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The paper focuses on the design of an optimum method for handling the continuous skyline query problem in road networks.
Existing studies on processing the continuous skyline query focus exclusively on static road networks, which are limited because
the state of roads in road networks is constantly changing. Therefore, to apply current methods for dynamically weighted road
networks, a distributed skyline query method based on a grid partition method has been proposed in this paper. The method
adopts the concepts of a distributed computing framework and roadnetwork preprocessing computations inwhichmultiple parallel
computing nodes are allocated and organized in grids. Using this approach, the road network map is simplified to a hub graph
with much smaller scale such that the query load of the central node can be significantly reduced. The theoretical analysis and
experimental results both indicate that, by using the proposed method, the system can achieve quick response time for users as
well as a good balance between response times and accuracy. Therefore, it can be concluded that using the proposed method is
beneficial for handling continuous skyline queries in a dynamically weighted road network.

1. Introduction

Providing location-based services (LBSs) [1] for moving
objects in road networks has become an important research
topic in traffic informatization and intelligent traffic system
development [2] due to the advances in wireless commu-
nication and global positioning system (GPS) technologies.
Recommendation systems for moving objects have become
an increasingly popular function for road networks, for
example, for recommending hotels, car parks, and taxi
services based on the real-time locations of network users.
In recent years, in conjunction with the development of
numerous databases, the skyline query [3] has become an
important method to solve LBSs for road networks and
moving object recommendation systems. One example of
the application may be that a moving object set is used to
query taxis preferred by users, i.e., cars in good conditions,
drivers with long service records, good ratings, and close
proximity to a user’s location. To achieve this, skyline can be
used to conduct queries based on the user’s criteria. Results

are then presented to the user and they will be asked to make
a decision.

The skyline query was first introduced into the database
domain in 2001 by Borzsonyi et al., who proposed two basic
skyline query algorithms which are block nested loops and
divide and conquer (D&C) [3]. Since then, researchers have
improved these algorithms and extensively studied skyline
queries in a wide variety of scenarios [4–8]. With the contin-
ued expansion and development of wireless communication
and mobile location technologies, the demand for LBSs has
motivated researchers to extend skyline queries to various
mobile computing scenarios. Sharifzadeh et al. first proposed
the concept of a spatial skyline query [9], and then Deng et
al. extended spatial skyline queries to road network scenarios
[10]. In [10], Deng et al. measured the distance between the
user and interested object as an attribute of the interested
object and proposed a multisource skyline query in road
networks. To this end, they introduced three algorithms
which are collaborative expansion (CE), Euclidean distance
constraint (EDC), and lower bound constraint (LBC). More
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specifically, CE finds the next nearest neighbor for all query
points. Further, EDC first calculates Euclidean distances for
all data points and then runs a Euclidean skyline algorithm
to output the skyline points, with those points serving as the
initial candidate set of the skyline point. Finally, LBC is the
same as CE, but LBC uses various optimization techniques,
e.g., Euclidean distance computation is used to save network
distance calculation. In 2008, Frankenstein et al. studied
the continuous skyline query problem of moving objects in
road networks [11] and proposed a method that processes a
continuous skyline through precomputed shortest range data
for targets.

More recently, researchers have studied the continuous
skyline query problem of moving objects in road networks
from a variety of perspectives. In [12], Huang et al. used a grid
structure to index the road network andmoving object infor-
mation to improve the access efficiency of road network data,
directly calculating the shortest path between objects using
Dijkstra’s algorithm. In [13], Shekelyan presented a method
for computing a linear path skyline to simplify the query
result set, using the multi-Dijkstra algorithm to continuously
update the shortest path information. In [14], Prabha et al.
focused on the authentication problem of moving objects
in a continuous skyline query process, proposing a system
that applies a spatial precomputed approach for continuous
skyline query. In [15], Safar et al. filtered candidate interest
points by calculating the nearest neighbor of each query
point, thereby reducing the query space and the number
of required shortest path computations wherein a spatial
data structure is used to store precomputed shortest path
information between nodes of the road network. In [16], Shi
et al. approached continuous skyline queries by focusing on
location range, transforming interest point sets into Voronoi
units, and reducing query times by preprocessing data from
the Voronoi units from within the road network. In [17], Fu
et al. studied the continuous skyline query problem involving
uncertain moving objects by introducing an uncertainty data
model in which shortest path information between objects is
updated directly according to each event.

In the skyline query process for road networks, the
required computation of shortest path between moving
objects occupies the main portion of the calculations. Dijk-
stra’s algorithm [18] is a representative network shortest path
algorithm.The algorithm propagates a search wavefront from
a source vertex until a destination vertex is reached. The
A∗ algorithm [19] is a heuristic method. The key idea of
A∗ is that if there is only one destination, the wavefront
expansion process can be optimized towards the direction of
the destination vertex. The two algorithms mentioned above
are on-the-fly, that is, directly computing the shortest path
without any precomputing. Because of the high computing
complexity of path search on large-scale road network, the
on-the-fly methods cannot meet the requirement for real-
time query. Precomputing methods were used to improve
query response time of shortest path. There are some studies
[20, 21] on the approach with precomputing transitive closure
of graph. This type of approach is not suitable for large road
networks, because of the huge storage space requirement.
And due to huge cost of precomputing for transitive closure,

it is also not suitable for dynamically weighted road networks.
In [22], Hu et al. proposed a method that stores and indexes
the network distances between every vertex and data object
with different level of accuracy according to the distance
between them. This approach is also not suitable for dynam-
ically weighted road networks due to the high maintenance
cost when the network is updated. Another kind of methods
with precomputing is based on hierarchical fashion [23–
26]. In these methods, a large graph is divided into smaller
subgraphs and organizes them in a hierarchical fashion. For
each subgraph, the border vertices are the entrances and only
the distances between these border vertices are precomputed.
Therefore, while computing the network distance, intermedi-
ate vertices inside the subgraph are skipped over. However,
hierarchical fashion is not suitable for skyline query, since
it often requires computing network distances from one
source to several destinations. Thus, it is desirable to keep the
distance information for the intermediate vertices.

In practice, there are two key challenges when conducting
queries using the skyline-based moving object recommen-
dation approach. First, data of moving object is collected
by many sensors distributed throughout the road network.
Using a traditional method of centralized data processing,
large amounts of resources will be wasted in data transmis-
sion, thus causing low efficiency. Second, such a centralized
processing approach is inadequate for real-time and on-
demand application because of the huge numbers and widely
scattered moving object data. Finally, road networks are often
dynamic rather than static; therefore, the edgeweights usually
depend on timing because of traffic congestion and road
maintenance work being carried out. In general, it is not
possible to rely on any precomputation of road network
data for determining an optimum route between vertices.
Alternatively, computation must be based on real-time data.
However, any computation based on a single point will be
inadequate in meeting the real-time requirement because of
the vast amount of data acquired from road networks.

Summarizing the existing skyline query methods for road
network, there are two ways for calculating the shortest
distance betweenmoving objects in the skyline query process.
The first approach is on-the-fly, that is, to identify the two
objects as two vertices in the road network and then to
use a shortest path algorithm (e.g., Dijkstra’s algorithm) to
perform direct calculations. This method can also be applied
to a dynamically weighted road network, but the required
computation rapidly increases as the scale of the road net-
work increases. The second approach is to precompute and
store the shortest distance between vertices within the road
network. When querying, the shortest distance between two
objects can be obtained by querying the shortest distance
between the nearest neighbor vertices of each object. This
approach results in faster query response times, but it cannot
be applied to a dynamicallyweighted road network because of
the huge cost from precomputation. Therefore, in this paper,
grid-skyline query (Gsky) is proposed to strike a balance
between the above two methods in large-scale dynamically
weighted road networks.

Gsky is based on dividing a dynamic road network into
small manageable units of grids. Using the proposedmethod,
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Figure 1: Example road network graph G with four grid partitions.

the entire road network is divided into a finite number of
grids with a computing node allocated within each grid. This
computing node is responsible for collecting and updating
information about all moving objects and maintaining a
localized distance for all vertices of each grid. Subsequently,
a central node is placed for the entire system. When queries
are submitted, the central node will gather the required data
of moving object and information of localized distance from
relevant computing nodes and compute the distance between
the moving objects in real time. Finally, users will receive the
updated skyline set from Gsky based on changes in distances
between moving objects.

Gsky handles moving object information with distributed
computing nodes. Therefore, the central node is only acti-
vated when there is a query; also, only the interested moving
object will be involved in the computation. By using this
approach, we can avoid a large amount of data transmission.
Generally, parallel computation is performed by computing
nodes to update the distances between local vertices. The
required information is then fed to the central node only
when there is a query. Therefore, the computing workload
of the central node should be significantly reduced and
managed. Hence the central node only needs to maintain
the topology structure of the grids, thereby reducing data
maintenance for the central node.

2. Relevant Models

Definition 1 (road network). A road network can be abstractly
defined as weighted undirected graph G(V, E, W), where
vertex set V denotes all cross-points in the road network, w
represents the length of each road with the consideration of
traffic congestion, with w ∈Wand w > 0, and E represents all
edges. As shown in Figure 1, G is a road network that includes
22 cross-points and 35 edges.

Definition 2 (moving object). A moving object is defined as a
point p(m, e, pos)moving along the edge of graphG, wherem
represents the moving object’s nonlocational attributes (i.e.,
symbol, type, and rating), e represents the edge, and pos
identifies the distance between the starting points and the
moving object on the edge. Hence, according to certain rules,
one end of the road can be set as the starting point.

Definition 3 (grid). The entire road network is divided into
grids, each with an equal size N ×M. Each grid is defined as
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Figure 2: Example hub graph corresponding to the road network
presented in Figure 1.

g(Vg, Eg, Sg, Wg), where vertex set Vg represents all cross-
points in G, edge set Eg represents all roads passing through
each grid, and vertex set Sg represents the starting point of
a road in a grid with starting point sg of road e in grid g
defined as follows: (1) sg = s, if road e’s global starting point s∈ Vg; (2) if sg is the first intercept point of road e with border
line g, then road e’s global starting point s ∉ Vg. Further, wg
represents the length between e’s global starting point s and
e’s starting point in g sg, where sg ∈ Sg, wg ∈ Wg, and wg ≥
0. As shown in Figure 1, road network G is divided into four
grids g1–g4.

Theorem 4. Assume that a moving object is identified as
q(m, e, 𝑝𝑜𝑠𝑔) in grid g, where n represents the nonlocational
information of the moving object, e represents the edge, and𝑝𝑜𝑠𝑔 is the distance between 𝑠𝑔 and the moving object, with𝑠𝑔 ∈ 𝑆𝑔. And there is a global moving object p(m, e, pos) in
graph G corresponding to q; then, pos = 𝑝𝑜𝑠𝑔 + 𝑤𝑔.
Proof. Theorem 4 is valid based on Definitions 2 and 3.

Definition 5 (distance). The distance between p and q is
defined as the length of the shortest route between p and q
in G; this distance is denoted as d(p, q).

Definition 6 (hub graph). For graph G, if Vg ̸= B, then g is a
hub. For edge e, if the two end vertices of e are not in the same
grid, then e is called a bridge edge, and its end vertices are
called bridge vertices. Connecting bridge vertices with virtual
edges ei from the same hub to vertices in a different hub with
bridge edges forms hub graph Gc(Vc, Ec, Ei, Wc, Wi), where
Vc represents the bridge vertex set, Ec represents the bridge
edge set, Ei represents the virtual edge set, wc represents the
length of the bridge edge, with wc ∈ Wc and wc > 0, and
wi represents the length of the virtual edge, i.e., the distance
between two ends of a virtual edge within a hub, with wi ∈ Wi
andwi > 0.Thegraph in Figure 2 shows an example hub graph
of the road network presented in Figure 1.

Theorem 7. The shortest route between any two vertices in a
hub graph corresponds to the shortest route in the original road
network.

Proof. Consider the situation in which the shortest route
between any two vertices in the hub graph will not include
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Figure 3: Schema of our Gsky approach.

any virtual edges. On the basis of Definition 6, all edges
along this route will correspond to an edge in the original
road network. Therefore, this route will be the shortest in the
original road network. Consider the other situation in which
a virtual edge is included in the computation for the shortest
route; assuming that the virtual edge is pq, then on the basis of
Definition 6, we can observe that all edges along the shortest
route between p and q in the road network will be in the same
hub. Given that pq is the shortest route in this hub, we can
therefore conclude that pqmust be the shortest route between
p and q in the original road network. Thus, Theorem 7 is
proven.

Theorem 8. The shortest route between any two points in a
hub graph traverses no more than one virtual edge in the same
hub.

Proof. Assume that the shortest route between vertices p and
q in hub graph Gc can be expressed as r(p. . .m1. . .mn . . .q),
with n > 1 and the route m1. . .mn representing a continuous
virtual edge (with exactly n − 1 such edges) that passes
through points of n in hub M. From Definition 6, we can
observe that the length of the route m1. . .mn is l = dM(m1,m2)
+ ⋅ ⋅ ⋅ + dM(mn − 1,mn), and there is at least one virtual edge,
which is m1mn with length l

󸀠 = dM(m1,mn) ≤ l.Therefore, the
shortest route between p and q is r(p. . .m1mn . . .q) with only
one virtual edge. Thus, Theorem 8 is proven.

FromDefinition 6 andTheorem 8, it is obvious that a road
network can be simplified with a small-scale hub graph for
processing the distance between points in order to reduce the
computing workload. FromTheorem 8, one can know that it
is possible to skip some of the routes in the hub graph when
computing distance between points; therefore, query domain
can be reduced.

Definition 9 (domination). Nonlocational attributes which
the user is interested in together with the distance d between
the moving object and the user’s position form attribute
space A and define data point p(a1,a2,. . .an,d) in A, with
a1,a2,. . .an,d ∈ A. For any two random points p1 and p2, if∀ai ∈A, then p1.ai ⩽ p2.ai and ∃aj ∈A; therefore, p1.aj < p2.aj,
which is defined as p1 dominating p2 and denoted as p1 ≺ p2.
If p1 ≺ p2, then p1 does not dominate p2, which is denoted as
p1 ⊀ p2.

Definition 10 (skyline). Given that set C contains information
that the user is interested in corresponding to a given road
network, all data which are not dominated by other data in C
form a skyline set, denoted as SKY(C) = {p1 ∈ C|∀p2 ∈ C:p1⊀ p2}.
3. Continuous Skyline Query in a Dynamically
Weighted Road Network

3.1. Fundamental Structure of Our Method. The overall
structure of Gsky approach is presented in Figure 3. As
noted above, Gsky uses N × M grids to divide the road
network. A computing node is located within each grid and is
responsible for processing and maintaining the information,
as well as collecting and updating moving object information
within the corresponding grid. The computing node is also
responsible for computing and updating distance informa-
tion between points; therefore, there is no communication
between points, and asynchronous computing is used to
update information corresponding to each point. A central
node then processes user’s queries; this central node also
maintains the hub graph and collects information from each
computing node, providing feedback with skyline set which
the user is interested in.
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input interested moving object set P
outputmoving object set P with updated location information
Steps:
to mapper:
P.get(); // read object assigned to current mapper from input cache
foreach p in P

p.pos=p.posg+p.e.wg; // compute global location information
P.send(); // send the result to output cache
to reducer:
P.get(); // gather objects from each mapper

Algorithm 1: Obtain global location information of a moving object.

The procedure is summarized as follows. When there is
no query task, each computing node updates locational infor-
mation for moving objects on a regular basis, also computing
and updating distance information between points depend-
ing on changes in relevant weights. Once a query is initiated,
the central node requests regional location information for
the interested moving object from the computing node and
then processes this global location information. Next, the
central node computes the distance between each interested
moving object and the user’s position by gathering informa-
tion of the virtual edges in each relevant hub from computing
nodes. Eventually, the central node generates a skyline set
based on the distances between the interested moving objects
and the user’s position, as well as nonlocational attributes of
the moving objects; finally, this skyline set is returned to the
user.

The distributed computation structure is based on an
approach known as MapReduce [27], which makes use of
cloud computing and has the advantages of being highly dis-
tributed and error-tolerant. Despite the fact that MapReduce
was only able to process batched queries when it was first
introduced, many researchers have worked on it extensively
to improve its ability to process online data in real time [28–
30]. Currently, MapReduce is already able to process real-
time information; therefore, in current work, the system uses
MapReduce and allocates a mapper to each computing node
and a single reducer as the central node.

3.2. Maintaining Location Information for Moving Objects.
Maintaining location information for a moving object
includes processing for both regional and global location
information. The computing node within each grid is respon-
sible for updating regional location information for each
moving object. Here, maintaining each data node is based
on the road information in the grid within which the
computing node is located. According to Definition 3, road
information can be described using set (e, Vg, sg, wg), where
e represents the road, Vg represents the end of the road,
sg represents the starting point of the road within a grid,
with the starting point denoted as s when it is within a
grid and sg when it is on the boundary of a grid, and wg
represents the location of sg, where wg = 0 if s is within
the grid (otherwise, wg is the distance between sg and
s). Moving objects within a grid are described as (m, e,

posg), where n represents the nonlocational attributes of the
moving objects, e represents the road where the moving
objects are located, and posg represents the distance between
the moving objects and sg. The computing node regularly
updates the road andmoving object information by receiving
signals from sensorswithin the grids and fromcorresponding
GPSs.

When a query is submitted by a user, the central node
requests the global location information from the computing
nodes.The global location information of the moving objects
can be described as (m, e, pos). According toTheorem 4, it is
straightforward to know that the location of a moving object
is pos = posg + wg.

For example, the system allocates a computing node to
maintain the moving object data in g3 shown in Figure 1.
Suppose that the cross point between the road cj and the g3
boundary is s, and the length of the cs is 5; then the road cj
in g3 can be defined as (cj, c, s, 5), and road kc in g3 can be
defined as (kc, k, k, 0). Suppose that there is a moving object
o1 on the road cj which falls in g3, and the length between
o1 and s is 2; then o1 in g3 can be defined as (m, cj, 2), and
the global definition of the o1 in the central node is (m, cj, 7).
Suppose that there is amoving object o2 on the road kc which
falls in g3, and the length between o2 and k is 3; then o2 in g3
can be defined as (m, kc, 3), and the global definition of the
o2 in the central node is (m, kc, 3).

These calculations are processed via MapReduce only
once, with the detailed algorithm presented as Algorithm 1.

3.3. Distance Computation between Users andMovingObjects.
If the position of a user is fixed on a given road network
and the moving objects move with a constant speed, in order
to obtain the skyline set which is interested by the user, it
is necessary to process the distance between them in the
road network. If the location of the user and the interested
moving objects are viewed as vertices in the road network,
we can then use Dijkstra’s algorithm [18] to directly obtain
the distance; however, this algorithm requires a large amount
of computing resources and therefore cannot meet the needs
of live responses. In present work, the system applies a
conversion method to process two random points in the road
network bywhich a relatively fixed computation is performed
to calculate the distance between vertices in a topological
structure. Using appropriate preprocessing of computation,
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input source vertex s and destination vertex t
output d(s,t)
Steps:
to reducer:
S.include(s); // define set S,add s to S
T=V-S; // set V include all vertices in the road network
while(T)
R=GetNeighborRoute(s,S,T); // find all routes between s and neighbor vertices of S in T as R
foreach r in R
if r. ConVedgeNum>=2

R.delete(r); // if r contains more than 2 adjacent virtual edges, delete r from R
continue();

else if r. VedgeNum>=1
r. Vedges.get(); // if r contains virtual edge,sent this virtual edge into input cache of mapper

r.length.compute(); // compute length of r
r=R.GetShortest(); // pick the shortest route,add its ends to S
S.include(r.end);
T.delete(r.end);
if(r.end==t) // return result when reaches destination t
return r.length;

to mapper:
Vedge.get(); // get virtual edges from input cache
Vedge.length=GetLength(Vedge.id);
Vedge.sent(); // sent length of virtual edges into output cache

Algorithm 2: Compute the distance between two vertices in a hub graph.

the system can substantially reduce computing and achieve
fast response times.

More specifically, assume that we have two random
points, p and q, both on roads ab and cd. If the starting point
of road ab is point q and the starting point of road cd is point
c, then the road lengths by a broad definition of distance for
ab and cd are wab and wcd, respectively. Here, there are four
routes between p and q which are

r1(p,a, c,q);
r2(p,a,d,q);
r3(p,b, c,q);
r4(p,b,d,q).

The shortest length of the four routes is represented as follows:

d(r1) = p.pos + d(a,c) + q.pos;
d(r2) = p.pos + d(a,d) + (wcd− q.pos);
d(r3) = (wab− p.pos) + d(b,c) + q.pos;
d(r4) = (wab− p.pos) + d(b,d) + (wcd− q.pos).

Therefore, d(p, q) = min(d(r1), d(r2), d(r3), d(r4)), which
indicates that the distance between two points p and q can be
obtained by calculating the distance between the endpoints
of the two routes.

The distance between two random points in the road
network can be processed by the central node in the cor-
responding hub graph. The length of the bridge edge in
the hub graph is regularly updated by the central node,
whereas the length of the virtual edge is regularly updated

by the computing nodes. When calculating distance, the
central nodewill start fromone end usingDijkstra’s algorithm
and stop once the algorithm reaches the other endpoint;
further, when the length of the route needs to be com-
pared, MapReduce will collect length information for virtual
edges from the computing node. When calculating the
optimum route,Theorem 8 can be applied to remove unqual-
ified routes and therefore substantially reduce the query
region.

For example, suppose that in the road network shown
in Figure 1, it is necessary to compute the network distance
between query point u on road ac and the moving object o
on road fg. Then d(a, f), d(a, g), d(c, f), and d(c, g) should be
computed first. Taking d (a, f) as an example, when the central
node starts computing d (a, f), the data of the 13 virtual edges
(namely, ab, ac, bc, de, ef, df, gh, kj, ji, il, lk, lj, and ki) are first
obtained from computing node, and then the shortest path
algorithm (e.g., Dijkstra’s algorithm or A∗ algorithm) is used
to compute d (a, f) in the hub graph shown in Figure 2.During
the computing, if there are more than two consecutive virtual
edges on the path, e.g., ac-cb, the path is abandoned.

Algorithm 2 provides the detailed steps.
Finally, note that the computing nodes should update the

shortest path tree between each of the nodes and provide
length information for the virtual edge back to the central
node as necessary. Given the ever-changing weights, the
shortest path tree must be reprocessed whenever there is an
update; therefore, it is time-consuming and may also cause
outdated information to be fed from the computing nodes to
the central node.Therefore, instead, an incremental updating
algorithm [31] is used to achieve a better performance.
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input interested points set A, dominant relationship M1, comparison of distance M2.
output skyline set SKY
Steps:
A.SortByDistance(); // sort points in A by distance attribute
for(i=1;i<=A.MaxNum;i++) // updateM2

for(j=1;j<=i;j++)
if(M2[i][j].CompareFlag!=compare(A[i],A[j])) // if the relationship changes, update the relationship

M2[i][j].CompareFlag=compare(A[i],A[j]);
M2[i][j].Changed=true;

else
M2[i][j].Changed=false;

SKY.include(A[1]); // initialize SKY
for(i=2;i<=A.MaxNum;i++) // compute SKY

foreach p in SKY
if(M2[i][p.id]. Changed) // if the relationship of distance attribute changes
M1[A[i].id][ p.id]=ComputeDominate(A[i],p); // compute dominant relationship and update M1

if(!SKY. Dominate(A[i],M1)) // judge whether there is a point in SKY that dominates A[i] according to M1
SKY.include(A[i]); // if no point dominates A[i], add A[i] to SKY

return SKY;

Algorithm 3: Update the skyline set.

3.4. Updating the Skyline Set. Once the system finishes com-
puting the distance between the interested moving objects
and the user’s position, the central node updates the skyline
set using the distance attribute and other nonlocational
attributes. Often, the numbers of interested moving objects
are limited; therefore, it is not necessary to use skyline
query algorithm with index. Among nonindexing skyline
algorithms, the sort-filter-skyline (SFS) algorithm [32] is
efficient and progresses incrementally, which is suitable for
the present work. Therefore, a modified SFS algorithm is
incorporated to process the skyline set. Further, pruning rule
1 is presented below, which is based on the assumption that
nonlocational information does not change when a moving
object moves.

Pruning Rule 1. Assume that the relationship betweendistance
attribute d of data points p and q remains unchanged; then,
the dominant relationship will remain unchanged between p
and q.

Proof. Because the nonlocational attributes of p and q do
not change as they move, their relationship will not change.
Further, if the relationship between d of p and q remains the
same, then relationship between all attributes of p and q will
not change. Therefore, on the basis of Definition 9, it can be
inferred that the domination between p and q will remain the
same.

To use pruning rule 1 to modify the SFS algorithm,
the system establishes two global data tables which are M1
and M2. M1 maintains dominant relationship of data points
whereas M2 maintains the relationship between distance
attribute of data points. In the SFS algorithm, all data is
arranged first by the distance attribute dimension; at the same
time, the system updates M2 and extracts data for p from the
pending skyline set by sorting from the shortest distance to

the longest distance. This process consists of the following
three steps.

(1) Query M2: if the relationship between the distance
attribute of p and the point p∗ in SKY (herein, SKY refers to
current skyline set) does not change, the dominant relation-
ship between p and p∗ can be obtained from M1; otherwise,
compute the dominant relationship between p and p∗ and
update M1.

(2) If there is a point dominating p in SKY, discard p;
otherwise, add p to SKY.

(3) Return SKY when all of the points have been pro-
cessed.

Algorithm 3 provides the detailed procedure for these
above steps.

4. Algorithm Analysis

4.1. Computational Analysis. The majority of the computa-
tional cycles for Gsky are concentrated on calculating the
distance between the moving objects and the user.Therefore,
this subsection focuses on describing how the calculation
is actually processed. For the convenience of the discussion
here, the road network is defined as an n × n grid network,
divided with M square grids of the same size, where 1 ≤ M≤ n2. Further, assume that there are N vertices in the road
network. Given the above, then

𝑁 = (𝑛 + 1)2 . (1)

Here, Ng is the total number of vertices in each grid,
which can be represented as

𝑁𝑔 = 𝑁𝑀 = (𝑛 + 1)2𝑀 . (2)

Bridge vertices are the outermost crossing points, identi-
fied as hollow circles in Figure 4.
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Figure 4: Example of bridge vertices (i.e., the hollow circles) within
a grid (i.e., the bounding box).

Here, assuming that the number of bridge vertices within
each grid is Neg, then

𝑁𝑒𝑔 = 4√ (𝑛 − 1)2𝑀 . (3)

Taking the example with road network shown in Figure 4,
suppose that the grid network is composed of 11∗11 small
grids. The whole network is divided to 4 bigger grids, and
one of them is shown in Figure 4. Then the total number of
vertices in the network is 12∗12=144. The number of vertices
in the bigger grid is 144/4=36. The number of bridge vertices
in the bigger grid is 4∗10/2=20.

Further, assuming that the total number of bridge vertices
in the hub graph is Ne, then

𝑁𝑒 = 𝑀𝑁𝑒𝑔 = 4 (𝑛 − 1)√𝑀. (4)

Next, assuming that the number of interested moving
objects is P, the computational capacity for a single computing
node is Cs, and the computational capacity for the central
node is Cm. On the basis of the complexity of the shortest
route method, (2) and (4),

𝐶𝑠 = ((𝑛 + 1)2𝑀 )3 (5)

𝐶𝑚 = 𝑃 (4 (𝑛 − 1)√𝑀)2 = 16𝑃𝑀 (𝑛 − 1)2 . (6)

Next, on the basis of (5) and (6), the computational
complexity for a single computing node can be derived as
O((N/M)3); for the central node, the computational complex-
ity is O(PMN).

4.2. Analyzing the Amount of Traffic. Communication in the
system consists of two key parts. First, there is the traffic
distribution (denoted by D1) of the central node which
collects information from the computing nodes within each
grid. This portion of the traffic distribution is equal to the
number of interested moving objects; i.e., D1 = P. Second,

there is the traffic distribution originating from queries of
the distance between the interested moving objects and the
user. Here, the central node requests information regarding
the virtual edges from computing nodes; this portion of the
traffic distribution is denoted as D2. During the computation,
the central node acquires the number of virtual edges with
the maximum number of all virtual edges in all grids M,
performing such collections for P times. Assuming that the
number of bridge vertices in each grid is Neg, then

𝐷2 = 𝑃𝑀𝑁𝑒𝑔 (𝑁𝑒𝑔 − 1)22
≤ 𝑃 [8 (√𝑁 − 1)2 − 2 (√𝑁 − 1)√𝑀] .

(7)

Given (7), the overall traffic D is calculated as

𝐷 = 𝐷1 + 𝐷2
≤ 𝑃 + 𝑃 [8 (√𝑁 − 1)2 − 2 (√𝑁 − 1)√𝑀]
≤ 𝑃 + 8𝑃𝑁.

(8)

From (8), the scale of the traffic for the entire system
can be determined to be O(PN), whereas the scale of data is
O(N2) for the road network.Therefore, whenP≤N, the traffic
through the system does not exceed the scale of data for the
road network.

4.3. Deciding the Numbers of Grids. From Section 4.1, it is
known that the range of number of grids M is [1, n2]. When
M = 1, the computational complexity is O(PN) for the central
node and O(N3) for each computing node. Therefore, in
this case, Gsky degenerates into a precomputing algorithm
on a single computing node. Conversely, when M = n2, the
complexity of computation for the central node is O(PN2)
and O(1) for each computing node. Therefore, in this case,
Gsky degenerates into a Dijkstra algorithm running on a
single central node. To properly balance the computational
load over the central node and the computing nodes, a
suitable value of M must be determined. Assuming that
the computational capacity of the data processing center is
similar to that of the computing nodes, then it will achieve
this balancewhen the computational load for the central node
is equal to that for each computing node; i.e., from (5) and (6),

𝑀 = ( (𝑛 + 1)616𝑃 (𝑛 − 1)2)
1/4 = ( 𝑁3

16𝑃 (√𝑁 − 2)2)
1/4

. (9)

From (9), grid number M can be determined by the
number of vertices in road network N and the number of
interested points P.

Taking the example with road network shown in Figure 4,
the number of vertices is 144.When the number of interested
moving objects is 7, the number of grid is divided into 4, and
the performance of the system can be optimized.

Further, the distribution of vertices is not homogenously
distributed in real road networks. Therefore, to balance the
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Figure 5: Query response times at different road network scales in synchronous mode (comparison of basic algorithms).

computational load between the nodes, the road networkmay
be divided into grids unevenly such that each grid contains
a similar number of vertices. Balanced load of nodes can
maximize the efficiency of the entire system.

5. Experiments and Results

For the experiments, six PCs connected using 100 MEthernet,
each with a 2GHz Intel Core 2 processor, a 2 GB RAM, a
260GB hard drive, and the CentOS 6.2 operating system,
were used.The systemusedHadoopOnline Prototype (HOP)
[29] for Gsky, where one PC served as the central node
and the remaining five PCs served as computing nodes.
The number of mappers located on the computing nodes
depended on how the network was divided into grids; the
reducer was also allocated on the central node.

5.1. Comparison of Basic Algorithms. For the experiments,
two basic algorithms are used to serve as comparisons for
Gsky. First, the Dsky algorithm corresponds to the direct
calculation method described in the Section 1. Second, the
Psky algorithm corresponds to the precomputing method
described in Section 1. In Dsky, the moving objects and user
are treated as two vertices in a road network for processing
the distance between them. Here, Dijkstra’s algorithm is
used first, and then the modified SFS is applied to serve
as a comparison. In Psky, on the basis of the preprocessing
algorithm, the shortest path tree is periodically updated.
Whenprocessing the distance between themoving object and
users, information regarding the related vertices is collected,
describing their relative relationships in the road network.
Next, the modified SFS is applied as a comparison.

Note that managing moving objects when applying Dsky
and Psky occurs through the distributed computing system
proposed in our work; however, distance calculation and
preprocessing computation are both performed in the central
node.

The data used in the experiment were based on a real road
network from Beijing [33]. This dataset consisted of 433,391
roads and 171,504 vertices. Each test was performed using a
randomly selected region within the road network. Each road
wasmultiplied by a broadly defined length parameter, 𝜇, with
a multiplicative range of 1 to 10 and an exponent distribution
randomly changing every 5 to 10 s. There were 500 interested
moving objects moving in the road network at constant
speeds from 10 to 40 km/h. Each moving object had three
nonlocational attributes along with location information,
thereby making each a four-attribute object. The number of
nonlocational attributes ranged from 1 to 500 and remained
unchanged as the object moved.

Accuracy and response times were two criteria used to
determine the performance of eachmethod. Changes to these
two criteria were observed while we changed the scale of the
road network (i.e., increasing the number of vertices) for all
three algorithms. Average results were based on a 10-time test
for each criterion.

Further, both synchronous and asynchronous modes
were used to evaluate Gsky and Psky. For the synchronous
mode, before processing began, the information of virtual
edges and the shortest path tree were updated to help in
achieving a high level of accuracy. Conversely, with the
information of virtual edges and the shortest path tree
being periodically updated, the asynchronous mode, before
processing the data, does not consider whether the data is
in the latest state and directly uses the current state of data
for distance computation to ensure that response times are
reasonable.

Figure 5 presents the change in query response times
versus the scale of road networks for the three algorithms
in synchronous mode. From the figure, it can be observed
that the overall trend for all three methods was the same;
i.e., the query response time increased as the scale of the
road network increased. Query response times increased
most significantly for Psky because the computing nodes had
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Figure 6: Query response times at different road network scales in asynchronous mode (comparison of basic algorithms).

to update the shortest path tree, thereby creating a large
computing load and causing low efficiency. The increase in
query response times for Dsky grew only slightly as the scale
of the road network increased. For Gsky, the road network
was divided into grids, and thereweremany computing nodes
involved in processing the virtual edges, thereby allowing
a very large number of preprocessing computations to be
distributed; therefore, the impact on query response times as
the scale of the road network increased was very small. It can
be seen that in synchronous mode, the performance of Psky
is the worst, Dsky is better than Psky, and the performance of
Gsky is much better than the other two algorithms.

Figure 6 presents the change in query response times
versus the scale of road networks for the three algorithms
in asynchronous mode. It can be observed for Psky that
the response times barely changed as the scale of the road
network increased (in fact, the expectation of query response
time of Psky keeps around 600ms) because it removed the
task of computing the shortest path tree for vertices and
reduced the computing load for distance. Similar to syn-
chronousmode, the response times for Dsky increased signif-
icantly. For Gsky, despite the computing load being reduced
because of the preprocessing computation, it still took time
for the central node to process via the computing nodes in the
hub graph. Therefore, the response times increased steadily,
and the increase was lower overall than that of synchronous
mode. It can be seen that in asynchronous mode, Psky has the
best performance, the performance of Dsky is the worst, Gsky
is slightly lower than Psky, but far better than Dsky.

Figure 7 presents the change in accuracy versus the scale
of the road network for the three algorithms in asynchronous
mode. It can be observed that the accuracy keeps close to
100% for Dsky since it computes in real time and does
not rely on any preprocessing; however, Psky relies on the
preprocessing. Therefore, in asynchronous mode, the time-
consuming preprocessing is not capable of catching up with
the speed of incoming queries, whichmeans that only a small

part of the shortest path tree is actually updated when the
query request occurs. Therefore, despite the short response
times for Psky, the accuracy dropped significantly as the
scale of the road network increased. Gsky also relies on
preprocessing, but it takes a much shorter amount of time,
which means that most of the updates for the virtual edges
were completed when the central node was trying to calculate
the distance. Therefore, the accuracy of Gsky only dropped
slightly as the scale of the road network increased. According
to Figures 6 and 7, it can be seen that in asynchronous
mode, Dsky has the highest accuracy, but the response time
is higher; the response time of Psky is the lowest, but the
accuracy is poor; compared to the other two algorithms, Gsky
keeps high accuracy with lower response time.

In summary, in synchronous mode, the response times
for Gsky increased steadily as the scale of the road network
increased, indicating that Gsky can perform well even in rel-
atively large-scale road networks. Therefore, we can conclude
that Gsky is the best method of the three evaluated methods
in synchronous mode. In asynchronous mode, the response
times for Gsky were not as short as in Psky, and the accuracy
of Gsky was not as good as Dsky; however, overall, Gsky still
performed the bestwhenwe consider both criteria.Therefore,
we conclude that Gsky is the most suitable for the real-world
application.

5.2. Comparison of Existing Algorithms. In order to com-
pare the performance of Gsky and existing methods, two
representative existing algorithms have been implemented
under the experimental environment above. The first one is
the LBC algorithm in [10], which is an on-the-fly method
without any precomputing. The method minimizes the cost
of network distance computation in skyline points computing
using the path distance lower bound and reduces the searching
space of skyline points with the optimized methods. The
method has good performance for multisource skyline query
in road network. The second algorithm was presented in
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Figure 7: Accuracy at different road network scales in asynchronous mode (comparison of basic algorithms).
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Figure 8: Query response times at different road network scales in synchronous mode (comparison of existing algorithms).

[11]. This method processes a continuous skyline through
precomputed shortest range data of targets and has good
performance for continuous skyline query in static road net-
work. For convenience of discussion, the method is named as
SRsky.

For LBC, the query points have been set to 1, and
one computing node has been set for maintaining moving
objects and road network data. The computing node is also
responsible for maintaining the path distance lower bounds.
One central node has been set for computing the shortest
paths and skyline set for users. For SRsky, one computing
node has been set for maintaining road network, moving
objects, and their shortest range data, also one central node
for the shortest paths and skyline set for users.

Figure 8 presents the change in query response times
versus the scale of road networks for the three algorithms

in synchronous mode. From the figure, it can be observed
that in synchronous mode, LBC has better performance
than Dsky because of the optimization of network distance
computation. SRsky has the worst performance because the
load for computing shortest range data grows as fast as the
increase of network scale. Gsky has the best performance
among the three algorithms.

Figure 9 presents the change in query response times
versus the scale of road networks for the three algorithms
in asynchronous mode. It can be observed that the query
response time of SRsky keeps the lowest level (keeps around
500ms) due to the precomputed shortest range data. The
query response time of LBC is the same as that of the
synchronous mode.The query response time of Gsky is lower
than LBC, because the load for computing network distance
in the hub graph is lower.
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Figure 9: Query response times at different road network scales in asynchronous mode (comparison of existing algorithms).
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Figure 10: Accuracy at different road network scales in asynchronous mode (comparison of existing algorithms).

Finally, Figure 10 presents the change in accuracy ver-
sus the scale of the road network for the three algo-
rithms in asynchronous mode. It can be observed that as
an on-the-fly algorithm, LBC keeps the highest accuracy
(keeps around at 100%). The accuracy of SRsky is greatly
improved compared with Psky, because the shortest range
data which needs to be precomputed is much smaller than
the shortest path tree of all vertices. The accuracy of Gsky
is between LBC and SRsky, and keeps a relatively high
level.

In summary, compared with the existing algorithms, the
Gsky algorithm can maintain reasonable response time and
balance the response time with high levels of accuracy in
large-scale dynamically weighted road network.

6. Conclusions

In this paper, Gsky algorithm was proposed to process
moving objects in a dynamically weighted road network.
Using the approach, the road network is first divided into
grids such that it can be simplified and treated as a small-scale
hub graph. In a hub graph, the skyline set of moving objects
is then processed and recommended to users. This method
has the advantage of supporting dynamically weighted road
networks and applies a distributed computing structure,
thereby distributing very large computing load from vertices
to computing nodes to reduce the computing load of the
central node and improve query response times. In the
work here, the system applies a new computing-focused-
around-data approach in which a local road network is
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managed locally and information is collected only when
necessary such that traffic throughout the system is sub-
stantially reduced. Through the work, analysis and experi-
ments show that, compared to current methods, the Gsky
algorithm and approach can maintain reasonable response
time and balance the response time with high levels of
accuracy, even in very large-scale dynamically weighted road
networks.

In Gsky algorithm, since the vertices are not homoge-
nously distributed in real road networks, dividing road net-
work into grids will make the number of vertices in each grid
inhomogenously distributed. This leads to the unbalanced
load of the computing nodes and reduces the efficiency of the
system.The future research will focus on finding a better road
network partition method, which can make a more balanced
partition of the road network, and apply the method to the
presented distributed system.

Nomenclature

G: A road network which is defined as a
weighted undirected graph

V: Vertex set of G
E: Edge set of G
W: Length of each edge
p, q: Positions of moving objects which are

defined as points on edges
m: The moving object’s nonlocational

attributes
v: Vertices in V
e: Edges in E
w: Lengths in W
pos: Length between the starting points and

position of the moving object on the edge
g: Grid
Vg: Vertices which falls in grid g
Eg: All edges passing through grid g
Sg: Starting points of edges which is defined

in grid g
sg: Points in Sg
s: Global starting point of e
wg: Length between s and sg
Wg: Set of wg
posg: Length between sg and position of the

moving object on the edge
d(p, q): The length of the shortest route between p

and q in G
Gc: Hub graph of G
vc: Bridge vertices
Vc: Set of vc
ec: Bridge edges
Ec: Set of ec
ei: Virtual edges
Ei: Set of ei
wc: Length of bridge edge
Wc: Set of wc
wi: Length of virtual edge
Wi: Set of wi
r(p,q): Route from p to q in G

P: Data points
A: Attribute space
a: Attributes in A
C: Set of P
SKY(C): Skyline set of C
n: Number of grids in the grid network
M: Number of grids which divide the grid

network
N: Number of vertices in the grid network
Ng: Number of vertices in one grid
Neg: Number of bridge vertices in one grid
Ne: Number of bridge vertices in in the hub

graph
Cs: Computational capacity for a single

computing node
Cm: Computational capacity for the central

node
D: Traffic distribution.

Abbreviations

LBSs: Location-based services
GPS: Global positioning system
D&C: Divide and conquer
CE: Collaborative expansion
EDC: Euclidean distance constraint
LBC: Lower bound constraint
Gsky: Grid-skyline query
SFS: Sort-filter-skyline
HOP: Hadoop online prototype
Dsky: Direct skyline query with Dijkstra’s

algorithm
Psky: Skyline query with precomputing
SRsky: Skyline query with shortest range.
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