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In view of the uncertaintymultiattribute decision-making problem with attribute values and weights both being interval number, a
new solution based on regret theory and extension-dependent degree is proposed. It can define pass value of each attribute, which
means decision-maker’s acceptance for the scheme under the pass value will decline quickly. Then according to traditional regret
theory, themethod defines an extension-dependent function based on pass valuewhich can improve the flexibility of the traditional
utility function and the ability to describe the risk aversion actions from decision-makers. Then the extension-dependent function
for interval number is built, and the perceived utility value of each scheme is obtained based on the interval’s optimal value. The
method can also reflect the decision-maker’s reference to high or low evaluation score by setting attitude coefficients. At last, an
example is presented to examine the feasibility, effectiveness, and stability of our method.

1. Introduction

Multiattribute decision-making (MADM) is aimed at finding
themost desirable solution according to the evaluation results
to several given attributes, which is widely used in various
business applications such as online auction, investment
decision, and e-commence platform evaluation. But due to
the increasing complexity of socioeconomic environment
and inherent knowledge restrictions of decision-makers [1],
those attributes’ environment information always exhibits
fuzzy and uncertain features which are difficult to describe
by exact numerical values. Several technologies are proposed
to deal with the above problem such as interval number,
fuzzy number, connection number, and grey number [2–5].
Among them, because of outstanding simple and intuition-
istic features, interval number is proved to be one of the
most frequently used described frameworks for uncertain
information in many practical applications [6].

Early decision-makingmethods belong to complete ratio-
nal decisions based on expected utility theory. They often
use the expected utility value of each scheme to perform
sorting. But many experimental studies have shown that, in
the decision-making process, decision-makers usually have

some psychological and behavior characteristics such as
reference dependence, loss aversion, diminishing sensitivity,
and expected results comparison [7].The traditional decision
methods cannot describe these psychological characteristics.
So the finite rational decision methods based on decision-
maker’s behavior obtain more and more attentions [8]. The
representatives are prospect theory and regret theory. The
regret theory is one of the attractive research hotspots [9,
10]. By rejoice-regret utility function, regret theory not only
considers the utility value of the alternative to be selected
but also considers the results of others alternative and
can describe those psychological characteristics of decision-
makers. Literature [11] calculates collective utilities of each
attribute in hesitant fuzzy set according to regret theory
and then pursues matching result by aggregating collective
utilities with relative weights. Literature [12] builds regret
value matrix of comparisons between couple alternatives by
regret theory and then obtains sorting results by counting
total regret values between each alternative and all the other
alternatives. Literature [13] defines grey perception utility
function based on regret theory and then builds multiob-
jective optimization model which produces the maximum
grey overall perceived utility values of alternatives, so that the
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optimal grey perceived utility value of each scheme is ranked
by the sorting rules of interval grey numbers. In literature
[14], the rejoice-regret value function based on the positive
and negative ideal solution is constructed and the positive
and negative ideal bull’s eyes are obtained. So amultiobjective
grey target decision model is completed. Literature [15]
uses regret theory to obtain interval comprehensive utility
value of alternatives in three-parameter interval number
decision-making. In literature [16], an improved feedback
adjustment mechanism based on regret theory is employed as
the consistency model, which complements prospect theory
in multiattribute group decision problems. Literature [17]
combines regret theory toTOPSISmethod and applies to grey
stochastic multicriteria decision-making. Literature [12, 15]
point out that, among those decision strategies based on
decision-makers’ behavior, prospect theory has the strong
capacity to describe decision-makers’ behavior, but has more
parameters and more computational complexity. By contrast,
regret theory has fewer parameters and is easy to implement,
but has weaker describing capacity. Literature [18] concludes
that regret theory has more advantages in practical applica-
tion than prospect theory.

Although various methods adopting regret theory have
been widely applied to uncertain decision-making, there are
some problems for the researchers. Firstly, most of existing
methods are built on the traditional basic model of regret the-
ory. So the ability of these methods for describing decision-
makers’ behavior is insufficient. That is, when the risk evasion
coefficient is determined, the curve of the utility function in
regret theory is fixed. It has nothing to do with the range and
distribution of the corresponding attribute values, so it lacks
flexibility. However, in many decision-making applications,
attribute values usually have a special value called pass point,
below which the acceptance of decision-makers will decline
rapidly. It means that decision-makers often show distinct
risk chasing psychology. The basic model of regret theory is
not sufficient to describe these behavior features and psychol-
ogy features of the people. Secondly, many frameworks based
on the basic model of regret theory often appear too definite,
which means it is difficult to perform any stability test or
uncertainty analysis for final decision results. So we do not
know whether a tiny change of the psychology or preference
of decision makes will bring different decision results. That
will influence the credibility of the results. So a good method
for decision-making should not only produce a sorting result
but also bring some stability test processes.

To solve the above problems, the paper attempts to
propose an uncertain multiattribute decision-making model
based on regret theory and extension-dependent degree.
Until the present, the related research has not been seen.
In this model, the pass point value of the attribute can be
set by decision-maker or other methods, and the extension-
dependent degree of the attribute value can be obtained by
using extension-dependent function based on side distance.
Actually, it represents a new utility function expression and
is more flexible than the basic utility function of regret
theory. It is also more in line with people's decision-making
habits. Then the regret-rejoice value of each attribute value
is obtained by combining its dependent degree and regret

theory. According to regret-rejoice values, the comprehensive
utility value of each alternative will be calculated. Lastly, in
our model, through setting the different value of preference
attitude coefficient, the final ranking results can be given
and analyzed further, which reflects the different attitude
of decision-makers towards the upper and lower bounds of
evaluation and reflects the ability of uncertainty analysis.

2. Regret Theory Model with
Extension-Dependent Degree

2.1. Extension-Dependent Function with Side Distance. In
extenics, extension distance is defined to describe the dis-
tance between a point and an interval, which is able to
accurately describe the relative position between the point
and the interval. For the definition of distance, classical
mathematics utilizes qualitative descriptions of “belonging”
and “not belonging”, while extenics utilizes quantitative
descriptions. In classical mathematics, there are elements that
in the same domain are homogenous and but heterogeneous
in different domains, while in extenics elements in the same
domain they can be further classified into different layers and
can be given quantitative description [19, 20].

Definition 1 (see [19, 21]). Suppose 𝑅 the set of real number,
𝑋 = [𝑎, 𝑏], is a finite interval in 𝑅, and its optimal point is
𝑚 ∈ 𝑋, then ∀𝑥 ∈ 𝑅, according to the different location of𝑚
in𝑋, extension distance 𝜌(𝑥,𝑚,𝑋) is

(1)when 𝑚 = 𝑎 + 𝑏
2 , 𝜌 (𝑥,𝑚,𝑋) = |𝑥 − 𝑚| − 𝑏 − 𝑎2 (1)

(2)when 𝑚 ∈ [𝑎, 𝑎 + 𝑏2 ) , 𝜌 (𝑥, 𝑚,𝑋)

=
{{{{
{{{{
{

𝑎 − 𝑥 𝑥 ≤ 𝑎
𝑏 − 𝑚
𝑎 − 𝑚 (𝑥 − 𝑎) 𝑎 < 𝑥 < 𝑚
𝑥 − 𝑏 𝑥 ≥ 𝑚

(2)

(3)when 𝑚 ∈ (𝑎 + 𝑏2 , 𝑏] , 𝜌 (𝑥, 𝑚,𝑋)

=
{{{{
{{{{{

𝑎 − 𝑥 𝑥 ≤ 𝑚
𝑎 − 𝑚
𝑏 − 𝑚 (𝑏 − 𝑥) 𝑚 < 𝑥 < 𝑏
𝑥 − 𝑏 𝑥 ≥ 𝑏

(3)

In addition, in this paper, we agree that 𝜌(𝑎, 𝑎, 𝑋) =
𝜌(𝑏, 𝑏, 𝑋) = 𝑎 − 𝑏.
Definition 2 (see [19, 22]). Suppose an interval covering
is composed of standard positive interval X0 and positive
interval X. 𝑋0 = [𝑎, 𝑏], 𝑋 = [𝑐, 𝑑], 𝑋0 ⊂ 𝑋, and optimal
point is 𝑚0 ∈ 𝑋0, for any point 𝑥 ∈ 𝑋, extension-dependent
function 𝑘(𝑥) is
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𝑘 (𝑥) =

{{{{{{{{{
{{{{{{{{{{

𝜌(𝑥,𝑚0, 𝑋)
𝜌 (𝑥, 𝑚0, 𝑋) − 𝜌 (𝑥,𝑚0, 𝑋0) 𝜌 (𝑥,𝑚0, 𝑋0) ̸= 𝜌 (𝑥, 𝑚0, 𝑋) , 𝑥 ∉ 𝑋0

𝜌 (𝑥,𝑚0, 𝑋) + 𝑎 − 𝑏
𝜌 (𝑥, 𝑚0, 𝑋) − 𝜌 (𝑥,𝑚0, 𝑋0) + 𝑎 − 𝑏 𝑥 ∈ 𝑋0
𝜌 (𝑥, 𝑚0, 𝑋)

𝑎 − 𝑏 𝜌 (𝑥,𝑚0, 𝑋0) = 𝜌 (𝑥, 𝑚0, 𝑋) , 𝑥 ∉ 𝑋0

(4)

then 𝑘(𝑥) satisfies following properties:
(1) 𝑥 ∈ 𝑋0, and 𝑥 ̸= 𝑎, 𝑏 ⇐⇒ 𝑘(𝑥) > 1.
(2) 𝑥 = 𝑎 or 𝑥 = 𝑏 ⇐⇒ 𝑘(𝑥) = 1.
(3) 𝑥 ∉ 𝑋0, 𝑥 ∈ 𝑋, or 𝑥 ̸= 𝑎, 𝑏, 𝑐, 𝑑 ⇐⇒ 0 < 𝑘(𝑥) < 1.
(4) 𝑥 = 𝑐 or 𝑥 = 𝑑 ⇐⇒ 𝑘(𝑥) = 0.
(5) When 𝑥 = 𝑚0, 𝑘(𝑥) reaches its maximum value.

Extension-dependent function describes the dependent
degree between point 𝑥 and interval covering 𝑋0, 𝑋. Its
calculation is based on the given range of values of a certain
feature, and it does not need to rely on subjective judgment
or empirical value from decision-makers, so it is convenient
to quantitatively describe the nature of things.

2.2. Regret Theory with Extension-Dependent Function.
Regret theory [9] is one of the most important behavioral
decision theories in behavioral economics. Its basic idea is
that decision-makers in the decision-making process are con-
cerned not onlywith the outcomeof the options they consider
choosing, but also with the possible impact of choosing other
options. Decision-makers may have the expectation of regret
or delight from their decision result and try to avoid choosing
the alternative that may bring regret perception and tend
to choose the alternative that brings delight perception. The
perceived utility function of decision-makers consists of two
parts: the utility function of the current selected alternative
and the rejoice-regret function for comparing with the other
schemes.

In many practical decision-making problems, decision-
makers are usually risk aversion. So for the benefit attributes,
the utility function V(𝑥) is shown as a monotone increasing
concave function and satisfies V(𝑥) > 0 and usually employs
negative exponential form [12]:

V (𝑥) = 1 − exp (−𝛽𝑥)
𝛽 , 0 < 𝛽 < 1 (5)

Here 𝛽 is risk aversion coefficient.The greater the 𝛽 value,
the greater the risk aversion of decision-makers, as shown
in Figure 1. For cost attributes, the utility function takes the
following form [12]:

V (𝑥) = 1 − exp (𝛽𝑥) , 0 < 𝛽 < 1 (6)

Here the greater the 𝛽 value, the greater the risk aversion
of decision-makers.

The utility function reflects the risk evasion attitude of
the decision-maker. It can be seen that the curve slope of
utility value under small risk aversion coefficient is larger
than the curve slope of utility value under large risk aver-
sion coefficient, which expresses the high sensitivity of the
decision-maker for increasing utility value near the marginal
point. But the traditional utility function in regret theory is
not enough to describe the psychological behavior of risk
aversion. Firstly, when the value of risk aversion coefficient
is determined (for example, [7] suggests 0.02), the curve of
utility function is fixed in thewhole decision-making process,
and it cannot be adjusted according to the value of different
attributes. Secondly, in several practical decision-making
applications, every attribute always contains a psychological
pass value, under which the decision-maker's acceptance to
the alternative presents a rapid decline trend. So this value
can be regarded as the pass reference value of an alternative
under the attribute. For example, there are two attributes with
percentage ratings and their weights are the same. Suppose
their pass values both are 60, below which it is considered
to be unqualified. Here alternative A is evaluated as (50,80)
and alternative B is evaluated as (60,70). Due to the distinct
difference of the acceptance from decision-makers to the
evaluations above the pass value and below the pass value,
it shows decision-makers' evasion attitude to select the alter-
native containing the evaluation score below the pass value.
So, although the total scores of alternatives A and B both
are 130, the decision-maker will choose alternative B because
alternative A contains the unqualified score. Therefore, the
evaluation below the pass value represents a higher risk,
which decision-makers will tend to avoid. But the traditional
utility function in regret theory cannot describe this psy-
chology of risk aversion. Combined with the above ideas
and extension-dependent function in extenics theory, this
paper adopts extension-dependent function as a new utility
function. Without increasing the number of parameters, our
method can describe the behavior of decision-makers more
flexibly and reasonably and enhance the ability to capture risk
aversion behavior.

Definition 3. Suppose the value range of a beneficial attribute
is 𝑋 = [𝑐, 𝑑], and its pass value is a (𝑐 < 𝑎 < 𝑑). Then
𝑋 = [𝑐, 𝑑] can be seen as positive interval and 𝑋0 = [𝑎, 𝑑]
as standard positive interval, 𝑋0 ⊂ 𝑋, optimal value is d,
according to Definition 2, for any point 𝑥 ∈ 𝑋, extension-
dependent function 𝑘(𝑥, 𝑋0, 𝑋) is
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Figure 1: Utility function.

𝑘 (𝑥, 𝑋0, 𝑋) =
{{{
{{{{

𝜌 (𝑥, 𝑑, 𝑋)
𝜌 (𝑥, 𝑑, 𝑋) − 𝜌 (𝑥, 𝑑, 𝑋0) =

𝑐 − 𝑥
𝑐 − 𝑥 − (𝑎 − 𝑥) =

𝑐 − 𝑥
𝑐 − 𝑎 𝑥 ∉ 𝑋0

𝜌 (𝑥, 𝑑, 𝑋) + 𝑎 − 𝑑
𝜌 (𝑥, 𝑑, 𝑋) − 𝜌 (𝑥, 𝑑, 𝑋0) + 𝑎 − 𝑑 =

𝑐 − 𝑥 + 𝑎 − 𝑑
𝑐 − 𝑥 − (𝑎 − 𝑥) + 𝑎 − 𝑑 =

𝑎 − 𝑥
𝑐 − 𝑑 + 1 𝑥 ∈ 𝑋0

(7)

The curve graph of 𝑘(𝑥,𝑋0, 𝑋) is shown in Figure 2 and has
the following properties:

(1) 𝑥 ∈ 𝑋0, and 𝑥 ̸= 𝑎 ⇐⇒ 𝑘(𝑥,𝑋0, 𝑋) > 1.
(2) 𝑥 = 𝑎 ⇐⇒ 𝑘(𝑥,𝑋0, 𝑋) = 1.
(3) 𝑥 ∉ 𝑋0, 𝑥 ∈ 𝑋, and 𝑥 ̸= 𝑎, 𝑐, 𝑑 ⇐⇒ 0 < 𝑘(𝑥,𝑋0, 𝑋) <1.
(4) 𝑥 = 𝑐 ⇐⇒ 𝑘(𝑥,𝑋0, 𝑋) = 0.
(5) When 𝑥 = 𝑑, 𝑘(𝑥, 𝑋0, 𝑋)reaches the maximum value

(𝑎 − 𝑑)/(𝑐 − 𝑑) + 1.
(6) The slope of the line segment 𝑘(𝑥, 𝑋0, 𝑋)(𝑥 < 𝑎)must

be larger than that of 𝑘(𝑥, 𝑋0, 𝑋)(𝑥 > 𝑎).
As shown in Figure 2, with the pass value 𝑎 as the

boundary point, 𝑘(𝑥, 𝑋0, 𝑋) consists of two segments of the
line. The shape of the line segment changes adaptively with
the value range of the attribute or the position of the pass
value 𝑎. In Figure 2, when pass value is changed from a
to 𝑎, the slope of the line segment under the pass value is
automatically adjusted. When the value range of the attribute
is changed from [𝑐, 𝑑] to [𝑐, 𝑑], the slope of the line segment
above the pass value is also automatically adjusted. When the
range of value and pass value are both changed, the whole line
shape will change. So it is more flexible and adaptive than the
traditional utility function in regret theory. In addition, when
𝑥 is less than the pass value 𝑎, 𝑘(𝑥, 𝑋0, 𝑋) will decrease at a
faster speed. It means that the acceptance of decision-makers
will decline rapidly when the evaluation of an attribute is
under the pass value, which distinctly reflects a higher risk
aversion attitude fromdecision-makers. It can be proved that,
for any pass value 𝑎 ∈ (𝑐, 𝑑), the slope of the line segment

𝑘(𝑥,𝑋0, 𝑋)(𝑥 < 𝑎)must be larger than that of 𝑘(𝑥, 𝑋0, 𝑋)(𝑥 >𝑎).
Theorem 4. In Definition 3, the slope of the line segment
𝑘(𝑥,𝑋0, 𝑋)(𝑥 < 𝑎)must be larger than that of 𝑘(𝑥, 𝑋0, 𝑋)(𝑥 >𝑎).
Proof. As shown in Figure 2, ∀𝑎 ∈ (𝑐, 𝑑), the slope of the
line segment of 𝑘(𝑥, 𝑋0, 𝑋)(𝑥 < 𝑎) is 1/(𝑎 − 𝑐), and that of
𝑘(𝑥,𝑋0, 𝑋)(𝑥 > 𝑎) is ((𝑎 − 𝑑)/(𝑐 − 𝑑))/(𝑑 − 𝑎) = 1/(𝑑 − 𝑐).
Due to 𝑐 < 𝑎 < 𝑑, there must be 1/(𝑎 − 𝑐) > 1/(𝑑 − 𝑐).

After getting the dependent degree of the attribute value,
the regret value of each attribute value and its optimal
value can be calculated for each alternative. Suppose the
regret-rejoice function is 𝑅(Δ𝑘), due to decision-makers’ risk
aversion attribute to regret, function𝑅(Δ𝑘) is amonotonously
incrementally concave function and satisfies 𝑅(Δ𝑘) > 0,
𝑅(Δ𝑘) can be expressed as [12]:

𝑅 (Δ𝑘) = 1 − exp (−𝛿Δ𝑘) (8)

Here, 𝛿 is regret aversion coefficient and satisfies 𝛿 > 0.
The setting of 𝛿 is decided by the experience value and the
psychology of decision-makers and usually taken in 0∼1. As
shown in Figure 3, the larger the value 𝛿, the greater the extent
of regret evasion from the decision-maker. When people has
higher risk awareness and regret evasion trend, he should
take a greater value of 𝛿. If people has medium regret evasion
psychology, 𝛿 is often taken as 0.3 [12, 15]. Δk denotes the
difference of dependent degree of the same attribute under
two alternatives. When 𝑅(Δ𝑘) > 0, 𝑅(Δ𝑘) denotes rejoice
value, and when 𝑅(Δ𝑘) < 0, 𝑅(Δ𝑘) denotes regret value.
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Figure 3: Regret-rejoice function.

According to formula (8), when Δ𝑘 > 0, there is |𝑅(−Δ𝑘)| >
𝑅(Δ𝑘). It indicates that decision-makers are more sensitive
to the psychological perception of −Δ𝑘 than to Δ𝑘; that is,
decision-makers are always regret aversion.

For simplifying the calculating process andwithout losing
its validity, we obtain regret value through comparing the
attribute value of each alternative to the optimal value of
the attribute. Here, according formula (8), for a beneficial
attribute with its positive interval 𝑋 = [𝑐, 𝑑] and standard
positive interval 𝑋0 = [𝑎, 𝑑], clearly its ideal value is 𝑑, then
the regret value of attribute value 𝑥 is

𝑅 (𝑥,𝑋0, 𝑋)
= 1 − exp (−𝛿 (𝑘 (𝑥, 𝑋0, 𝑋) − 𝑘 (𝑑, 𝑋0, 𝑋)))

(9)

The perception utility value of x is

𝑢 (𝑥,𝑋0, 𝑋) = 𝑘 (𝑥,𝑋0, 𝑋) + 𝑅 (𝑥,𝑋0, 𝑋) (10)

2.3. Interval Extension-Dependent Degree. In many decision-
making applications, due to the complexity and uncertainty
of objective things and the vague and finite features of
human thinking, people often cannot give the definite value

of attributes of things, but can only give an interval range.
It is called uncertain decision-making problem. When the
definite values of attributes are generalized to intervals, the
computational model based on definite values will be trans-
formed into interval-based computing models. So according
to Definition 3, here we give a computing method of interval
extension-dependent degree under beneficial attribute.

Definition 5. Suppose the value range of a beneficial attribute
is 𝑋 = [𝑐, 𝑑], and its pass value is a (𝑐 < 𝑎 < 𝑑). Then
𝑋 = [𝑐, 𝑑] can be seen as positive interval and 𝑋0 = [𝑎, 𝑑]
as standard positive interval, 𝑋0 ⊂ 𝑋, optimal value is d, for
any interval 𝑄 = [𝑞−, 𝑞+] and 𝑄 ⊆ 𝑋, extension-dependent
function 𝑘(𝑄,𝑋0, 𝑋) of interval 𝑄 and interval covering 𝑋0,𝑋 is

𝑘 (𝑄,𝑋0, 𝑋) = 𝛼𝑘 (𝑞−, 𝑋0, 𝑋) + (1 − 𝛼) 𝑘 (𝑞+, 𝑋0, 𝑋) ,
𝛼 ∈ [0, 1] (11)

Here, 𝛼 is the preference attitude coefficient, which
reflects the preference extent of decision-makers to the
dependent degree of upper and lower bounds of the attribute
index. That is to say, whether decision-makers attach more
attention to the high evaluation of the attribute or to the
low evaluation. When 𝛼 = 0, according to formula (11), it
means that decision-makers only consider the upper bounds
of evaluations, and vice versa. When 𝛼 = 0.5, it means that
decision-makers pay equal attentions to the upper and lower
bounds of evaluations. So the value of 𝛼 is decided by the
preference attitude of decision-makers to the two bounds.
𝑘(𝑄,𝑋0, 𝑋) satisfies the following properties:

(1) When 𝑞− = 𝑞+, 𝑘(𝑄,𝑋0, 𝑋) will degenerate into
Definition 3.

(2) When 𝑞− = 𝑞+ = 𝑑, 𝑘(𝑄,𝑋0, 𝑋) has the maximum
value (𝑎−𝑑)/(𝑐−𝑑)+1.When 𝑞− = 𝑞+ = 𝑐, 𝑘(𝑄,𝑋0, 𝑋)
reaches the minimum value 0.

(3) When 𝑄 ⊂ 𝑋0, 1 < 𝑘(𝑄,𝑋0, 𝑋) < (𝑎 − 𝑑)/(𝑐 − 𝑑) + 1.
When 𝑄 ⊂ 𝑋 and 𝑄 ̸⊂ 𝑋0, 0 < 𝑘(𝑄,𝑋0, 𝑋) < 1.

2.4. Pass Value Selecting. Pass value selecting of attributes can
adopt subjective choosing or objective choosing. Subjective
choosing is generally based on the experience of experts or
some industry standards. Objective choosing can be carried
out by choosing mean value, median value, expectation value,
and two-eight principle.

2.5.WeightCalculating Based onMaximumDeviation ofDevi-
ation Degree. In view of sorting alternatives, if the difference
of attribute value of all alternatives under a certain attribute
is smaller, then the distinguishing effect of the attribute to
all alternatives is smaller. So the smaller the weight should
be given to the attribute. On the contrary, the greater the
difference of the attribute value of each alternative under a
certain attribute, the greater the distinguishing effect of the
attribute, the greater the weight that should be given to the
attribute. Here weight calculating model based on maximum
deviation of interval deviation degree is built. Suppose the
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evaluation matrix is (𝑄𝑖𝑗)𝑚×𝑛 (𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛),
its evaluation value is interval value 𝑄𝑖𝑗 = [𝑞−𝑖𝑗, 𝑞+𝑖𝑗], 𝑊 is
weight vector of attributes, and Φ is the range constraint of
attribute weight values. The single object optimization model
will be built:

max 𝐷 (𝑊) =
𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝑚

∑
𝑘=1

(𝑞−𝑖𝑗 − 𝑞−𝑘𝑗 + 𝑞+𝑖𝑗 − 𝑞+𝑘𝑗) 𝑤𝑗

s.t. 𝑊 ∈ Φ

s.t.
𝑛

∑
𝑗=1

𝑤𝑗 = 1
(12)

Solving this model, the optimal weight vector 𝑊 = (𝑤1, 𝑤2,......, 𝑤𝑛) is obtained.
3. Process of Decision Algorithm

Suppose alternative set of multiattribute decision-making is
𝑆 = {𝑠1, 𝑠2, ......, 𝑠𝑚}, attribute set is 𝑈 = {𝑢1, 𝑢2, ......, 𝑢𝑛},
the evaluation value of alternative si to attribute uj is interval
value 𝑃𝑖𝑗 = [𝑝−𝑖𝑗, 𝑝+𝑖𝑗], then evaluation matrix is (𝑃𝑖𝑗)𝑚×𝑛 (𝑖 = 1,2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛).
Step 1. By normalization of evaluation matrix (𝑃𝑖𝑗)𝑚×𝑛, the
newnormalized evaluation matrix (𝑄𝑖𝑗)𝑚×𝑛 (𝑄𝑖𝑗 = [𝑞−𝑖𝑗, 𝑞+𝑖𝑗]) is
obtained. The standardized formula for the benefit attributes
is 𝑄𝑖𝑗 = [𝑞−𝑖𝑗 = 𝑝−𝑖𝑗/max𝑖(𝑝+𝑖𝑗), 𝑞+𝑖𝑗 = 𝑝+𝑖𝑗/max𝑖(𝑝+𝑖𝑗)], 𝑖 =1, 2, . . . , 𝑚. The standardized formula for the cost attributes
is 𝑄𝑖𝑗 = [𝑞−𝑖𝑗 = (min𝑖(𝑝−𝑖𝑗))/𝑝+𝑖𝑗, 𝑞+𝑖𝑗 = (min𝑖(𝑝−𝑖𝑗))/𝑝−𝑖𝑗], 𝑖 =1, 2, . . . , 𝑚. After the normalization, each attribute well be
transformed into benefit attributewith its value range is [0, 1].
Step 2. Get the value range of each attribute uj and its pass
value 𝑞∗𝑗 , and then get the positive interval Xj and the stan-
dard positive interval Xj0 of each attribute. Due to normali-
zation of evaluation matrix, the value range of each attribute
is mapped to [0, 1] which is noted as the positive interval
Xj. Clearly, the ideal point of Xj is 1. The pass value 𝑞∗𝑗 of
each attribute uj is decided as required by decision-makers.
Then standard positive interval Xj0 of each attribute is [𝑞∗𝑗 , 1].
For formula (7), the extension-dependent degree 𝑘(𝑞−𝑖𝑗, 𝑋𝑗0,𝑋𝑗) and 𝑘(𝑞+𝑖𝑗, 𝑋𝑗0, 𝑋𝑗) of each attribute valueQij are obtained.
Then, for formula (11), the interval-dependent degree
𝑘(𝑄𝑖𝑗, 𝑋𝑗0, 𝑋𝑗) of each evaluation valueQij is calculated.Here,
the preference attitude coefficient 𝛼 should be decided as
required by decision-makers.

Step 3. According to formula (9) and 𝑘(𝑄𝑖𝑗, 𝑋𝑗0, 𝑋𝑗) from
Step 2, for each alternative, the regret value R(Qij, Xj0, Xj) of
each attribute value Qij is given. Here 𝑅(𝑄𝑖𝑗, 𝑋0, 𝑋) = 1 −
exp(−𝛿(𝑘(𝑄𝑖𝑗, 𝑋0, 𝑋)−𝑘(1,𝑋0, 𝑋))) because the ideal value is
1, and the setting of regret aversion coefficient 𝛿 is decided by
the regret psychology of decision-makers. Combining k(Qij,
Xj0,Xj),R(Qij,Xj0,Xj) and formula (10), the perception utility
value uij (uij = u(Qij, Xj0, Xj)) of each attribute value Qij is

obtained. Finally, the perception utility value matrix (𝑢𝑖𝑗)𝑚×𝑛
is obtained.

Step 4. Counting deviation matrix (𝐷𝑖𝑗)𝑚×𝑛 of interval devia-
tion degree from the normalized evaluation matrix (𝑄𝑖𝑗)𝑚×𝑛,
in which 𝐷𝑖𝑗 = ∑𝑚𝑘=1(|𝑞−𝑖𝑗 − 𝑞−𝑘𝑗| + |𝑞+𝑖𝑗 − 𝑞+𝑘𝑗|). Then solving
formula (12) to get optimal weight vector 𝑊 = (𝑤1, 𝑤2,......, 𝑤𝑛).
Step 5. From Steps 3 and 4, the optimal weight vector W of
attributes and the perception utility value matrix (𝑢𝑖𝑗)𝑚×𝑛 are
obtained. Calculating the comprehensive perception utility
value U(si) of each alternative si by formula 𝑈(𝑠𝑖) =
∑𝑛𝑗=1𝑤𝑗𝑢𝑖𝑗, and then getting sorting results from U(si).

Step 6. Performing uncertain analysis by different setting of
preference attitude coefficient 𝛼 and regret aversion coeffi-
cient 𝛿. Here we recommend the setting ranges of 𝛼 and 𝛿 are
0.2∼0.8. 𝛼 reflects the preference extent of decision-makers
to the upper and lower evaluation bounds of the attribute.
𝛿 represents the psychology of regret evasion from decision-
makers.

4. Example Analysis

For easy of comparison and illustration, the example is based
on the data of [23]. An electronic commerce website intends
to evaluate the different brands of air-conditionings sold
online and to determine the ranking of brands recommended
to users. The website examines five brands (s1, s2, s3, s4, s5).
The evaluation contains eight attributes, that is, fixed cost u1,
operation cost u2, performance u3, noise u4, maintainability
u5, reliability u6, flexibility u7, and security u8. Among them,
the evaluations of attributes u3, u5, u7, u8 come from website
users, and the scoring range is from 1 to 10. In addition, u1,
u2, u4 are cost attributes, and the others are benefit attributes.
Based on attribute weights and evaluation matrix shown
in Table 1, brand sorting will need to be determined. The
example is performed by MATLAB program.

(1) According to Step 1, normalize the original evaluation
matrix and get the standardized evaluation matrix, as shown
in Table 2.The process not only eliminates the dimension dif-
ferences of each attribute, but also transforms each attribute
into benefit attribute.

(2) Getting the value interval of each attribute and its
pass value: after standardization, evaluation value interval is
changed to [0, 1], so that the positive interval of each attribute
value also is [0, 1]. Here, we take the median value as the
pass value of each attribute, which represents the decision-
maker’s aversion attitude towards the evaluation below the
median value, as shown in Table 3. According to Step 2, the
interval extension-dependent degree of each evaluation value
is calculated, and the interval-dependent degree matrix is
obtained, as shown in Table 4.

(3) According to Step 3, the regret value and perception
utility value of each attribute value and its optimal value are
calculated, and the perception utility matrix is obtained, as
shown in Table 5. The regret aversion coefficient 𝛿 here takes
a recommended value of 0.3 [12].
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Table 1: Evaluation matrix.

u1 u2 u3 u4 u5 u6 u7 u8
s1 [3.7, 4.7] [5.9, 6.9] [8, 10] [30, 40] [3, 5] [90, 100] [3, 5] [6, 8]
s2 [1.5, 2.5] [4.7, 5.7] [4, 6] [65, 75] [3, 5] [70, 80] [7, 9] [4, 6]
s3 [3.0, 4.0] [4.2, 5.2] [4, 6] [60, 70] [7, 9] [80, 90] [7, 9] [5, 7]
s4 [3.5, 4.5] [4.5, 5.5] [7, 9] [35, 45] [8, 10] [85, 95] [6, 8] [7, 9]
s5 [2.5, 3.5] [5.0, 6.0] [6, 8] [50, 60] [5, 7] [85, 95] [4, 6] [8, 10]
w [0.042, 0.049] [0.084, 0.098] [0.121, 0.137] [0.121, 0.137] [0.168, 0.182] [0.214, 0.229] [0.040, 0.046] [0.159, 0.171]

Table 2: Standardized evaluation matrix.

u1 u2 u3 u4 u5 u6 u7 u8
s1 [0.319, 0.405] [0.609, 0.712] [0.800, 1.000] [0.750, 1.000] [0.300, 0.500] [0.900, 1.000] [0.333, 0.556] [0.600, 0.800]
s2 [0.600, 1.000] [0.737, 0.894] [0.400, 0.600] [0.400, 0.462] [0.300, 0.500] [0.700, 0.800] [0.778, 1.000] [0.400, 0.600]
s3 [0.375, 0.500] [0.808, 1.000] [0.400, 0.600] [0.429, 0.500] [0.700, 0.900] [0.800, 0.900] [0.778, 1.000] [0.500, 0.700]
s4 [0.333, 0.429] [0.764, 0.933] [0.700, 0.900] [0.667, 0.857] [0.800, 1.000] [0.850, 0.950] [0.667, 0.889] [0.700, 0.900]
s5 [0.429, 0.600] [0.700, 0.840] [0.600, 0.800] [0.500, 0.600] [0.500, 0.700] [0.850, 0.950] [0.444, 0.667] [0.800, 1.000]
w [0.042, 0.049] [0.084, 0.098] [0.121, 0.137] [0.121, 0.137] [0.168, 0.182] [0.214, 0.229] [0.040, 0.046] [0.159, 0.171]

Table 3: Positive interval and pass value of each attribute.

u1 u2 u3 u4 u5 u6 u7 u8
Positive interval [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
Pass value 0.429 0.764 0.600 0.500 0.500 0.850 0.667 0.700
Standard positive interval [0.429, 1] [0.764, 1] [0.600, 1] [0.500, 1] [0.500, 1] [0.850, 1] [0.667, 1] [0.700, 1]

Table 4: Interval-dependent degree matrix.

u1 u2 u3 u4 u5 u6 u7 u8
s1 0.8438 0.8645 1.3000 1.3750 0.8000 1.1000 0.6664 0.9786
s2 1.3710 1.0473 0.8333 0.8620 0.8000 0.8824 1.2220 0.7143
s3 0.9726 1.1400 0.8333 0.9290 1.3000 0.9956 1.2220 0.8571
s4 0.8881 1.0845 1.2000 1.2620 1.4000 1.0500 1.1110 1.1000
s5 1.0855 0.9961 1.1000 1.0500 1.1000 1.0500 0.8328 1.2000

Table 5: Perception utility matrix.

u1 u2 u3 u4 u5 u6 u7 u8
s1 0.6000 0.7466 1.2695 1.3368 0.5663 1.0849 0.4450 0.8773
s2 1.3092 0.9891 0.6480 0.6511 0.5663 0.7987 1.1881 0.5222
s3 0.7759 1.1108 0.6480 0.7422 1.2382 0.9482 1.1881 0.7151
s4 0.6608 1.0380 1.1382 1.1880 1.3695 1.0195 1.0421 1.0382
s5 0.9287 0.9215 1.0058 0.9055 0.9725 1.0195 0.6709 1.1695

(4) According to Step 4, deviation matrix of deviation
degree can be counted. For each attribute, the deviation value
of the attribute value of each alternative and that of the other
alternatives is obtained, as shown in Table 6.

According to formula (12) and deviation matrix, a single
object optimization model is established.

max 𝐷 (𝑊)
= 7.843𝑤1 + 4.524𝑤2 + 8.800𝑤3 + 9.484𝑤4
+ 11.200𝑤5 + 3.600𝑤6 + 9.780𝑤7
+ 8.000𝑤8

s.t. 0.042 ≤ 𝑤1 ≤ 0.049, 0.084 ≤ 𝑤2 ≤ 0.098, 0.121
≤ 𝑤3 ≤ 0.137, 0.121 ≤ 𝑤4 ≤ 0.137
0.168 ≤ 𝑤5 ≤ 0.182, 0.214 ≤ 𝑤6 ≤ 0.229, 0.040
≤ 𝑤7 ≤ 0.046, 0.159 ≤ 𝑤8 ≤ 0.171

s.t.
8

∑
𝑗=1

𝑤𝑗 = 1
(13)
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Table 6: Deviation matrix of deviation degree.

u1 u2 u3 u4 u5 u6 u7 u8
s1 1.370 1.392 2.200 2.585 2.200 0.800 2.667 1.200
s2 3.010 0.644 1.800 1.855 2.200 1.200 1.778 2.000
s3 1.143 1.043 1.800 1.654 2.200 0.600 1.778 1.400
s4 1.256 0.710 1.600 1.907 2.800 0.500 1.556 1.400
s5 1.297 0.735 1.400 1.483 1.800 0.500 2.001 2.000

Table 7: Comprehensive perceived utility value sorting.

s1 s2 s3 s4 s5 Sorting result
𝑈(𝑠𝑖) 0.9389 0.7271 0.9123 1.1129 0.9893 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2

Table 8: Sorting results under different attitude coefficient 𝛼.
𝛼 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 Sorting result
0.3 1.0002 0.7936 0.9668 1.1594 1.0334 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.4 0.9696 0.7604 0.9396 1.1362 1.0113 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.5 0.9389 0.7271 0.9123 1.1129 0.9893 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.6 0.9082 0.6937 0.8850 1.0896 0.9671 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.7 0.8773 0.6603 0.8576 1.0663 0.9450 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2

Table 9: Sorting results under different regret aversion coefficient 𝛿.
𝛿 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 Sorting result
0.2 0.9746 0.7814 0.9496 1.1325 1.0195 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.3 0.9389 0.7271 0.9123 1.1129 0.9893 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.5 0.8615 0.6088 0.8324 1.0723 0.9254 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.7 0.7751 0.4762 0.7449 1.0292 0.8567 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
0.8 0.7281 0.4040 0.6980 1.0068 0.8204 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2

The optimal weight vector W is obtained by solving this
model.

𝑊
= (0.042, 0.084, 0.136, 0.137, 0.182, 0.214, 0.046, 0.159) (14)

(5) According to Step 5, calculating the comprehensive
perceived utility value of each alternative and sorting by the
values, the result is shown in Table 7.

(6) Performing uncertain analysis: the attitude coefficient
𝛼 represents the decision-maker's preference towards the
upper and lower bounds of attribute evaluation. Table 8 shows
the decision sorting results under five different 𝛼 settings.
It shows that the sorting results under different attitude
coefficients are still the same, which indicates that the current
sorting does not change with the decision-makers' preference
to the evaluation bounds. Table 9 shows the decision results
under different regret aversion coefficient. It can be seen that
alternatives sorting remains unchanged, which illustrates the
current sorting has higher stability.

(7) Comparison of decision results under different algo-
rithms: Table 10 shows the decision results under five algo-
rithms. In our algorithm, the pass value is median value
and mean value, respectively, attitude coefficient is 0.5, and

regret aversion coefficient is 0.3. In regret theory, risk aversion
coefficient is 0.02 and regret aversion coefficient is 0.3. In set
pair analysis, the uncertain number 𝑖 is 0 and 0.5, respectively.
The sorting results of these algorithms are consistent. The
results of TOPSIS and relativemembership degree algorithms
are slightly different, mainly on the sorting of alternatives s1,
s3, s5. It can be seen that, for sorting of s3 and s5, TOPSIS
is consistent with our method and the conclusion of relative
membership degreemethod are different. But for sorting of s1
and s3, relative membership degree method and our method
are consistent and are disagreement with TOPSIS. So in the
whole, the sorting result of our method is more reasonable.

(8) Comparison with the traditional regret theory: the
line shape of utility function in regret theory is uniquely
determined by the risk aversion coefficient 𝛽 and is not
flexible enough. Moreover, its setting is difficult due to often
lack sufficient basis. By comparison, the extension-dependent
function of our algorithm can be adjusted automatically
according to the pass value and the value range of attribute,
and so it is more flexible. In many cases, setting pass value
is more in line with people's habit in decision-making. It is
also easy to find a certain basis for its value taking, whether
it follows subjective method or objective method. Pass value
setting will have an impact on the result of the decision. In
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Table 10: Sorting results under different algorithms.

s1 s2 s3 s4 s5 Sorting result
TOPSIS [24] 0.4176 0.2671 0.4188 0.5777 0.4498 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
elative membership degree [25] 0.4502 0.0327 0.3262 0.9167 0.3381 𝑠4 ≻ 𝑠1 ≻ 𝑠5 ≻ 𝑠3 ≻ 𝑠2
set pair analysis (i = 0) [23] 0.6036 0.4781 0.5827 0.6974 0.6203 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
set pair analysis (i = 0.5) [23] 0.7270 0.5916 0.6958 0.8227 0.7354 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
regret theory 0.6268 0.4465 0.5873 0.7579 0.6369 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
regret-extension (median value) 0.9389 0.7271 0.9123 1.1129 0.9893 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2
regret-extension (mean value) 0.8663 0.6450 0.8353 1.0474 0.9052 𝑠4 ≻ 𝑠5 ≻ 𝑠1 ≻ 𝑠3 ≻ 𝑠2

this case, assuming that the decision-maker has a subjective
setting for pass value of 0.4, 0.4, and 0.6 for the attributes u3,
u4, u5 in Table 3, then alternatives s1 and s3 in the decision
result will be reversed. But in traditional regret theory, the
reversion will not happen.

5. Conclusion

In summary, the main work of the paper is as follows. (1) For
uncertain multiattribute decision-making, a new extension-
dependent degree decision-making method based on regret
theory is proposed. (2) Aiming at the problem that the
utility function in traditional regret theory is not strong
enough to describe risk aversion behavior, an extension-
dependent degree function combining pass value is given.
(3) For quantitative describing uncertain attribute value
information, the expression of interval extension-dependent
degree function is given. The function can reflect the degree
of decision-maker's preference towards the upper and lower
bounds of evaluation interval through preference attitude
coefficient setting. (4) For attribute weight being taken as
interval number, an objective weight assignment method
based on themaximum deviation of interval deviation degree
is given. (5) An example is given to verify the feasibility
and applicability of our method, and the uncertain analysis
for the decision result is carried out. The future research
work is very rich. The regret extension-dependent decision
method in the paper is considered to be applied to various
decision scenarios such as mixed value type, incomplete
information, dynamic stochastic, fuzzy set, and in further
study its extension transformation [26] in the dynamic
decision model.
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