so on. In the same manner, the rest of components can
be obtained. Hence,

𝑢𝑟 (𝑥, 𝑡) = 𝑥2. (1 + 𝑡 + 𝑡22! + 𝑡
3

3! + ⋅ ⋅ ⋅ + 𝑡
𝑟

𝑟!) , (72)

and, in closed form, this gives

𝑢 (𝑥, 𝑡) = lim
𝑟→∞

𝑢𝑟 = 𝑥2.𝑒𝑡, (73)

which is the same result as that obtained by NIM in (69) and
by bothADMandVIM in [2, 7]. It is clear that the present two
methods simplify the computational procedures and hence
reduce the computational timemore than the other methods.
Therefore, IIM and NIM are better than ADM and VIM.

4.6. Example 6. Finally, consider the generalized nonlinear
FPE (8), such that

𝑢 (𝑥, 0) = 𝑥21, 𝑥 = (𝑥1, 𝑥2)𝑇 ∈ 𝑅2, (74)

𝐴1 (𝑥, 𝑡, 𝑢) = 4𝑥1 𝑢,
𝐴2 (𝑥, 𝑡, 𝑢) = 𝑥2,
𝐵1,1 (𝑥1, 𝑥2) = 𝑢,
𝐵1,2 (𝑥1, 𝑥2) = 1,
𝐵2,1 (𝑥1, 𝑥2) = 1,
𝐵2,2 (𝑥1, 𝑥2) = 𝑢.

(75)

By the NIM, the problem in (8) and (75) is equivalent to
the integral equation:

𝑢 (𝑥, 𝑡) = 𝑥21 + 𝐼𝑡 [[(−
2∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥, 𝑡, 𝑢)

+ 2∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥, 𝑡, 𝑢))𝑢 (𝑥, 𝑡)]] .
(76)

Let

𝑁(𝑢) = 𝐼𝑡[[(−
2∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥, 𝑡, 𝑢)

+ 2∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥, 𝑡, 𝑢))𝑢 (𝑥, 𝑡)]] .
(77)
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In view of (13), we have the following set of successive
approximations for this problem:

𝑢0 (𝑥, 𝑡) = 𝑥21,
𝑢1 (𝑥, 𝑡) = −𝑥21.𝑡,
𝑢2 (𝑥, 𝑡) = 𝑥21. 𝑡22 ,
𝑢3 (𝑥, 𝑡) = −𝑥21. 𝑡36 ,

...

(78)

The (r+1)-term approximate solution for this problem is

𝑢 (𝑥, 𝑡) = 𝑟∑
𝑖=0

𝑢𝑖 = 𝑥21. (1 − 𝑡 + 𝑡22! − 𝑡
3

3! + ⋅ ⋅ ⋅) , (79)

which in closed form gives the exact solution:

𝑢 (𝑥, 𝑡) = 𝑥21.𝑒−𝑡. (80)

By the IIM, the problem in (8) and (75) is equivalent to
the integral equation:

𝑢𝑟+1 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + 𝐼𝑡[[(−
2∑
𝑖=1

𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥, 𝑡, 𝑢)

+ 2∑
𝑖,𝑗=1

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗𝐵𝑖,𝑗 (𝑥, 𝑡, 𝑢)) 𝑢𝑟 (𝑥, 𝑡)]] , 𝑟 ≥ 0.
(81)

As above, we have the following first few components of the
integral iterative solution for (8) and (75):

𝑢0 (𝑥, 𝑡) = 𝑥21,
𝑢1 (𝑥, 𝑡) = 𝑥21. (1 − 𝑡) ,

𝑢2 (𝑥, 𝑡) = 𝑥21. (1 − 𝑡 + 𝑡22 ) ,
𝑢3 (𝑥, 𝑡) = 𝑥21. (1 − 𝑡 + 𝑡22 − 𝑡

3

6 ) ,
...

(82)

and so on. In the same manner, the rest of components can
be obtained. Hence,

𝑢𝑟 (𝑥, 𝑡) = 𝑥21. (1 − 𝑡 + 𝑡22! − 𝑡
3

3! + ⋅ ⋅ ⋅ (−1)𝑟 𝑡
𝑟

𝑟!) . (83)

In closed form, this gives

𝑢 (𝑥, 𝑡) = lim
𝑟→∞

𝑢𝑟 = 𝑥21.𝑒−𝑡, (84)

which is the same result as that obtained by the NIM in (80)
and by both the ADM and VIM in [2, 7]. It is clear that the
present two methods simplify the computational procedures
and hence reduce the computational timemore than the other
methods. Therefore, IIM and NIM are better than ADM and
VIM.

5. Conclusion

In this work, both NIM and IIM have been applied suc-
cessfully for solving Fokker-Planck equation. The obtained
results are compared with those obtained by both ADM and
VIM. It is apparently seen that NIM, IIM, VIM, and ADM
are very efficient and powerful to get the exact solutions
in a rapid convergent form. The comparison of the results
shows that although the results of the four methods are
the same, NIM and IIM provide the solutions of the solved
problemswithout usingAdomian’s polynomials or Lagrange’s
multipliers, which can be considered as an advantage of both
NIM and IIM over both ADM and VIM.Therefore, NIM and
IIM are easier and so more convenient than ADM and VIM.
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