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Amixed noise removal algorithm combining adaptive directional weightedmean filter and improved adaptive anisotropic diffusion
model is proposed. Firstly, a noise classification method is introduced to divide all pixels into two types as the pixels corrupted by
impulse noise and the pixels corrupted by Gaussian noise.Then an adaptive directional weightedmean filter is developed to remove
impulse noise, which can adaptively select the optimal direction template from twelve direction templates and replace the gray
level of each impulse noise corrupted pixel by the weighted mean gray level of pixels on the optimal direction template. Finally,
an improved adaptive anisotropic diffusion model is developed to remove Gaussian noise in the initial denoised image, which
can finely classify image features as smooth regions, edges, corners, and isolated noises by characteristic parameters and variance
parameter and conduct adaptive diffusion for different image features by designing reasonable eigenvalues of diffusion tensor. A
large number of experimental results show that the proposed algorithm outperforms many existing main mixed noise removal
methods in terms of image denoising and detail preservation.

1. Introduction

Noise is more or less introduced into an image in the
process of image acquisition and transmission, which can
significantly deteriorate image quality and increase difficulty
in the subsequent image analysis [1]. The task of image
denoising is to remove noise from the corrupted image and
meanwhile preserve edges as much as possible. The nature
of image denoising depends on the types of noise added
to the image. Most commonly noises are additive white
Gaussian noise (AWGN), impulse noise (IN), and themixture
of AWGN and IN.

TheAWGN is usually introduced into an image due to the
thermal motion of electron in camera sensors and circuits,
which is the most widely studied noise model in image
denoising. The traditional linear filter such as mean filter can
remove the AWGN but blurs edges. To overcome the disad-
vantage, the bilateral filter (BF) [2] uses the geometric and
photometric distances based weights. The nonlocal means

(NLM) filter [3] can be viewed as a significant extension of the
BF based on the fact that similar pixels may not be necessarily
spatial neighbors. The nonlinear diffusion filtering method
such as Perona-Malik (P-M) model [4] is a well-known
method based on a partial differential equation. The P-
M model changes the diffusivity with the gradient during
denoising, which has good capability in edge preservation.
However, the P-M model has a significant shortcoming that
the blocky effects exist in smooth regions after denoising. A
coherence-enhancing anisotropic diffusion denoising (CAD)
model [5] is developed to solve the problem by designing the
diffusivity as a tensor. However, many undesired false edges
appear in smooth regions after denoising. Recently, many
modified models have been developed [6–8].

The IN is often introduced into an image by faulty
memory locations or bit errors [9]. Salt-and-pepper impulse
noise (SPIN) and random valued impulse noise (RVIN) are
the two common types of the IN. The standard median filter
[10] is the most popular nonlinear filter for removing the
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IN, which is effective at low noise density. When the noise
density is over 50%, some important edges will be blurred.
To overcome the drawback, various modified median filters
have been developed [11–16]. The switching median filter
is a popular technique to remove the IN, which firstly
identifies the IN corrupted pixels and then replaces the
gray level of each IN corrupted pixel by the median value
of its neighborhood pixels. The switching median filter
with boundary discriminative noise detection (BDND) [17]
identifies the IN corrupted pixels by adaptively selecting the
filtering window of suitable size. The directional weighted
median (DWM) filter [18] detects the IN corrupted pixels
by considering the neighborhood information of each pixel
along four directions. The modified directional weighted
median (MDWM) filter [19] is modified based on DWM
filter, which considers the neighborhood information of
each pixel on more edge directions than DWM filter. The
modified directional weighted (MDW) filter [20] detects the
IN corrupted pixels by combining the directional gray level
difference with gray level extreme and replaces the gray level
of each IN corrupted pixel by the weighted mean gray level of
its neighborhood pixels.

In many cases, images may not be corrupted by only one
type of noise, but mixed types of noise such as the mixture
of AWGN and IN. In order to restore the image corrupted
by the mixed noise, many methods have been developed
[21–26]. The trilateral filter (TF) [22] incorporates the rank-
order absolute difference statistics into BF framework for IN
detection. Switching bilateral filter (SBF) [23] introduces the
sorted quadrantmedian vector into BF to detect IN corrupted
pixels. A nonlocal mixed noise filter [24] can skillfully extend
NLM into the mixed noise circumstance by combining
NLM with TF. A universal denoising framework [25] can
remove the mixed noise by combining a complex detection
mechanism with an improved NLM. A modified two-phase
filter (MTF) [26] can effectively remove themixed noise from
the corrupted image, and the computational performance of
this method is further improved in [27]. Recently, the low
rank approximation (LRA) [28] and low rank representation
(LRR) [29] have been used for removing noise. A weighted
low rank approximation (WLRA) model and a weighted low
rank representation (WLRR) model [30] are proposed to
remove the mixed noise, which group image nonlocal similar
patches as amatrix and restore the corrupted image byfinding
theweighted low rank approximation or representation of the
matrix.

In this paper, we propose a mixed noise removal algo-
rithm combining adaptive directional weighted mean filter
and improved adaptive anisotropic diffusion model. The
proposed algorithm can accurately classify IN corrupted
pixels and AWGN corrupted pixels by a noise classification
method. After noise classification, an adaptive directional
weighted mean (ADWM) filter is developed to remove the
IN based on the multidirectional image information, which
can effectively remove the IN and meanwhile preserve edges
and details. Then an improved adaptive anisotropic diffusion
(IAD)model is introduced to remove theAWGN in the initial
denoised image, which can finely classify image features as
four types and control the adaptive diffusion for different

image features by designing the reasonable eigenvalues of
diffusion tensor. The proposed algorithm makes full use of
the advantages of ADWM filter and IAD model. The exper-
imental results show that the proposed algorithm performs
better than some existing main methods in terms of image
denoising and edge preservation.

The outline of this paper is as follows. Section 2 presents
the mixed noise model. A noise classification framework is
brought out in Section 3. In Section 4, the proposed algorithm
is described in detail. The experiments and results are shown
in Section 5. Conclusion is given in Section 6.

2. Mixed Noise Model

For a clean gray image 𝑐, the gray level of the pixel at location(𝑖, 𝑗) is 𝑐𝑖,𝑗. The dynamic gray range of 𝑐 is between 𝑐min and𝑐max. If 𝑐 is an 8-bit image, 𝑐min equals 0 and 𝑐max equals
255. Usually, a clean gray image is firstly contaminated by
the AWGN during acquisition and then corrupted by the IN
in the process of transmission. After that, an image 𝑢 with
mixed noise is generated. The mixed noise model is defined
as follows:

𝑢𝑖,𝑗 = {{{𝑐𝑖,𝑗 + 𝑎𝑖,𝑗, probability (1 − 𝑝)𝑏𝑖,𝑗, probability 𝑝 (1)

where 𝑝 defines the proportion of the IN. 𝑎 is the noise value
which is drawn from aGaussian distributionwithmean 0 and
standard deviation 𝜎. 𝑏 is the value of the IN which modifies
the original gray level. In this paper, we mainly consider the
SPIN mixed with the AWGN.

3. Noise Classification Method

From the mixed noise model, one can observe that the
pixel in an image is corrupted by the AWGN or IN. The
distribution of mixed noise cannot be described by a fixed
function. Different pixels should be considered differently.
Hence, a noise classification method is introduced to divide
all the noise corrupted pixels into two types. Since the
SPIN corrupted pixel takes the maximum or minimum gray
level, its gray level is much different from the gray levels
of its neighborhood pixels. Then a variance parameter is
introduced to judge the gray level difference between the
current pixel and its neighborhood pixels. And, for any one
pixel 𝑃𝑖,𝑗 in a mixed noise corrupted image, its variance
parameter 𝑉𝑖,𝑗 in a 𝑚 × 𝑚 local window Ω is calculated as
follows:

(1) Calculate the gray level variance𝑉1𝑖,𝑗 of all pixels in the
local window by

𝑉1𝑖,𝑗 = ∑𝑚2𝑘=1 (𝑔𝑠𝑘 ,𝑟𝑘 −𝑀1)2𝑚2 (2)

where (𝑠𝑘, 𝑟𝑘) ∈ Ω. 𝑔𝑠𝑘 ,𝑟𝑘 denotes the gray level of pixel𝑃𝑠𝑘 ,𝑟𝑘 .𝑀1 denotes mean gray level of all pixels in the
local window,𝑀1 = (∑𝑚2𝑘=1 𝑔𝑠𝑘 ,𝑟𝑘)/𝑚2.
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Figure 1: 12 direction templates in the local window, (a) directions 1-4, and (b) directions 5-12.
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Figure 2: The six test images. From (a) to (f): Lena, Boat, Peppers, Painting, Couple, and Hill.
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Figure 3: Denoising results of different methods for Lena image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,𝜎=10, 𝑝=20%). From (c) to (f): denoising results of TF, SBF, MNF, and the proposed algorithm.

(2) Calculate the neat gray level variance𝑉2𝑖,𝑗 of neighbor-
hood pixels of central pixel by

𝑉2𝑖,𝑗 = ∑𝑚2−1𝑘=1 (𝑔𝑠𝑘 ,𝑟𝑘 −𝑀2)2(𝑚2 − 1) (3)

where (𝑠𝑘, 𝑟𝑘) ∈ Ω and (𝑠𝑘, 𝑟𝑘) ̸= (𝑖, 𝑗). 𝑀2 denotes
the mean gray level of neighborhood pixels of central
pixel,𝑀2 = (∑𝑚2−1𝑘=1 𝑔𝑠𝑘 ,𝑟𝑘)/(𝑚2 − 1).

(3) Calculate the absolute difference value between 𝑉1𝑖,𝑗
and 𝑉2𝑖,𝑗, and denote it as the variance parameter 𝑉𝑖,𝑗.𝑉𝑖,𝑗 = 𝑉1𝑖,𝑗 − 𝑉2𝑖,𝑗 (4)

Based on the above notion, if 𝑉1𝑖,𝑗 is much different
from 𝑉2𝑖,𝑗, the gray level of central pixel is much different
from the gray levels of its neighborhood pixels. Then the
pixel with a large variance parameter can be identified as a
SPIN corrupted pixel in the high probability. A parameter𝑇 is selected as the threshold to judge the value of variance
parameter. Besides, considering that the SPIN corrupted

pixel takes the maximum or minimum gray level, it can be
identified by combining the variance parameter and gray level
extreme.Then the detailed process of noise classification is as
follows:

(1) For any one pixel 𝑃𝑖,𝑗 in a corrupted image, establish
a local window.

(2) Calculate the variance parameter 𝑉𝑖,𝑗 according to
formulas (2)-(4).

(3) Identify the characteristic of pixel 𝑃𝑖,𝑗 in the following
way:

𝑃𝑖,𝑗 ∈ {{{𝑁1, 𝑖𝑓 𝑉𝑖,𝑗 > 𝑇 𝑎𝑛𝑑 𝑔𝑖,𝑗 ∈ {0, 255}𝑁2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5)

where 𝑁1 and 𝑁2 denote the pixels corrupted by the
SPIN and AWGN, respectively. 𝑔𝑖,𝑗 is the gray level of
pixel 𝑃𝑖,𝑗 in the corrupted image.

4. Proposed Denoising Algorithm

4.1. Adaptive Directional Weighted Mean Filter. After noise
classification, the ADWM filter is developed to restore the
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Figure 4: Denoising results of different methods for Boat image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,𝜎=10, 𝑝=20%). From (c) to (f): denoising results of TF, SBF, MNF, and the proposed algorithm.

SPIN corrupted pixels based on the multidirectional image
information. The ADWM filter firstly designs 12 direction
templates in the local window, then adaptively selects the
optimal direction template by calculating the sum of absolute
gray level differences between the current noise corrupted
pixel and its neighborhood pixels on each direction template,
and finally replaces the gray level of each SPIN corrupted
pixel by the weightedmean gray level of pixels on the optimal
direction template. For any one pixel 𝑃𝑖,𝑗 corrupted by the
SPIN, the optimal direction template is selected as follows:

(1) Establish a 𝑚 × 𝑚 local window Ω centered at the
position (𝑖, 𝑗) and design 12 direction templates as
shown in Figure 1.

(2) Calculate the sum of absolute gray level difference
between the central pixel and its neighborhood pixels
on each direction template 𝐸𝑙 by𝑑𝑙𝑖,𝑗 = ∑

(𝑠𝑘 ,𝑟𝑘)∈𝐸
𝑙

𝑤𝑠𝑘 ,𝑟𝑘 𝑔𝑠𝑘 ,𝑟𝑘 − 𝑔𝑖,𝑗 (6)

where (𝑠𝑘, 𝑟𝑘) ̸= (𝑖, 𝑗) and 𝑙 (1 ≤ 𝑙 ≤ 12) is the
direction index illustrated in Figure 1. The weight of
each neighborhood pixel 𝑃𝑠𝑘,𝑟𝑘 is assigned by

𝑤𝑠𝑘 ,𝑟𝑘 = {{{2, (𝑠𝑘, 𝑟𝑘) ∈ Ω31, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (7)

whereΩ3 denotes a 3×3 local window centered at the
position (𝑖, 𝑗).

(3) Find out the minimum sum of absolute gray level
difference among the twelve direction templates, and
denote it as𝑑𝑙∗𝑖,𝑗 = arg min

𝑙

{𝑑𝑙𝑖,𝑗, 1 ≤ 𝑙 ≤ 12} (8)

(4) Select the direction template with minimum sum of
absolute gray level difference as the optimal direction
template 𝐸𝑙∗ .

After selecting the optimal direction template, the gray
level of central pixel will be replaced by the weighted mean
gray level of the pixels on the optimal direction template.The
restoration gray level of the central pixel 𝑃𝑖,𝑗 can be calculated
as follows:

(1) Calculate the chessboard distance ℎ𝑠𝑘 ,𝑟𝑘 between the
central pixel and the pixels on the optimal direction
template by
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Figure 5: Denoising results of the proposed algorithm for Lena image corrupted by different mixed noise. (a) Image corrupted by mixed
noise (AWGN+SPIN, 𝜎=10, 𝑝=10%). (b) Image corrupted by mixed noise (AWGN+SPIN, 𝜎=20, 𝑝=20%). (c) Image corrupted by mixed
noise (AWGN+SPIN, 𝜎=30, 𝑝=30%). From (d) to (f): denoising results of the proposed algorithm for (a), (b), and (c).

ℎ𝑠𝑘 ,𝑟𝑘 = max (𝑠𝑘 − 𝑖 , 𝑟𝑘 − 𝑗) (9)

where (𝑠𝑘, 𝑟𝑘) ∈ 𝐸𝑙∗ and (𝑠𝑘, 𝑟𝑘) ̸= (𝑖, 𝑗).
(2) Calculate the weight 𝑒𝑘 of the pixels on the optimal

direction template by

𝑒𝑠𝑘 ,𝑟𝑘 = ℎ−1𝑠𝑘 ,𝑟𝑘∑𝑛𝑘=1 ℎ−1𝑠𝑘 ,𝑟𝑘 (10)

where 𝑛 is the number of the pixels except for the
central pixel on the optimal direction template.

(3) Calculate the restoration gray level 𝑔1𝑖,𝑗 of the central
pixel by

𝑔1𝑖,𝑗 = 𝑛∑
𝑘=1

𝑔𝑠𝑘 ,𝑟𝑘𝑒𝑠𝑘 ,𝑟k (11)

where 𝑔𝑠𝑘 ,𝑟𝑘 denotes the gray level of pixel 𝑃𝑠𝑘 ,𝑟𝑘 on the
optimal direction template.

An initial denoised image 𝑢1 can be obtained by applying
the ADWM filter for the mixed noise corrupted image

𝑢. Then an improved adaptive anisotropic diffusion (IAD)
model is introduced to remove the remaining AWGN in the
initial denoised image 𝑢1.
4.2. Improved Adaptive Anisotropic Diffusion Model. The
CAD model uses Gaussian filter twice in the diffusion
process. The standard deviation in the convolution oper-
ation is hard to be determined. It takes multiple exper-
iments to find the optimal value of standard deviation.
Hence, in order to improve the calculation efficiency, the
IAD model uses Wiener filter to replace Gaussian filer as
follows: 𝜕𝑢1𝜕𝑡 = div (𝐷 (𝐽 (∇𝑢1𝑤)) ∇𝑢1𝑤)𝑢1 (𝑥, 𝑦, 0) = 𝑢1 (𝑥, 𝑦) (12)

where (𝑥, 𝑦) denotes the position of the pixel in the image
and 𝑡 denotes the time. 𝑑𝑖V denotes the divergence operator.∇ denotes the gradient operator. 𝑢1𝑤 = 𝑤𝑖𝑒𝑛𝑒𝑟(𝑢1), and𝑤𝑖𝑒𝑛𝑒𝑟( ) denotes Wiener filter.

For any one pixel 𝑃𝑖,𝑗 in the initial denoised image 𝑢1, the
gray level obtained by Wiener filter is calculated as follows:
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Figure 6: Denoising results of the proposed algorithm for Boat image corrupted by different mixed noise. (a) Image corrupted by mixed
noise (AWGN+SPIN, 𝜎=10, 𝑝=10%). (b) Image corrupted by mixed noise (AWGN+SPIN, 𝜎=20, 𝑝=20%). (c) Image corrupted by mixed
noise (AWGN+SPIN, 𝜎=30, 𝑝=30%). From (d) to (f): denoising results of the proposed algorithm for (a), (b), and (c).

𝑤𝑖𝑒𝑛𝑒𝑟 (𝑔1𝑖,𝑗) = 𝑧 + V2 − 𝜎2
V2

(𝑔1𝑖,𝑗 − 𝑧) (13)

where 𝑔1𝑖,𝑗 denotes the gray level of pixel 𝑃𝑖,𝑗 in the initial
denoised image. 𝑧 denotes themean value of the gray levels of
pixels in a𝑀×𝑁 local window which centers at the position(𝑖, 𝑗). V denotes the standard deviation of the gray levels of
pixels in the local window. 𝜎 denotes the standard deviation
of the Gaussian noise.

The structure tensor 𝐽(∇𝑢1𝑤) is defined as follows:

𝐽 (∇𝑢1𝑤) = 𝑤𝑖𝑒𝑛𝑒𝑟 (∇𝑢1𝑤 ⊗ ∇𝑢1𝑤) = 𝑊 ∗ ∇𝑢1𝑤∇𝑢1𝑤
= (𝐽11 𝐽12𝐽21 𝐽22)
= ( (𝜕𝑢1𝜕𝑥 )2 ∗𝑊 (𝜕𝑢1𝜕𝑥 𝜕𝑢1𝜕𝑦 )2 ∗𝑊(𝜕𝑢1𝜕𝑥 𝜕𝑢1𝜕𝑦 )2 ∗𝑊 (𝜕𝑢1𝜕𝑦 )2 ∗𝑊 )

(14)

where ⊗ denotes the Kronecker product operator.𝑊 denotes
the Wiener kernel. ∗ denotes the convolution operator.

The structure tensor 𝐽(∇𝑢1𝑤) is a symmetric positive
semidefinite matrix, whose eigenvectors are orthonormal.
The eigenvectors of the structure tensor are as follows:

V1 = (cos 𝜃1, sin 𝜃1)
V2 = (cos 𝜃2, sin 𝜃2) (15)

where 𝜃1 = (1/2) arctan(2𝐽12/(𝐽11 − 𝐽22)), 𝜃2 = 𝜃1 + 𝜋/2,
V1//∇𝑢1𝑤 , and V2 ⊥ ∇𝑢1𝑤 . The corresponding eigenvalues are
given by

𝜇1 = 12 (𝐽11 + 𝐽22 + √(𝐽11 − 𝐽22)2 + 4𝐽212)
𝜇2 = 12 (𝐽11 + 𝐽22 − √(𝐽11 − 𝐽22)2 + 4𝐽212) (16)

The diffusion tensor 𝐷(𝐽(∇𝑢1𝑤)) has the same eigenvec-
tors as the structure tensor, that is, V1, V2. The corresponding
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Figure 7: The bar blots of PSNR values of different methods for six test images with 𝑝=50%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

eigenvalues of the diffusion tensor are 𝜆1 and 𝜆2. Then the
diffusion tensor is defined by

𝐷 = (V1 V2) (𝜆1 𝜆2)(V𝑇1
V𝑇2
) (17)

The CADmodel only divides image features into smooth
regions and edges, which ignores corners and isolated noises.
In order to enhance image features, the IADmodel introduces
an image feature classification method to classify image fea-
tures as smooth regions, edges, corners, and isolated noises.
Considering that the eigenvalues𝜇1 and𝜇2 of structure tensor
can describe the changes of image gradation along directions
V1 and V2, two characteristic parameters are defined based on𝜇1 and 𝜇2 as follows: 𝐶1 = 𝜇1 + 𝜇2,𝐶2 = 𝜇1 − 𝜇2 (18)

Based on the above notion, 𝐶1 describes the compre-
hensive varying property of gray level and 𝐶2 expresses the

difference of the gray varying along the two directions. Then
for any one pixel 𝑃𝑖,𝑗 in the initial denoised image, its feature
can be identified by the characteristic parameters as follows:

(1) If 𝜇1 ≈ 0 and 𝜇2 ≈ 0, it means that the changes of gray
level along V1 and V2 are minimal. Then the pixel is
located in the smooth region and 𝐶1 ≈ 0 and 𝐶2 ≈ 0.

(2) If 𝜇1 ≫ 0 and 𝜇2 ≈ 0, it means that the change of gray
level along V1 is very large while the change of gray
level along V2 is minimal. Then the pixel is located in
the edge and 𝐶1 ≫ 0 and 𝐶2 ≫ 0.

(3) If 𝜇1 ≫ 0 and 𝜇2 ≫ 0, it means that the changes of
gray level along V1 and V2 are very large.Then the pixel
is an isolated noise pixel or located in the corner and𝐶1 ≫ 0 and 𝐶2 ≈ 0.

From the above analysis, it can be seen that the corners
and isolated noises cannot be classified by the characteristic
parameters. Since the variance parameter can reflect the gray
level difference between the current pixel and its neighbor-
hood pixels, it is used to classify corners and isolated noises.
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Figure 8: The bar blots of PSNR values of different methods for six test images with 𝑝=60%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

For any one pixel 𝑃𝑖,𝑗 in a 3×3 local window, if it is an isolated
noise pixel, its gray level is much different from the gray levels
of its neighborhood pixels; if it is located in the corner, its gray
level is similar to the gray levels of the other pixels located in
the corner. Hence, the variance parameter of isolated noise
pixel is much larger than the variance parameter of pixel
located in the corner. Then a parameter 𝑇∗ is selected as the
threshold to judge the value of variance parameter 𝑉 in a3 × 3 local window. Then for any one pixel 𝑃𝑖,𝑗 in the initial
denoised image, its feature can be identified by combining the
characteristic parameters and variance parameter as follows:

(1) If 𝐶1 ≈ 0, 𝐶2 ≈ 0, the pixel is located in the smooth
region.

(2) If 𝐶1 ≫ 0,𝐶2 ≫ 0, the pixel is located in the edge.
(3) If 𝐶1 ≫ 0, 𝐶2 ≈ 0, 𝑉 > 𝑇∗, the pixel is an isolated

noise pixel.
(4) If 𝐶1 ≫ 0, 𝐶2 ≈ 0, 𝑉 ≤ 𝑇∗, the pixel is located in the

corner.

Based on the classification result of image feature, the
eigenvalues of the diffusion tensor are designed to conduct
the adaptive diffusion for different image features as follows:

(1) If the pixel 𝑃𝑖,𝑗 is an isolated noise pixel or located in
the smooth region, its eigenvalues are designed by𝜆1 = 𝛼,𝜆2 = 𝛼 (19)

where 𝛼 ∈ (0, 1) is a large positive parameter. Both
of the eigenvalues 𝜆1 and 𝜆2 are designed to be large.
Then the diffusivity along the two directions V1 and V2
is large. Hence, the noise can be effectively removed.

(2) If the pixel 𝑃𝑖,𝑗 is located in the edge, its eigenvalues
are designed by𝜆1 = 𝛽,𝜆2 = 1 − exp (− ∇𝑢1) (20)



10 Mathematical Problems in Engineering

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

FS
IM

 v
al

ue
s

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

(a)

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

FS
IM

 v
al

ue
s

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

(b)

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

FS
IM

 v
al

ue
s

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

(c)

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

FS
IM

 v
al

ue
s

(d)

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

FS
IM

 v
al

ue
s

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

(e)

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

FS
IM

 v
al

ue
s

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

(f)

Figure 9: The bar blots of FSIM values of different methods for six test images with 𝑝=50%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

where 𝛽 ∈ (0, 1) is a small positive parameter.
The eigenvalue 𝜆1 is designed to be small while
the eigenvalue 𝜆2 is designed to be large. Then the
diffusivity perpendicular to edge direction is small
while the diffusivity along the edge direction is large.
Hence, the noise at edges can be removed; meanwhile
the edges can be preserved.

(3) If the pixel 𝑃𝑖,𝑗 is located in the corner, its eigenvalues
are designed by 𝜆1 = 𝛾,𝜆2 = 𝛾 (21)

where 𝛾 ∈ (0, 1) is a small positive parameter. Both
of the eigenvalues 𝜆1 and 𝜆2 are designed to be small.
Then the diffusivity along the two directions V1 and V2
is small. Hence, the corner can be preserved.

In conclusion, the IAD model can not only enhance the
image information by finely classifying the image features but
also remove the AWGN in the initial denoised image and
meanwhile preserve edges and details. Besides, since the IAD

model can identify the isolated noises in the initial denoised
image, some residual SPIN can be further removed.

The pseudocodes of the proposed algorithm are provided
as shown in Algorithm 1.

5. Experimental Results

In this section, some experiments are carried out to demon-
strate the performance of the proposed algorithm. Six com-
monly used images are chosen as the test images: Lena, Boat,
Peppers, Painting, Couple, and Hill, respectively (refer to
Figure 2 for the scenes of six test images). All test images
are with the size of 512 × 512. The denoising results of
different methods are measured by the Peak Signal-to-Noise
Ratio (PSNR) and the Feature Similarity Index Measure
(FSIM). Different levels of the AWGN plus SPIN are tested to
contaminate the noise-free images. The standard deviation 𝜎
of the AWGNvaries from 5 to 15 with the step length of 5.The
ratio of the SPIN varies from 10% to 60% with the step length
of 10%. The proposed algorithm is compared with different
methods for mixed noise removal as TF [22], SBF [23], MNF
[24], Cai [27], AMF coupled with LRA [28], AMF coupled
with LRR [29], WLRA [30], and WLRR [30].
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Table 1: The denoising results (PSNR) of different methods for six test images with 𝑝=50%.

Image 𝑝=50%
Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena
𝜎=5 32.65 31.27 31.52 32.40 32.82 33.42𝜎=10 30.95 30.28 30.66 30.83 31.33 31.93𝜎=15 29.24 29.09 29.62 29.46 30.31 30.87

Boat
𝜎=5 29.25 27.75 27.93 28.97 29.35 30.05𝜎=10 28.28 27.33 27.42 27.94 28.40 29.12𝜎=15 27.08 26.71 26.86 27.13 27.58 28.05

Peppers
𝜎=5 31.05 29.39 29.52 30.34 31.14 32.18𝜎=10 29.53 28.84 29.17 29.29 29.75 30.87𝜎=15 28.22 28.24 28.68 28.51 29.45 29.98

Painting
𝜎=5 32.76 31.55 31.44 31.92 32.47 33.56𝜎=10 30.97 30.42 30.49 30.59 31.10 32.08𝜎=15 28.99 29.08 29.49 29.38 29.88 30.71

Couple
𝜎=5 29.05 27.68 27.85 29.09 29.34 29.98𝜎=10 28.02 27.39 27.45 28.12 28.29 28.91𝜎=15 26.85 26.60 26.72 27.10 27.57 28.13

Hill
𝜎=5 30.55 29.45 29.36 30.25 30.62 31.30𝜎=10 29.28 28.66 28.82 29.05 29.40 29.98𝜎=15 27.92 27.67 27.82 28.06 28.40 28.86

Input: noise corrupted image 𝑢, variance threshold 𝑇.
Output: denoised image 𝑢2.
For each pixel 𝑃𝑖,𝑗 in 𝑢:

step I: Noise classification.𝑉𝑖,𝑗 ← variance parameter.
if 𝑉𝑖,𝑗 > 𝑇 and 𝑔𝑖,𝑗 ∈ {0, 255}𝑃𝑖,𝑗 ∈ 𝑁1.

ADWM filtering.
Apply ADWM filter to restore 𝑃𝑖,𝑗.𝑃1𝑖,𝑗 ← 𝐴𝐷𝑊𝑀(𝑃𝑖,𝑗).

else𝑃𝑖,𝑗 ∈ 𝑁2.𝑃1𝑖,𝑗 ← 𝑃𝑖,𝑗.
end𝑢1 ← {𝑃1𝑖,𝑗}.

stepΠ: IAD filtering.
Apply IAD model to restore 𝑃1𝑖,𝑗.𝑃2𝑖,𝑗 ← 𝐼𝐴𝐷(𝑃1𝑖,𝑗).

end𝑢2 ← {𝑃2𝑖,𝑗}.
Algorithm 1

We firstly compare the proposed algorithm with several
classical methods as TF [22], SBF [23], and MNF [24].
Figure 3 shows the denoising results of different methods for
Lena image, which is corrupted by the AWGN (𝜎=10) plus
SPIN (𝑝=20%). From Figure 3(c), one can observe that the
TF method can remove the mixed noise but blur the edges.
From Figures 3(d) and 3(e), it can be seen that the SBF and
MNF methods can remove the mixed noise and meanwhile
preserve edges. However, some noise corrupted pixels are

residual in the denoising results of SBF and MNF methods.
From Figure 3(f), one can observe that the proposed algo-
rithm can not only effectively remove the mixed noise but
also preserve edges and details well.Therefore, Figure 3 shows
that the proposed algorithm can perform better than other
compared methods. Figure 4 shows the denoising results of
different methods for Boat image, which is corrupted by the
AWGN (𝜎=10) plus SPIN (𝑝=20%). Similar conclusions to
Figure 3 can be obtained from Figure 4.

Figure 5 shows the denoising results of the proposed
algorithm for Lena image corrupted by different mixed noise.
From Figures 5(a), 5(b), and 5(c), one can observe that the
image quality is getting worse and worse with the increase of
the noise density of salt-and-pepper noise and the standard
deviation of Gaussian noise. FromFigures 5(d), 5(e), and 5(f),
it can be seen that the noise corrupted pixels are effectively
restored and the edges are preserved well. Therefore, Figure 5
shows that the proposed algorithm can effectively remove
noise and meanwhile preserve edges in the case of different
mixed noise. Figure 6 shows the denoising results of the
proposed algorithm for Boat image corrupted by different
mixed noise. Similar conclusions to Figure 5 can be obtained
from Figure 6.

In order to further verify the performance of the proposed
algorithm, the proposed algorithm is compared with some
existing main methods as Cai [27], AMF coupled with LRA
[28], AMF coupled with LRR [29], WLRA [30], and WLRR
[30]. Tables 1 and 2 present the denoising results (PSNR)
of different methods for six test images with 𝑝=50% and𝑝=60%, respectively. Tables 3 and 4 present the denoising
results (FSIM) of different methods for six test images with𝑝=50% and 𝑝=60%, respectively. From Tables 1 and 3, one
can see that the PSNR and FSIM values of the LRA and
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Table 2: The denoising results (PSNR) of different methods for six test images with 𝑝=60%.

Image 𝑝=60%
Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena
𝜎=5 31.33 29.85 29.96 30.98 31.45 32.10𝜎=10 30.15 29.18 29.52 29.66 30.26 30.78𝜎=15 28.89 28.05 28.73 28.35 29.12 29.62

Boat
𝜎=5 27.86 26.73 26.78 27.40 27.60 28.41𝜎=10 27.09 26.33 26.31 26.71 27.25 27.93𝜎=15 26.32 25.51 25.83 25.89 26.41 27.18

Peppers
𝜎=5 29.82 28.15 28.55 28.81 29.47 30.37𝜎=10 28.87 27.63 28.14 28.15 28.95 29.84𝜎=15 27.72 26.91 27.74 27.35 28.34 29.12

Painting
𝜎=5 31.41 29.56 30.11 30.40 30.64 31.49𝜎=10 29.82 28.81 29.41 29.28 29.87 30.73𝜎=15 28.54 28.02 28.57 28.09 28.79 29.62

Couple
𝜎=5 27.67 26.69 26.78 27.53 27.74 28.32𝜎=10 26.93 26.22 26.29 26.75 26.98 27.50𝜎=15 26.06 25.52 25.87 25.95 26.35 26.89

Hill
𝜎=5 29.48 28.38 28.51 29.03 29.10 29.72𝜎=10 28.57 27.77 27.88 28.03 28.16 28.75𝜎=15 27.47 26.70 27.28 27.06 27.52 28.04

Table 3: The denoising results (FSIM) of different methods for six test images with 𝑝=50%.

Image 𝑝=50%
Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena
𝜎=5 0.9711 0.9676 0.9690 0.9758 0.9768 0.9799𝜎=10 0.9548 0.9566 0.9576 0.9598 0.9602 0.9650𝜎=15 0.9254 0.9396 0.9421 0.9426 0.9468 0.9497

Boat
𝜎=5 0.9592 0.9451 0.9482 0.9590 0.9595 0.9630𝜎=10 0.9414 0.9398 0.9383 0.9440 0.9448 0.9483𝜎=15 0.9160 0.9228 0.9237 0.9258 0.9260 0.9287

Peppers
𝜎=5 0.9703 0.9670 0.9684 0.9711 0.9714 0.9782𝜎=10 0.9553 0.9548 0.9555 0.9569 0.9576 0.9631𝜎=15 0.9289 0.9381 0.9429 0.9418 0.9469 0.9516

Painting
𝜎=5 0.9735 0.9570 0.9523 0.9648 0.9669 0.9739𝜎=10 0.9536 0.9520 0.9504 0.9532 0.9552 0.9610𝜎=15 0.9267 0.9326 0.9328 0.9356 0.9382 0.9438

Couple
𝜎=5 0.9573 0.9467 0.9490 0.9607 0.9629 0.9658𝜎=10 0.9417 0.9362 0.9365 0.9459 0.9464 0.9497𝜎=15 0.9214 0.9191 0.9205 0.9269 0.9278 0.9315

Hill
𝜎=5 0.9587 0.9570 0.9548 0.9578 0.9594 0.9631𝜎=10 0.9449 0.9402 0.9385 0.9418 0.9456 0.9485𝜎=15 0.9125 0.9200 0.9212 0.9204 0.9244 0.9276

LRR coupled with AMF methods are much lower than
the Cai, WLRA, WLRR, and the proposed method. This
means that the denoising performances of the LRA and LRR
coupled with AMF methods are significantly lower than the
Cai, WLRA, WLRR, and the proposed method. The WLRR
method achieves the higher PSNR and FSIM values than
the Cai and WLRA methods in most cases. This ensures
that the WLRR method can more effectively remove the

mixed noise than the Cai andWLRAmethods.The proposed
algorithm obtains the highest PSNR and FSIM values among
all compared methods in each case. With the increasing of
the AWGN strength, the proposed algorithm can achieve
higher PSNR and FSIM values than other methods. Hence,
Tables 1 and 3 indicate that the proposed algorithm has
stronger denoising capability than other methods. Simi-
lar conclusions to Table 1 can be obtained from Table 3
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Table 4: The denoising results (FSIM) of different methods for six test images with 𝑝=60%.

Image 𝑝=60%
Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

Lena
𝜎=5 0.9650 0.9606 0.9604 0.9645 0.9657 0.9686𝜎=10 0.9483 0.9440 0.9453 0.9485 0.9497 0.9538𝜎=15 0.9252 0.9241 0.9274 0.9283 0.9309 0.9341

Boat
𝜎=5 0.9417 0.9372 0.9357 0.9404 0.9439 0.9482𝜎=10 0.9249 0.9247 0.9139 0.9287 0.9260 0.9291𝜎=15 0.9027 0.9049 0.9070 0.9074 0.9095 0.9126

Peppers
𝜎=5 0.9667 0.9541 0.9558 0.9649 0.9659 0.9721𝜎=10 0.9496 0.9466 0.9474 0.9514 0.9524 0.9570𝜎=15 0.9267 0.9193 0.9355 0.9346 0.9407 0.9442

Painting
𝜎=5 0.9618 0.9563 0.9525 0.9567 0.9571 0.9626𝜎=10 0.9376 0.9366 0.9387 0.9374 0.9385 0.9570𝜎=15 0.9183 0.9179 0.9186 0.9205 0.9219 0.9271

Couple
𝜎=5 0.9373 0.9309 0.9310 0.9458 0.9474 0.9509𝜎=10 0.9226 0.9209 0.9206 0.9289 0.9302 0.9340𝜎=15 0.9050 0.9047 0.9030 0.9104 0.9118 0.9151

Hill
𝜎=5 0.9484 0.9401 0.9412 0.9438 0.9442 0.9486𝜎=10 0.9298 0.9284 0.9267 0.9252 0.9262 0.9299𝜎=15 0.9011 0.9034 0.9077 0.9085 0.9098 0.9123

Table 5: The denoising results (Average PSNR) of different methods for six test images.

Methods Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

𝑝=50% 𝜎=5 30.88 29.51 29.60 30.49 30.95 31.74𝜎=10 29.50 28.82 29.00 29.30 29.71 30.65𝜎=15 28.05 27.89 28.19 28.27 28.86 29.43

𝑝=60% 𝜎=5 29.59 28.22 28.44 29.02 29.33 30.06𝜎=10 28.57 27.65 28.09 28.09 28.57 29.25𝜎=15 27.50 26.78 27.33 27.11 27.75 28.41

and similar conclusions to Table 2 can be obtained from
Table 4.

Figures 7 and 8 show the bar plots of PSNR values
of different methods for six test images with 𝑝=50% and𝑝=60%, respectively. Figures 9 and 10 show the bar plots of
FSIM values of different methods for six test images with𝑝=50% and 𝑝=60%, respectively. From the above figures, one
can observe that the proposed algorithm outperforms some
existing main methods in terms of image denoising and edge
preservation.

Tables 5 and 6 present the denoising results of different
methods in terms of average PSNR and average FSIM for
six test images, respectively. From Tables 5 and 6, one can
observe that the Cai, WLRA, WLRR, and the proposed
methods achieve the higher average PSNR and average FSIM
values than the LRA and LRR coupled with AMF methods.
This ensures that the Cai, WLRA, WLRR, and the proposed
methods can perform better than the LRA and LRR coupled
with AMF methods. The WLRR method can achieve the
higher average PSNR and average FSIM values than the Cai
and WLRA methods in most cases. It means that the WLRR
methods are more effective in removing the mixed noise
than the Cai and WLRA methods. The proposed algorithm

obtains the highest average PSNR and average FSIM values in
each case. Therefore, Tables 5 and 6 ensure that the proposed
algorithm can not only effectively remove themixed noise but
also preserve edges and details well. Besides, Figures 11 and 12
show the bar plots of average PSNR and average FSIM values
of different methods for six test images, respectively. From
Figures 11 and 12, we can see that the proposed algorithm can
perform better than other methods.

Figure 13 shows the denoising results of differentmethods
for Lena image, which is corrupted by the AWGN (𝜎=10)
plus SPIN (𝑝=50%). From Figures 13(d) and 13(e), it can
be seen that the LRA and LRR coupled with AMF methods
can remove the mixed noise, but they blur the edges. From
Figures 13(c), 13(f), and 13(g), one can observe that the Cai,
WLRR, andWLRAmethods can remove themixed noise and
meanwhile preserve the edges. It means that the Cai, WLRR,
and WLRA methods can perform better than the LRA and
LRR coupled with AMF methods in image denoising and
edge preservation. However, the Cai, WLRR, and WLRA
methods cannot preserve the details well. From Figure 13(h),
one can observe that the proposed algorithm obtains the
more visually pleasant denoising result by reconstructing
much cleaner and sharper image edges and details than other
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Table 6: The denoising results (average FSIM) of different methods for six test images.

Methods Cai AMF+LRA AMF+LRR WLRA WLRR Proposed

𝑝=50% 𝜎=5 0.9650 0.9567 0.9570 0.9649 0.9662 0.9704𝜎=10 0.9486 0.9466 0.9461 0.9503 0.9516 0.9559𝜎=15 0.9218 0.9287 0.9305 0.9322 0.9350 0.9388

𝑝=60% 𝜎=5 0.9535 0.9465 0.9461 0.9527 0.9540 0.9584𝜎=10 0.9355 0.9335 0.9321 0.9367 0.9372 0.9433𝜎=15 0.9132 0.9124 0.9165 0.9183 0.9208 0.9242
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Figure 10: The bar blots of FSIM values of different methods for six test images with 𝑝=60%. (a) Lena image. (b) Boat image. (c) Peppers
image. (d) Painting image. (e) Couple image. (f) Hill image.

comparedmethods.Hence, Figure 13 shows that the proposed
algorithm outperforms other compared methods in terms of
image denoising and edge preservation. Figure 14 shows the
denoising results of different methods for Boat image, which
is corrupted by the AWGN (𝜎=10) plus SPIN (𝑝=50%). From
Figure 14, similar conclusions to Figure 13 can be obtained.

To further validate the above conclusions, some enlarged
detail images of the denoising results of different methods are
given. Figure 15 presents the comparisons of enlarged Lena
images of different methods. The Lena image is corrupted by
the AWGN (𝜎=10) plus SPIN (𝑝=50%). From Figures 15(d)

and 15(e), one can see that the LRA and LRR coupled with
AMFmethods cannot effectively remove themixed noise and
blur the tassel. Figures 15(c), 15(f), and 15(g) show that theCai,
WLRR, and WLRA methods can remove the mixed noise,
but they cannot preserve the tassel well. From Figure 15(h), it
can be seen that the proposed algorithm can not only remove
the mixed noise but also preserve the tassel well. Hence,
Figure 15 shows that the proposed algorithm can perform
better than other methods in terms of noise suppression and
detail preservation. Figure 16 presents the comparisons of
enlarged Boat images of different methods.The Boat image is



Mathematical Problems in Engineering 15

26

27

28

29

30

31

32
Av

er
ag

e P
SN

R 
va

lu
es

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

(a)

25

26

27

28

29

30

31

Av
er

ag
e P

SN
R 

va
lu

es

Cai
AMF+LRA
AMF+LRR

WLRA
WLRR
Proposed

10 155
Standard deviation

(b)

Figure 11: The bar blots of average FSIM values of different methods for six test images. (a) 𝑝=50%. (b) 𝑝=60%.
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Figure 12: The bar blots of average FSIM values of different methods for six test images. (a) 𝑝=50%. (b) 𝑝=60%.

corrupted by the AWGN (𝜎=10) plus SPIN (𝑝=50%). Similar
conclusions to Figure 15 can be obtained from Figure 16.

6. Conclusions

In this paper, we propose an algorithm for restoring images
corrupted by Gaussian noise plus salt-and-pepper noise.
Firstly, a noise classification method is presented to identify
different noisy pixels in the corrupted image. The noise

classificationmethod judges the gray level difference between
the current pixel and its neighborhood pixels by introducing
a variance parameter and identifies the salt-and-pepper
noise corrupted pixels by combining the variance parameter
and gray level extreme. Then, based on the result of noise
classification, an adaptive directional weighted mean filter
is proposed to remove the salt-and-pepper noise based on
the multidirectional image information, which can preserve
edges and details by adaptively selecting the optimal direction
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13: Denoising results of different methods for Lena image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,𝜎=10, 𝑝=50%). From (c) to (h): denoising results of Cai, AMF+LRA, AMF+LRR, WLRA, WLRR, and the proposed algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Denoising results of different methods for Boat image. (a) Noise-free image. (b) Image corrupted by mixed noise (AWGN+SPIN,𝜎=10, 𝑝=50%). From (c) to (h): denoising results of Cai, AMF+LRA, AMF+LRR, WLRA, WLRR, and the proposed algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15: Enlarged denoising results of different methods for Lena image. (a) Noise-free image. (b) Image corrupted by mixed noise
(AWGN+SPIN,𝜎=10,𝑝=50%). From (c) to (h): denoising results of Cai, AMF+LRA,AMF+LRR,WLRA,WLRR, and the proposed algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: Enlarged denoising results of different methods for Boat image. (a) Noise-free image. (b) Image corrupted by mixed noise
(AWGN+SPIN,𝜎=10,𝑝=50%). From (c) to (h): denoising results of Cai, AMF+LRA,AMF+LRR,WLRA,WLRR, and the proposed algorithm.
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Table 7: List of abbreviations.

Abbreviation Full title
AWGN Additive white Gaussian noise
IN Impulse noise
BF Bilateral filter
NLM Nonlocal means filter
P-M Perona-Malik model

CAD Coherence-enhancing anisotropic diffusion
denoising model

SPIN Salt-and-pepper noise
RVIN Random valued impulse noise

BDND Switching median filter with boundary
discriminative noise detection

DWM Directional weighted median filter
MDWM Modified directional weighted median filter
MDW Modified directional weighted filter
TF Trilateral filter
SBF Switching bilateral filter
MTF Modified two-phase filter
LRA Low rank approximation
LRR Low rank representation
WLRA Weighted low rank approximation model
WLRR Weighted low rank representation model
ADWM Adaptive directional weighted mean filter
IAD Improved adaptive anisotropic diffusion model

template and restore each salt-and-pepper noise corrupted
pixels by theweightedmean gray level of pixels on the optimal
template. Finally, an improved adaptive anisotropic diffusion
model is introduced to remove Gaussian noise in the initial
denoised image, which can enhance the image features by
finely classifying image feature as four types and preserve
edges and details by conducting the adaptive anisotropic dif-
fusion for different image features. The experimental results
clearly demonstrate that the proposed algorithmoutperforms
many other existing main mixed noise removal methods in
terms of both quantitative measure and visual perception.
However, the proposed algorithm has a limitation that it
cannot effectively restore the salt-and-pepper noise corrupted
image with high salt-and-pepper noise density. Hence, we
will try our best to solve the problem in the subsequent
study.

Appendix

List of Abbreviations

The abbreviations used in this paper are listed in Table 7.
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