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This paper addresses the direction of arrival (DOA) estimation problem in the colocated multiple-input multiple-output (MIMO)
radar with nonorthogonal signals. The maximum number of targets that can be estimated is theoretically derived as rank{𝑅𝑠}𝑁,
where 𝑁 denotes the number of receiving antennas and 𝑅𝑠 is the cross-correlation matrix of the transmitted signals. Therefore,
with the rank-deficient cross-correlationmatrix, the maximum number that can be estimated is less than the radar with orthogonal
signals. Then, a multiple signal classification- (MUSIC-) based algorithm is given for the nonorthogonal signals. Furthermore, the
DOA estimation performance is also theoretically analyzed by the Carmér-Rao lower bound. Simulation results show that the
nonorthogonality degrades the DOA estimation performance only in the scenario with the rank-deficient cross-correlationmatrix.

1. Introduction

In the multiple-input multiple-output (MIMO) radar sys-
tem [1–3], the waveform diversity can be used to improve
the target detection and estimation performance [4–8]. In
the existing works, many methods have been proposed to
estimate the target direction of arrival (DOA). For example,
in the colocated MIMO radar system, a reduced-dimension
transformation is used to reduce the complexity in the DOA
estimation based on the estimation of signal parameters
via rotational invariance technique (ESPRIT) [9]; a com-
putationally efficient DOA estimation algorithm is given
for the monostatic MIMO radar based on the covariance
matrix reconstruction in [10]; a joint DOA and direction of
departure (DOD) estimation method based on ESPRIT is
proposed in [11]. Additionally, in the coprime MIMO radar
system, a reduced-dimension multiple signal classification
(MUSIC) algorithm is proposed [12] for bothDOA andDOD
estimation; a combined unitary ESPRIT-based algorithm is
given for the DOA estimation [13]. In the bistatic MIMO
radar system, a joint DOD and DOA estimation method is

also proposed in the scenario with an unknown spatially
correlated noise [14].

In the existing papers about the MIMO radar systems,
most papers are about the orthogonal waveforms to esti-
mate the DOA, such as the waveforms adopted in [15–20].
However, it is difficult to generate the orthogonal signals in
the practical radar systems, and the number of orthogonal
waveforms is much less than that of nonorthogonal wave-
forms. Therefore, the traditional DOA estimation methods
and results with the orthogonal signalsmust also bemodified.
In [21], the nonorthogonal waveforms are first proposed,
and the method with prewhitening processing is proposed in
[22]. However, to the best of our knowledge, the theoretical
analysis of the nonorthogonal waveforms in theMIMO radar
systems has not yet been addressed in the papers.

In this paper, the DOA estimation problem for multiple
targets is addressed, and the system model of MIMO radar
with nonorthogonal signals is given. Then, the maximum
number of targets that can be estimated is derived accord-
ing to the cross-correlation matrix of transmitted signals,
and a MUSIC algorithm for the nonorthogonal signals is
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also proposed. Furthermore, the Carmér-Rao lower bound
(CRLB) of DOA estimation with the nonorthogonal signals
is also theoretically derived and shows that the estimation
performance with nonorthogonal signals is only degraded in
the scenario with rank-deficient cross-correlation matrix. To
summarize, we make the following contributions:

(i) The MIMO radar system model with nonorthogo-
nal waveforms: with considering the nonorthogonal
waveforms, the system model of MIMO radar with
DOA estimation is given

(ii) The theoretical maximum number of targets: with
the subspace-based DOA estimation methods, the
maximum number of targets that can be estimated is
theoretically derived

(iii) The MUSIC-based method and CRLB for DOA
estimation: to show the DOA estimation perfor-
mance with nonorthogonal waveforms, the MUSIC-
based DOA estimation method is proposed, and the
corresponding CRLB is theoretically derived.

Notations. 1𝑁 stands for a 𝑁 × 1 vector with all entries
being 1. 𝐼𝑁 denotes an 𝑁 × 𝑁 identity matrix. E{⋅} denotes
the expectation operation. CN(𝑎,𝐵) denotes the complex
Gaussian distributionwith themean being 𝑎 and the variance
matrix being 𝐵. ‖ ⋅ ‖2, ⊗, ⊙, Tr{⋅}, vec{⋅}, (⋅)𝑇, and (⋅)𝐻 denote
the ℓ2 norm, the Kronecker product, the Hadamard product,
the trace of a matrix, the vectorization of a matrix, the matrix
transpose, and the Hermitian transpose, respectively.

2. System Model

In this paper, the colocated MIMO radar [8, 23] is adopted,
where the antenna numbers of transmitter and receiver are𝑀 and 𝑁, respectively. We consider the DOA estimation
problem for 𝐾 far-field targets. For the 𝑀 transmitting
antennas, 𝑠𝑚(𝑡) denotes the waveform in the 𝑚th antenna
(𝑚 = 0, 1, . . . ,𝑀−1). In the traditional MIMO radar system,
the waveforms 𝑠𝑚(𝑡) are orthogonal and ∫

𝑡
𝑠𝑚(𝑡)𝑠𝑚󸀠(𝑡)𝑑𝑡 =

0 (𝑚 ̸= 𝑚󸀠). However, in this paper, the nonorthogonal
waveforms are adopted, so we have ∫

𝑡
𝑠𝑚(𝑡)𝑠𝑚󸀠(𝑡)𝑑𝑡 ̸= 0 (𝑚 ̸=

𝑚󸀠). Additionally, 𝑃 pulses are transmitted in the MIMO
radar, and the waveforms between pulses are the same.Then,
during the 𝑝th pulse (𝑝 = 0, 1, . . . , 𝑃−1), the signal in the 𝑛th
receiving antenna (𝑛 = 0, 1, . . . , 𝑁 − 1) can be expressed as

𝑟𝑛 (𝑝, 𝑡) = 𝑀−1∑
𝑚=0

𝐾−1∑
𝑘=0

𝛼𝑘 (𝑝) 𝑠𝑚 (𝑡) 𝑒−𝑗(2𝜋/𝜆)(𝑚𝑑𝑇+𝑛𝑑𝑅) cos 𝜃𝑘
+ 𝑤𝑛 (𝑝, 𝑡) ,

(1)

where

𝜃 ≜ (𝜃0, . . . , 𝜃𝐾−1)𝑇 , (2)

where 𝜃𝑘 denotes the DOA of the 𝑘th target (𝑘 = 0, 1, . . . , 𝐾−1) and 𝑤𝑛(𝑝, 𝑡) denotes the additive white Gaussian noise

(AWGN) with the variance being 𝜎2𝑛 . 𝜆 denotes the wave-
length of the transmitted waveform. 𝑑𝑇 and 𝑑𝑅 denote the
antenna spacing in transmitter and receiver, respectively.𝛼𝑘(𝑝) denotes the fading coefficient of the 𝑘th target’s radar
cross section (RCS) during the 𝑝th pulse. We assume that𝛼𝑘(𝑝) is a type of Swerling II RCS and follows the independent
and identical distribution between pulses. After the matched
filtering processing for the 𝑚th signal during the 𝑝th pulse,
we can obtain the sampled signal as

𝑟𝑛,𝑝,𝑚 ≜ ∫
𝑡
𝑟𝑛 (𝑝, 𝑡) 𝑠𝐻𝑚 (𝑡) 𝑑𝑡 =

𝑀−1∑
𝑚󸀠=0

𝐾−1∑
𝑘=0

𝛼𝑘 (𝑝)
⋅ 𝑒−𝑗(2𝜋/𝜆)(𝑚󸀠𝑑𝑇+𝑛𝑑𝑅) cos 𝜃𝑘 ∫

𝑡
𝑠𝑚󸀠 (𝑡) 𝑠𝐻𝑚 (𝑡) 𝑑𝑡

+ ∫
𝑡
𝑤𝑛 (𝑝, 𝑡) 𝑠𝐻𝑚 (𝑡) 𝑑𝑡.

(3)

After the simplifications, 𝑟𝑛,𝑝,𝑚 can be rewritten as

𝑟𝑛,𝑝,𝑚 = 𝑏𝑇𝑛 (𝜃) diag {𝛼 (𝑝)}𝐴𝑇𝑅𝑠 [𝑚] + 𝑤𝑛,𝑚 (𝑝) , (4)

where 𝑅𝑠 denotes the cross-correlation matrix of the trans-
mitted signals. The 𝑚th row and 𝑚󸀠th column entry of 𝑅𝑠 is
defined as

𝑅𝑠,𝑚,𝑚󸀠 ≜ ∫
𝑡
𝑠𝑚 (𝑡) 𝑠𝐻𝑚󸀠 (𝑡) 𝑑𝑡, (5)

and𝑅𝑠[𝑚] denotes the𝑚th column of𝑅𝑠. diag{𝛼(𝑝)} denotes
a diagonal matrix with all the entries from the vector 𝛼(𝑝),
and the steering vector in the transmitter is defined as

𝑎 (𝜃𝑘) ≜ [𝑒−𝑗(2𝜋/𝜆)0𝑑𝑇 cos 𝜃𝑘 , . . . , 𝑒−𝑗(2𝜋/𝜆)(𝑀−1)𝑑𝑇 cos 𝜃𝑘]𝑇 . (6)

The other symbols are defined as follows:

𝐴 ≜ [𝑎 (𝜃0) , 𝑎 (𝜃1) , . . . , 𝑎 (𝜃𝐾−1)] ,
𝑤𝑛,𝑚 (𝑝) ≜ ∫

𝑡
𝑤𝑛 (𝑝, 𝑡) 𝑠𝐻𝑚 (𝑡) 𝑑𝑡,

𝛼 (𝑝) ≜ [𝛼0 (𝑝) , . . . , 𝛼𝐾−1 (𝑝)]𝑇 ,
𝑏𝑛 (𝜃) ≜ [𝑒−𝑗(2𝜋/𝜆)𝑛𝑑𝑅 cos 𝜃0 , . . . , 𝑒−𝑗(2𝜋/𝜆)𝑛𝑑𝑅 cos 𝜃𝐾−1]𝑇 .

(7)

Since the nonorthogonal signals are transmitted in the
MIMO radar, the off-diagonal entries of 𝑅𝑠 are not all zeros.

We can collect all the received signals in (4) into a matrix
R(𝑝) as

𝑅 (𝑝) = 𝐵diag {𝛼 (𝑝)}𝐴𝑇𝑅𝑠 +𝑊 (𝑝) , (8)

where the 𝑛th row and 𝑚th column of 𝑅(𝑝) is 𝑟𝑛,𝑝,𝑚 and the𝑛th row and𝑚th column of𝑊(𝑝) is 𝑤𝑛,𝑚(𝑝).
𝐵 ≜ [𝑏0 (𝜃) , . . . , 𝑏𝑁−1 (𝜃)]𝑇 = [𝑏 (𝜃0) , . . . , 𝑏 (𝜃𝐾−1)] , (9)

where the steering vector in the receiver is defined as

𝑏 (𝜃𝑘) ≜ [𝑒−𝑗(2𝜋/𝜆)0𝑑𝑅 cos 𝜃𝑘 , . . . , 𝑒−𝑗(2𝜋/𝜆)(𝑁−1)𝑑𝑅 cos 𝜃𝑘]𝑇 . (10)

In this paper, we consider the DOA estimation with
orthogonal waveforms, and the system model is given in (8),
where the unknownDOAs are collected bymatricesA andB.
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3. DOA Estimation

With the received signal𝑅(𝑝), theDOAcan be estimated, and
the estimation performance with the nonorthogonal signals
is analyzed in this section. The vectorization form of (8) can
be expressed as

𝑟 (𝑝) ≜ vec {𝑅 (𝑝)} = 𝑇𝛼 (𝑝) + 𝑤 (𝑝) , (11)

where

𝑇 ≜ (𝑅𝑇𝑠 𝐴 ⊗ 1𝑁) ⊙ (1𝑀 ⊗ 𝐵)
= [𝑅𝑇𝑠 𝑎 (𝜃0) ⊗ 1𝑁, . . . ,𝑅𝑇𝑠 𝑎 (𝜃𝐾−1) ⊗ 1𝑁]

⊙ [1𝑀 ⊗ 𝑏 (𝜃0) , . . . , 1𝑀 ⊗ 𝑏 (𝜃𝐾−1)]
= [𝑡0, . . . , 𝑡𝐾−1] ,

(12)

and ⊗ denotes the Kronecker product, ⊙ denotes the
Hadamard product (entry-wise product),

𝑤 (𝑝) ≜ vec {𝑊 (𝑝)} , (13)

and

𝑡𝑘 ≜ 𝑅𝑇𝑠 𝑎 (𝜃𝑘) ⊗ 𝑏 (𝜃𝑘) (14)

denotes the 𝑘th column of 𝑇. Moreover, the noise 𝑤(𝑝)
follows the zero-mean Gaussian distribution with the covari-
ance matrix being

E {𝑤 (𝑝)𝑤𝐻 (𝑝)} = 𝜎2𝑛 (𝑅𝑇𝑠 ⊗ 𝐼𝑁) . (15)

In the following proposition, we will theoretically derive
the maximum number of targets that can be estimated by the
nonorthogonal waveforms in the MIMO radar system.

Proposition 1. In the colocated MIMO radar system with𝑀 transmitting antennas and 𝑁 receiving antennas, the
maximum number of targets in the DOA estimation using
the subspace-based methods is rank{𝑅𝑠}𝑁, where 𝑅𝑠 denotes
the cross-correlation matrix of transmitted signals. Since
rank{𝑅𝑠} ≤ 𝑀, the maximum number rank{𝑅𝑠}𝑁 ≤ 𝑀𝑁.

Proof. (1) When 𝑅𝑠 is full rank rank{𝑅𝑠} = 𝑀, we have

rank {𝜎2𝑛 (𝑅𝑇𝑠 ⊗ 𝐼𝑁)} = 𝑀𝑁. (16)

Therefore, the matrix (𝑅𝑇𝑠 ⊗ 𝐼𝑁) is invertible, and the AWGN
can be obtained by the following prewhitening processing:

𝑦 (𝑝) ≜ 𝑄𝑟 (𝑝) = 𝑠𝑇 + 𝑧 (𝑝) , (17)

where

𝑄 ≜ (𝑅𝑇𝑠 ⊗ 𝐼𝑁)−1/2 (18)

denotes the prewhitening matrix, and

𝑠𝑇 ≜ 𝑄𝑇𝛼 (𝑝) ; (19)

𝑧(𝑝) denotes the AWGN with the variance matrix being𝜎2𝑛𝐼𝑀𝑁. Then, the cross-correlation matrix of 𝑠𝑇 can be
obtained as

𝑅𝑇 ≜ E {𝑠𝑇𝑠𝐻𝑇 } , (20)

and the dimension of signal subspace can be calculated as

𝐷𝑇 ≜ rank {𝑅𝑇}
≤ min {𝑀𝑁, rank {𝑅𝑇𝑠 𝐴} rank {𝐵} , 𝐾} . (21)

With𝐾 ≤ 𝑀𝑁, we have

𝐷𝑇 ≤ min {min {𝑀,𝐾}min {𝑁,𝐾} , 𝐾} = 𝐾 ≤ 𝑀𝑁. (22)

Therefore, when the subspace-based methods, such as
MUSIC algorithm, are adopted to estimate the DOA, the
maximum number of targets that can be estimated is 𝐾 ≤𝑀𝑁.

(2) When 𝑅𝑠 is not full rank{𝑅𝑠} < 𝑀, the prewhitening
matrix in (17) is irreversible and cannot be adopted, so we
must find other prewhitening matrices. Since the covariance
matrix of noise is a positive-semidefinite normal matrix, we
have the following decomposition:

𝑅
𝑇
𝑠 ⊗ 𝐼𝑁 = 𝑈𝐷𝑈𝐻, (23)

where𝑈 is a unitary matrix composed by the eigenvectors of
𝑅𝑇𝑠 ⊗ 𝐼𝑁 and 𝐷 is a nonnegative real diagonal matrix with
the diagonal entries being the eigenvalues of 𝑅𝑇𝑠 ⊗ 𝐼𝑁. By
collecting the nonzero entries of 𝐷 into a vector 𝑑 ∈ C𝑧×1

and the corresponding eigenvectors into a matrix𝑈𝑑, where

𝑧 ≜ rank {𝑅𝑇𝑠 ⊗ 𝐼𝑁} = 𝑁 rank {𝑅𝑠} , (24)

we can obtain the following prewhitening matrix:

𝑄
󸀠 ≜ [diag−1/2 {𝑑} , 0𝑧×(𝑀𝑁−𝑧)] [𝑈𝑑,𝑈0]𝐻 , (25)

where 𝑈0 are the matrices of eigenvectors corresponding to
the zero eigenvalues. Then, we have the following prewhiten-
ing processing:

𝑦
󸀠 (𝑝) = 𝑄󸀠𝑟 (𝑝) = 𝑄󸀠𝑇𝛼 (𝑝) + 𝑧󸀠 (𝑝) , (26)

where the noise is

𝑧
󸀠 (𝑝) ≜ 𝑄󸀠𝑤 (𝑝) , (27)

and the covariance matrix of noise is

E {𝑧󸀠 (𝑝) 𝑧󸀠𝐻 (𝑝)} = 𝜎2𝑛𝐼𝑧. (28)

Then, the cross-correlation matrix of the echoed signals can
be obtained as

𝑅
󸀠
𝑇 ≜ [𝑄󸀠𝑇𝛼 (𝑝)] [𝑄󸀠𝑇𝛼 (𝑝)]𝐻 , (29)

and the corresponding rank is

𝐷󸀠𝑇 ≜ rank {𝑅󸀠𝑇} ≤ min {𝑧, 𝐾} . (30)
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With rank{𝑅𝑠} < 𝑀, the maximum number of targets that
can be estimated is rank{𝑅𝑠}𝑁, so when the nonorthogonal
signals reduce the rank of the cross-correlation matrix 𝑅𝑠,
the maximum number of targets that can be estimated also
decreases.

With Proposition 1, we find that the maximum number
of targets that can be estimated is rank{𝑅𝑠}𝑁, so, with 𝐾 <
rank{𝑅𝑠}𝑁, we propose a MUSIC-based method to estimate
the DOAs. After the prewhitening processes, the MUSIC
spatial spectrum can be obtained as

𝑠 (𝜃) = 1
𝑐𝐻 (𝜃) 𝑆𝑁𝑆𝐻𝑁𝑐 (𝜃) , (31)

where

𝑐 (𝜃) ≜ 𝑄󸀠 [𝑅𝑇𝑠 𝑎 (𝜃) ⊗ 𝑏 (𝜃)] , (32)

and 𝑆𝑁 is the matrix of noise subspace formulated by the(𝑀𝑁−𝐾) eigenvectors corresponding to theminimumeigen-
values of the received signals 𝑦󸀠(𝑝) after the prewhitening.
The DOAs can be estimated as

𝜃̂ = (𝜃0, 𝜃1, . . . , 𝜃𝐾−1)𝑇 (33)

by selecting the peak positions of the MUSIC spatial spec-
trum.

4. Carmér-Rao Lower Bound

A vector 𝑟 can be formulated by collecting the signals from
all receiving antennas and pulses.

𝑟 = {𝐼𝑃 ⊗ 𝑇}𝛼 + 𝑤, (34)

where

𝑟 ≜ [𝑟𝑇 (0) , 𝑟𝑇 (1) , . . . , 𝑟𝑇 (𝑃 − 1)]𝑇 , (35)

𝛼 ≜ [𝛼𝑇 (0) ,𝛼𝑇 (1) , . . . ,𝛼𝑇 (𝑃 − 1)]𝑇 , (36)

𝑤 ≜ [𝑤𝑇 (0) ,𝑤𝑇 (1) , . . . ,𝑤𝑇 (𝑃 − 1)]𝑇 . (37)

By assuming that the fading coefficients follow the zero-mean
Gaussian distribution

𝛼 ∼ CN (0𝑃𝐾, 𝛼2𝐼𝑃𝐾) , (38)

𝑟 also follows the zero-mean Gaussian distribution:

𝑟 ∼ 𝑓 (𝑟; 𝜃) = 1𝜋𝑀𝑁𝑃 det (𝐶𝑟) 𝑒
−𝑟𝐻𝐶−1

𝑟
𝑟 (39)

with the covariance matrix being

𝐶𝑟 ≜ 𝜎2𝑛𝐼𝑃 ⊗ (𝑅𝑇𝑠 ⊗ 𝐼𝑁) + 𝛼2𝐼𝑃 ⊗ 𝑇𝑇𝐻. (40)

With the receiving signal 𝑟, the DOA can be estimated
by the MUSIC algorithm proposed in this paper, and the
estimation performance is bounded by the CRLB.

E {󵄩󵄩󵄩󵄩󵄩𝜃 − 𝜃̂󵄩󵄩󵄩󵄩󵄩22} ≥ 𝑔 (𝜃) ≜ Tr {𝐹−1} , (41)
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Figure 1: The illustration of 𝑅𝑠.

where 𝑔(𝜃) denotes the CRLB of DOA estimation and 𝐹
denotes the Fisher informationmatrix (FIM).The entry in the𝑖th row and 𝑗th column (𝑖 = 0, 1, . . . , 𝐾−1, 𝑗 = 0, 1, . . . , 𝐾−1)
of the FIM can be obtained as

𝐹𝑖,𝑗 = −E{𝜕2 ln𝑓 (𝑟; 𝜃)𝜕𝜃𝑖𝜕𝜃𝑗 } , (42)

and the detailed expressions of FIM are given in the
Appendix. Similarity, with the orthogonal waveforms, we
have 𝑅𝑠 = 𝐼𝑀, and the corresponding CRLB can be also
obtained.

5. Simulation Results

In this section, the simulation results are given, and the
parameters are set as follows: the numbers of transmitting
antennas, receiving antennas, and pulses are𝑀 = 5,𝑁 = 10,
and 𝑃 = 10, respectively; the carrier frequency is 10GHz; the
wavelength is 𝜆 = 0.03 m; the antenna spacing is 𝑑𝑇 = 𝑑𝑅 =𝜆/2. In Figure 2, the MUSIC algorithm is used to estimate
the DOA of 3 targets, where the DOAs are 0.1881, 1.0461,
and 1.4071, respectively.With the signal-to-noise ratio (SNR)
being 25 dB, the MUSIC algorithm is used to estimate the
DOA, and 𝑅𝑠 is shown in Figure 1. After 105 Monte Carlo
experiments, the root-mean-square error (RMSE) of DOA
estimation can be obtained as 0.0103. The rank of waveforms
adopted in Figure 2 is𝑀, but the rank of waveforms adopted
in Figure 3 is 1. Therefore, the estimation performance is
degraded in the scenario with rank-deficient waveforms.

In the scenario with nonorthogonal signals, Figure 4
shows the DOA estimation performance using the MUSIC
method with different types of transmitted signals, including
the orthogonal signals, the full-rank nonorthogonal signals
(rank{𝑅𝑠} = 5), and the rank-deficient nonorthogonal signals
(rank{𝑅𝑠} = 1). As shown in this figure, with increasing the
SNR of received signals, the DOA estimation performance is
improved and approaches the CRLBs with both orthogonal
and nonorthogonal signals. However, the nonorthogonal
signals achieveworse estimation performance comparedwith
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Figure 2: The MUSIC algorithm to estimate DOA (full rank).
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Figure 3: The MUSIC algorithm to estimate DOA (rank = 1).

the orthogonal signals, especially in the scenario with rank-
deficient waveforms. Moreover, we also show the DOA esti-
mation performance using the state-of-art direction finding
method. In [24], by discretizing the detection area into grids,
the simultaneous orthogonal matching pursuit (SOMP) is
proposed, and the DOA estimation can be formulated as
a sparse reconstruction problem. Figure 5 shows the DOA
estimation with different waveforms, and the better estima-
tion performance can be achieved by both the full-rank and
the orthogonal waveforms compared with the rank-deficient
waveform. Therefore, the nonorthogonality degrades the
DOA estimation performance only in the scenario with rank-
deficient waveforms.

In Figure 6, we show the DOA estimation performance
with different numbers of targets and the MUSIC method
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Figure 4: DOA estimation performance with different values of
SNR (MUSIC).
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Figure 5: DOA estimation performance with different values of
SNR (SOMP).

is adopted, where SNR is 30 dB. As shown in this figure,
the estimation performance is degraded by more targets,
and full-rank cross-correlation matrix can achieve better
estimation performance than the rank-deficient one. The
estimation performance can achieve the CRLB in the sce-
nario with fewer targets. Therefore, in the DOA estimation
scenario with multiple targets, the nonorthogonality gives
worse estimation performance, especially with the rank-
deficient nonorthogonal signals. In the future work about
waveform design ofMIMO radar systems, when the full-rank
waveforms are adopted, the DOA estimation performance
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Figure 6: DOA estimation performance with different numbers of
targets.

cannot be degraded greatly, so we can choose the full-rank
nonorthogonal waveforms with more freedom.

6. Conclusion

In this paper, the DOA estimation problem with nonorthog-
onal signals has been addressed in the MIMO radar system.
The maximum number of targets, which is limited by the
rank of the cross-correlation matrix, has been analyzed
and given. Then, the MUSIC algorithm for nonorthogonal
signals has also been given, and the CRLB for nonorthogonal
signals has been derived. Simulation results show that the
estimation performance is mainly degraded by the rank-
deficient cross-correlation matrix of the transmitted signals.
Future work will focus on the waveform design using the full-
rank nonorthogonal waveforms in the MIMO radar systems.

Appendix

The Detailed Expressions of FIM

The entry in the 𝑖th row and 𝑗th column of the FIM can be
expressed as

𝐹𝑖,𝑗 = −E{𝜕2 ln𝑓 (𝑟; 𝜃)𝜕𝜃𝑖𝜕𝜃𝑗 }
= Tr{𝐶−1𝑟 𝜕𝐶𝑟𝜕𝜃𝑗 𝐶

−1
𝑟

𝜕𝐶𝑟𝜕𝜃𝑖 } + Tr{𝐶−1𝑟 𝜕2𝐶𝑟𝜕𝜃𝑖𝜕𝜃𝑗} ,
(A.1)

where 𝜕𝐶𝑟/𝜕𝜃𝑖 can be simplified as

𝜕𝐶𝑟𝜕𝜃𝑖 = 𝛼2𝐼𝑃 ⊗ 𝜕𝑇𝑇𝐻𝜕𝜃𝑖

= 𝛼2𝐼𝑃 ⊗ (𝜕𝑇𝜕𝜃𝑖𝑇
𝐻 + 𝑇𝜕𝑇𝐻𝜕𝜃𝑖 ) ,

(A.2)

where

𝜕𝑇𝜕𝜃𝑖 = [0𝑀𝑁×(𝑖−1), 𝜕𝑡𝑖𝜕𝜃𝑖 , 0𝑀𝑁×(𝐾−𝑖)] , (A.3)

𝜕𝑡𝑖𝜕𝜃𝑖 = 𝑅
𝑇
𝑠

𝜕𝑎 (𝜃𝑖)𝜕𝜃𝑖 ⊗ 𝑏 (𝜃𝑖) + 𝑅𝑇𝑠 𝑎 (𝜃𝑖) ⊗ 𝜕𝑏 (𝜃𝑖)𝜕𝜃𝑖 . (A.4)

Additionally, we can obtain

𝜕𝑎 (𝜃𝑖)𝜕𝜃𝑖 = 𝑗2𝜋𝜆 𝑑𝑇 sin 𝜃𝑖 (𝜂𝑀 ⊙ 𝑎 (𝜃𝑖)) . (A.5)

And

𝜂𝑀 ≜ [0, 1, . . . ,𝑀 − 1]𝑇 . (A.6)

Using the same method, the derivative of 𝑏(𝜃𝑖) can be also
obtained as

𝜕𝑏 (𝜃𝑖)𝜕𝜃𝑖 = 𝑗2𝜋𝜆 𝑑𝑅 sin 𝜃𝑖 (𝜂𝑁 ⊙ 𝑏 (𝜃𝑖)) . (A.7)

The second-order derivative of 𝐶𝑟 can be expressed as

𝜕2𝐶𝑟𝜕𝜃𝑖𝜕𝜃𝑗
= 𝛼2𝐼𝑃 ⊗ [𝜕 ((𝜕𝑇/𝜕𝜃𝑖)𝑇𝐻)𝜕𝜃𝑗 + 𝜕 (𝑇 (𝜕𝑇𝐻/𝜕𝜃𝑖))𝜕𝜃𝑗 ]
= 𝛼2𝐼𝑃

⊗ [ 𝜕2𝑇𝜕𝜃𝑖𝜕𝜃𝑗𝑇
𝐻 + 𝜕𝑇𝜕𝜃𝑖

𝜕𝑇𝐻𝜕𝜃𝑗 + 𝜕𝑇𝜕𝜃𝑗
𝜕𝑇𝐻𝜕𝜃𝑖 + 𝑇 𝜕2𝑇𝐻𝜕𝜃𝑖𝜕𝜃𝑗]

= {{{{{{{

0𝑀𝑁𝑃, 𝑖 ̸= 𝑗
𝛼2𝐼𝑃 ⊗ (𝜕2𝑡𝑖𝜕2𝜃𝑖 𝑡𝐻𝑖 + 2 𝜕𝑡𝑖𝜕𝜃𝑖

𝜕𝑡𝐻𝑖𝜕𝜃𝑖 + 𝑡𝑖
𝜕2𝑡𝐻𝑖𝜕2𝜃𝑖 ) , 𝑖 = 𝑗

(A.8)

where

𝜕2𝑡𝑖𝜕2𝜃𝑖 =
𝜕 [𝑅𝑇𝑠 (𝜕𝑎 (𝜃𝑖) /𝜕𝜃𝑖) ⊗ 𝑏 (𝜃𝑖)]𝜕𝜃𝑖
+ 𝜕 [𝑅𝑇𝑠 𝑎 (𝜃𝑖) ⊗ (𝜕𝑏 (𝜃𝑖) /𝜕𝜃𝑖)]𝜕𝜃𝑖

= 𝑅𝑇𝑠 𝜕
2𝑎 (𝜃𝑖)𝜕2𝜃𝑖 ⊗ 𝑏 (𝜃𝑖) + 2𝑅𝑇𝑠 𝜕𝑎 (𝜃𝑖)𝜕𝜃𝑖

⊗ 𝜕𝑏 (𝜃𝑖)𝜕𝜃𝑖 + 𝑅𝑇𝑠 𝑎 (𝜃𝑖) ⊗ 𝜕2𝑏 (𝜃𝑖)𝜕2𝜃𝑖 ,
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𝜕2𝑎 (𝜃𝑖)𝜕2𝜃𝑖 = 𝑗2𝜋𝜆 𝑑𝑇 𝜕 sin 𝜃𝑖𝜂𝑀 ⊙ 𝑎 (𝜃𝑖)𝜕𝜃𝑖
= 𝑗2𝜋𝜆 𝑑𝑇𝜂𝑀

⊙ (𝑎 (𝜃𝑖) cos 𝜃𝑖 + 𝜕𝑎 (𝜃𝑖)𝜕𝜃𝑖 sin 𝜃𝑖) ,
𝜕2𝑏 (𝜃𝑖)𝜕2𝜃𝑖 = 𝑗2𝜋𝜆 𝑑𝑅𝜂𝑁

⊙ (𝑎 (𝜃𝑖) cos 𝜃𝑖 + 𝜕𝑎 (𝜃𝑖)𝜕𝜃𝑖 sin 𝜃𝑖) .
(A.9)
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