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Continuum robots have become a focus for extensive research, since they canworkwell in complex and confined environments.The
main contribution of this paper is to establish a stiffness model of a single section multibackbone continuum robot and analyze the
effect of the structural parameters of continuum robot on the overall rotation and translation stiffness. First, a stiffnessmodel which
indicates the end configuration of continuum robot under external load is deduced by the screw theory and Euler-Bernoulli beam.
Then, the stiffness elements are fully analyzed, therefore, obtaining the influence of the structural parameters of continuum robot on
the stiffness elements. Meanwhile, a numerical analysis of stiffness elements is given. Furthermore, the minimum and maximum
rotation/translation stiffness are introduced to analyze the effect of the structural parameters of continuum robot on the overall
rotation and translation stiffness. Finally, the experiments are used to validate the proposed stiffness model. The experimental
results show that the proposed stiffness model of continuum robot is correct and the errors are less than 7%.

1. Introduction

Continuum robot is a new kind of bionic robot, inspired
by elephant trunks and octopus tentacles. Continuum robot
does not have its own joints, which can produce flexible defor-
mation in any part, so it has a strong ability to avoid obstacles
and better adapt to the complex unstructured environments.
Continuum robots offer a number of potential advantages
over the traditional rigid-link robots in applications involving
disaster relief [1], industrial applications [2], and medical aid
[3].

The main types of continuum robots include the rod-
driven continuum robot [4], cable-driven continuum robot
[5], pneumatic continuum robot [6], and concentric tube
continuum robot [7]. Du et al. [8] developed an optimization
notched continuummanipulator based on performance eval-
uation indices. Tian et al. [9] proposed the kinematic analysis
of a continuum bionic robot with three flexible actuation
rods. Moreover, Bergeles et al. [10] presented optimization
framework based on anatomical and surgical task constraints.
Li et al. [11] developed a new constrained wire-driven flexible
mechanism which has a larger workspace and is more dex-
terous compared to the existing surgical arms. He et al. [12]

proposed a multibackbone continuum robot which is driven
by NiTi alloy wire. Trivedi et al. [13] discussed the novel
capabilities of soft robots, described examples from nature
that provide biological inspiration, surveyed the state of the
art, and outlined existing challenges in soft robot design,
modeling, fabrication, and control.Webster III and Jones [14]
reviewed several modeling approaches in a common frame
and notational convention, illustrating that, for piecewise
constant curvature, they produce identical results.

The analysis of stiffness is an important step in the design
and control of continuum robots, since it determines the rela-
tionship between the deformation and the force of continuum
robots. Selig and Ding [15] applied the screw theory [16] to
analyze compliance and stiffness matrices of a beam. Pei et al.
[17] studied the compliance of cartwheel flexural hinges. Ding
and Dai [18] investigated spatial continuous compliance on
both serial and parallel mechanisms based on screw theory
and Lie groups, applying eigenvectors and eigenvalues to
identify principal screws in the mechanisms. Awtar and Sen
[19] proposed a generalized constraint model for compliance
and stiffness analysis of 2D beamflexures. Krishnan et al. [20]
studied serial and parallel concatenation of building blocks.
Tunay [21] proposed a concept of equivalent bending stiffness
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to establish the kinematic model of continuum robot. Gao et
al. [22] established a mathematical model for predicting the
loaded posture of a single section continuum manipulator.
Qi et al. [23] analyzed the compliance characteristics of a
new planar spring continuum robot. Gravagne et al. [24]
discussed the dynamics of a planar continuum backbone
section, incorporating a large-deflection dynamic model.
Trivedi et al. [25] presented a new approach for modeling soft
robotic manipulators that incorporates the effect of material
nonlinearities and distributed weight and payload. Camarillo
et al. [26] proposed a new linear model for transforming
desired beam configuration to tendon displacements and
vice versa. Fras et al. [27] described the design and imple-
mentation of a static model used for position estimation
of a flexible modular medical manipulator equipped with
optic-fiber based sensors. Till and Rucker [28] exhibited low
numerical damping, handled arbitrarily large time steps, and
provided an accurate, high-order representation of the rod
shape in steady state.Hadi Sadati et al. [29] introduced a novel
series solution for variable-curvature Cosserat rod static and
Lagrangian dynamic method.

Several different performance indices have been pro-
posed for stiffness evaluation, including determinant of stiff-
ness matrix, average stiffness, and minimum and maximum
stiffness [30, 31]. The determinant of stiffness matrix does
not distinguish specific stiffness values, and the average
stiffness cannot give enough information of stiffness values
[32]. The minimum and maximum stiffness are minimum
and maximum eigenvalue of stiffness matrix, respectively,
which can indicate variation range of stiffness values, and
the corresponding eigenvector directions represent the mini-
mum and maximum stiffness directions, respectively. How-
ever, it is well known that the conventional minimum and
maximum stiffness cannot be applied to a 6 × 6 sym-
metric stiffness/compliance matrix. This is due to the fact
that the eigenvalues of a stiffness/compliance matrix are
not consistent unit and no way to compare the sizes of
eigenvalues. As a consequence, we define the minimum
and maximum rotation/translation stiffness, to evaluate the
influence of the structural parameters of continuum robot on
the rotation/translation stiffness of continuum robot.

In the paper, a general loading is represented by a wrench,
while a general deformation is represented by a twist. The
main contribution is to present a method to establish the
stiffness model of a single section multibackbone continuum
robot based on screw theory and Euler-Bernoulli beam, as
well as analyzing the effect of the structural parameters of
continuum robot on the overall rotation and translation
stiffness by theminimum andmaximum rotation/translation
stiffness. The remainder of the paper is organized as follows:
In Section 2, we give structure overview of a single section
multibackbone continuum robot. In Section 3, based on
the screw theory and Euler-Bernoulli beam, a brief stiffness
model which illustrates the end configuration of the contin-
uum robot under external load is deduced. In Section 4, the
stiffness elements are analyzed to fully indicate relationship
between wrench and twist of continuum robot and obtain
the influence of the structural parameters of continuum
robot on the stiffness elements. In addition, the minimum
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Figure 1:The simplified structure of a single section multibackbone
continuum robot.

andmaximum rotation/translation stiffness are introduced to
evaluate the effect of the structural parameters of continuum
robot on the overall rotation and translation stiffness. In
Section 5, the proposed stiffness model is validated by the
experiments.The experimental results indicate that proposed
stiffness model of continuum robot is correct. In Section 6,
some discussions are given. In Section 7, conclusions are
provided.

2. Overview of a Single Section Multibackbone
Continuum Robot

The simplified structure of a single section multibackbone
continuum robot is shown in Figure 1. The continuum robot
is composed of a base disk, several spacer disks, an end
disk, and four super elastic NiTi wires as its backbones.
The central NiTi wire is the primary backbone and the
remaining NiTi wires are the secondary backbones. The
primary backbone is attached to all disks, and all disks are
distributed in equal distance. The secondary backbones are
equidistant from primary backbone and from each other.The
secondary backbones are only attached to the end disk and
slide through holes in base disk and spacer disks, which have
double effect: driving robot to achieve two degrees of freedom
bending motion and providing auxiliary support to increase
the stiffness of continuum robot.

3. Stiffness Model of Continuum Robot

In order to facilitate the derivation of the presented theory,
the model assumptions of continuum robot are summarized
in this paper as follows:

(1) The disks of robot are thin, so the thickness of the
disks is ignored.

(2) The friction between the disks and backbones is
neglected.

(3) The continuum robot is under static balance.
(4) The gravity of all the disks and the four backbones,

which is ignored, is very smaller.
(5) We assume that the deformation of backbones is suf-

ficiently small so that the principle of Euler-Bernoulli
beam theory applies.
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Figure 2: The continuum robot is subjected to the external load at the end of continuum robot.

When the continuum robot is not exerted by an external
load and the secondary backbone does not pull and push
the continuum robot, then the simplified geometric config-
uration of continuum robot is shown in Figure 2(a) and the
length of all the backbones are equal. The global coordinate
system 𝑂-𝑥𝑦𝑧 is placed at the end disk, as we are interested
in the motion of the end of continuum robot. Point 𝑂 is
geometric center of end disk, the axis 𝑥 points from point 𝑂
to the first secondary backbone, the axis 𝑧 is perpendicular to
the end disk, and the axis 𝑦 is then defined according to the
right-hand rule. Moreover, the coordinate system 𝑂𝑏-𝑥𝑏𝑦𝑏𝑧𝑏
is established at point 𝑂𝑏, the axis 𝑥𝑏 is parallel to the axis 𝑥,
the axis 𝑦𝑏 is parallel to the axis 𝑦, and the axis 𝑧𝑏 is parallel to
the axis 𝑧. The secondary backbones are the average interval
120 degrees around the primary backbone. Assuming that the
continuum robot is subjected to the external load at the end
of continuum robot, the configuration of continuum robot is
shown in Figure 2(b).

For easy comprehension of the deduction of the presented
theory, in this paper, symbols are defined as follows:𝑖: the index of secondary backbones 𝑖 = 1, 2, 3.𝑟: the distance from the primary backbone to each
secondary backbone on the disk.𝐿: the length of primary backbone.𝐿 𝑖: the length of secondary backbones 𝑖 = 1, 2, 3.𝑟𝑏: the radius of backbones.

In the framework of a screw theory [14] and the global
coordinate system 𝑂-𝑥𝑦𝑧, a small deformation of contin-
uum robot is defined as a twist 𝜉 = (𝜙, 𝛿)𝑇 in axis coor-
dinates. 𝜉 is an element of Lie algebra se(3) of Lie group
SE(3), where 𝜙 = (𝜙𝑥, 𝜙𝑦, 𝜙𝑧)𝑇 represents the corresponding
rotational deflections around their corresponding axes and𝛿 = (𝛿𝑥, 𝛿𝑦, 𝛿𝑧)𝑇 reveals the three translational deflections
along their corresponding axes.𝑊 = (𝜏, 𝑓)𝑇 is defined as the
wrench at the end of the continuum robot in ray coordinates,
which is an element of the dual space of Lie algebra se∗(3),
where 𝜏 = (𝜏𝑥, 𝜏𝑦, 𝜏𝑧)𝑇 represents three moments around
the axes 𝑥, 𝑦, and 𝑧, respectively; 𝑓 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧)𝑇 reveals

three forces along axes 𝑥, 𝑦, and 𝑧, respectively. According
to the elastic theory, wrench 𝑊 and twist 𝜉 are related
by

𝑊 = 𝐾𝑃𝜉, 𝜉 = 𝐶𝑃𝑊, 𝐾𝑃 = 𝐶−1𝑃 , (1)

where 𝐾𝑃 and 𝐶𝑃 are the stiffness and compliance matrices
of continuum robot in the global coordinate system 𝑂-𝑥𝑦𝑧,
respectively.

In the following, we derive stiffness model of continuum
robot. First, the compliance matrix of primary backbone in
the global coordinate system 𝑂-𝑥𝑦𝑧 can be derived by screw
theory [17] and Euler-Bernoulli beam [13], which is expressed
as

𝐶0 =

[[[[[[[[[[[[[[[[[[[[
[

𝐿𝐸𝐼𝑥 0 0 0 − 𝐿22𝐸𝐼𝑥 0
0 𝐿𝐸𝐼𝑦 0 𝐿22𝐸𝐼𝑦 0 0
0 0 𝐿𝐺𝐽 0 0 0
0 𝐿22𝐸𝐼𝑦 0 𝐿33𝐸𝐼𝑦 0 0

− 𝐿22𝐸𝐼𝑥 0 0 0 𝐿33𝐸𝐼𝑥 0
0 0 0 0 0 𝐿𝐸𝐴

]]]]]]]]]]]]]]]]]]]]
]

, (2)

where 𝐴 = 𝜋𝑟2𝑏 is the area of the cross section, 𝐼𝑥 = (1/4)𝜋𝑟4𝑏
and 𝐼𝑦 = (1/4)𝜋𝑟4𝑏 are the area moments, 𝐽 = (1/2)𝜋𝑟4𝑏 is
the torsional moment of inertia, 𝐸 denotes the elastic module
of the material, and 𝐺 denotes the shear module of the
material.

For convenience, by extracting common factor, (2) is
simplified as
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𝐶0 = 𝐿𝐸𝐼𝑥

[[[[[[[[[[[[[[[[[[
[

1 0 0 0 −𝐿2 0
0 1 0 𝐿2 0 0
0 0 12𝜇 0 0 0
0 𝐿2 0 𝐿23 0 0
−𝐿2 0 0 0 𝐿23 0
0 0 0 0 0 𝑟2𝑏4

]]]]]]]]]]]]]]]]]]
]

, (3)

where

𝜇 = 𝐺𝐸 = 12 (1 + ]) (4)

and ] is the Poisson’s ratio.
It is assumed that the 𝐾0 is stiffness matrix of primary

backbone in the global coordinate system 𝑂-𝑥𝑦𝑧, and then
the stiffness matrix𝐾0 is calculated as

𝐾0 = 𝐶−10 . (5)

The local coordinate system 𝑂𝑖-𝑥𝑖𝑦𝑖𝑧𝑖 is established for
the 𝑖 (𝑖 = 1, 2, 3)th secondary backbone at the end disk, as
shown in Figure 2(a). Point𝑂𝑖 is the intersection point of the𝑖th secondary backbone and the enddisk, the axis𝑥𝑖 is parallel
to axis 𝑥, the axis 𝑦𝑖 is parallel to axis 𝑦, and the axis 𝑧𝑖 is
parallel to axis 𝑧. Suppose that 𝐶𝑠𝑖 is the compliance matrix
of the 𝑖th secondary backbone in the local coordinate system𝑂𝑖-𝑥𝑖𝑦𝑖𝑧𝑖, since 𝐿 𝑖 = 𝐿 (𝑖 = 1, 2, 3), which can be obtained as

𝐶𝑠𝑖 = 𝐿𝐸𝐼𝑥

[[[[[[[[[[[[[[[[[[
[

1 0 0 0 −𝐿2 0
0 1 0 𝐿2 0 0
0 0 12𝜇 0 0 0
0 𝐿2 0 𝐿23 0 0
−𝐿2 0 0 0 𝐿23 0
0 0 0 0 0 𝑟2𝑏4

]]]]]]]]]]]]]]]]]]
]

, (6)

where 𝑖 = 1, 2, 3.
Since compliance matrix 𝐶𝑠𝑖 (𝑖 = 1, 2, 3) is represented in

the different local coordinate system, in order to establish the
stiffness model of continuum robot, we should transform the
compliance matrix 𝐶𝑠𝑖 (𝑖 = 1, 2, 3) to the global coordinate
system by coordinate transformation. Here, to shift the local
coordinate system𝑂𝑖-𝑥𝑖𝑦𝑖𝑧𝑖 of each secondary backbone into
the global coordinate system 𝑂-𝑥𝑦𝑧, an adjoint action of Lie
group SE(3) on its Lie algebra is introduced by a 6 × 6 matrix
representation [21]:

Ad𝑔 = [ 𝑅 0
𝐷𝑅 𝑅] , (7)

where𝑅 is a 3× 3 rotationmatrix representing the orientation
of the local coordinate system𝑂𝑖-𝑥𝑖𝑦𝑖𝑧𝑖, relative to the global
coordinate system 𝑂-𝑥𝑦𝑧; for instance, the 1st secondary
backbone 𝑅 is a unit matrix. 𝐷 is a skew-symmetric matrix
spanned by the position vector 𝑑 from the origin of frame𝑂-𝑥𝑦𝑧 to the origin of frame 𝑂𝑖-𝑥𝑖𝑦𝑖𝑧𝑖; for example, the 1st
secondary backbone 𝑑 = [𝑟, 0, 0].

Here, the adjoint transformation matrix of the 𝑖th (𝑖 =1, 2, 3) secondary backbone is given by

Ad𝑔𝑖 = [ 𝐼 0
𝐷𝑖𝐼 𝐼] , Ad𝑔𝑖 ∈ Se (3) , (8)

where

𝐼 = [[
[
1 0 0
0 1 0
0 0 1

]]
]
,

𝐷1 = [[
[
0 0 0
0 0 −𝑟
0 𝑟 0

]]
]
,

𝐷2 =
[[[[[[[
[

0 0 √22 𝑟
0 0 √22 𝑟

−√22 𝑟 −
√22 𝑟 0

]]]]]]]
]
,

𝐷3 =
[[[[[[[
[

0 0 −√22 𝑟
0 0 √22 𝑟√22 𝑟 −

√22 𝑟 0

]]]]]]]
]
.

(9)

In addition, the transpose of the adjoint transformation
matrix is given by

Ad𝑇𝑔𝑖 = [𝐼 −𝐼
𝑇𝐷𝑖0 𝐼 ] . (10)

It is supposed that 𝐶𝑖 is the compliance matrix of the 𝑖th
secondary backbone in the global coordinate system 𝑂-𝑥𝑦𝑧
and 𝜉󸀠𝑖 and 𝑊󸀠𝑖 are twist and wrench at the end of the 𝑖th
secondary backbone in the global coordinate system 𝑂-𝑥𝑦𝑧,
respectively. 𝜉𝑖 and 𝑊𝑖 are twist and wrench at the end of
the 𝑖th secondary backbone in the local coordinate system𝑂𝑖-𝑥𝑖𝑦𝑖𝑧𝑖, yielding

𝜉󸀠𝑖 = 𝐶𝑖𝑊󸀠𝑖 ,
𝜉𝑖 = 𝐶𝑠𝑖𝑊𝑖. (11)

Moreover, the coordinates of a twist and a wrench in the
global coordinate system 𝑂-𝑥𝑦𝑧 are calculated as [16]

𝜉󸀠𝑖 = Ad𝑔𝑖𝜉𝑖,
𝑊󸀠𝑖 = Ad−𝑇𝑔𝑖 𝑊𝑖. (12)
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To obtain the compliance matrix 𝐶𝑖 in the global coordi-
nate system 𝑂-𝑥𝑦𝑧, we deduct it as follows based on (11) and
(12):

𝜉󸀠𝑖 = Ad𝑔𝑖𝜉𝑖 = Ad𝑔𝑖𝐶𝑠𝑖𝑊𝑖 = Ad𝑔𝑖𝐶𝑠𝑖Ad𝑇𝑔𝑖𝑊󸀠𝑖 . (13)

Accordingly, the compliance matrix 𝐶𝑖 can be obtained
according to the relation

𝐶𝑖 = Ad𝑔𝑖𝐶𝑠𝑖Ad𝑇𝑔𝑖, (14)

where 𝑖 = 1, 2, 3.
Similarly, we can derive the stiffnessmatrix𝐾𝑖 of the 𝑖 (𝑖 =1, 2, 3)th secondary backbone in the global coordinate system𝑂-𝑥𝑦𝑧 as

𝐾𝑖 = 𝐶−1𝑖 = (Ad𝑔𝑖𝐶𝑠𝑖Ad𝑇𝑔𝑖)−1 . (15)

Since the continuum robot is composed of fourNiTiwires
in parallel, if all deformations are presented into the same
global coordinate system 𝑂-𝑥𝑦𝑧, then the overall stiffness
matrix of the parallel flexible mechanism is the sum of the
stiffness matrix of each flexible mechanism [16]; the overall
stiffness matrix 𝐾𝑃 of continuum robot can be obtained
as

𝐾𝑃 = 3∑
𝑖=0

𝐾𝑖, (16)

where

𝐾0 = 𝐸𝐼𝑥𝐿

[[[[[[[[[[[[[[[[[
[

4 0 0 0 6𝐿 0
0 4 0 − 6𝐿 0 0
0 0 2𝜇 0 0 0
0 − 6𝐿 0 12𝐿2 0 0
6𝐿 0 0 0 12𝐿2 0
0 0 0 0 0 4𝑟2

𝑏

]]]]]]]]]]]]]]]]]
]

,

𝐾1 = 𝐸𝐼𝑥𝐿

[[[[[[[[[[[[[[[[[[[[[[[
[

4 0 6𝑟𝐿 0 6𝐿 0
0 4𝑟2𝑏 − 12𝑟2𝑟2

𝑏
− 4𝑟2 0 − 6𝐿 0 − 4𝑟𝑟2

𝑏
− 4𝑟2

6𝑟𝐿 0 2𝜇𝐿2 + 12𝑟2𝐿2 0 12𝑟𝐿2 0
0 − 6𝐿 0 12𝐿2 0 0
6𝐿 0 12𝑟𝐿2 0 12𝐿2 0
0 − 4𝑟𝑟2

𝑏
− 4𝑟2 0 0 0 4𝑟2

𝑏
− 4𝑟2

]]]]]]]]]]]]]]]]]]]]]]]
]

,

𝐾2 = 𝐸𝐼𝑥𝐿

[[[[[[[[[[[[[[[[[[[[[[[[
[

4𝑟2𝑏 + 2𝑟2𝑟2
𝑏

2𝑟2𝑟2
𝑏

−3√2𝑟𝐿 0 6𝐿 2√2𝑟𝑟2
𝑏2𝑟2𝑟2

𝑏

4𝑟2𝑏 + 2𝑟2𝑟2
𝑏

3√2𝑟𝐿 − 6𝐿 0 2√2𝑟𝑟2
𝑏

−3√2𝑟𝐿 3√2𝑟𝐿 2𝜇𝐿2 + 12𝑟2𝐿2 −6√2𝑟𝐿2 −6√2𝑟𝐿2 0
0 − 6𝐿 −6√2𝑟𝐿2 12𝐿2 0 0
6𝐿 0 −6√2𝑟𝐿2 0 12𝐿2 0

2√2𝑟𝑟2
𝑏

2√2𝑟𝑟2
𝑏

0 0 0 4𝑟2
𝑏

]]]]]]]]]]]]]]]]]]]]]]]]
]

,
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𝐾3 = 𝐸𝐼𝑥𝐿

[[[[[[[[[[[[[[[[[[[[[[[[
[

4𝑟2𝑏 + 2𝑟2𝑟2
𝑏

−2𝑟2𝑟2
𝑏

−3√2𝑟𝐿 0 6𝐿 −2√2𝑟𝑟2
𝑏

−2𝑟2𝑟2
𝑏

4𝑟2𝑏 + 2𝑟2𝑟2
𝑏

−3√2𝑟𝐿 − 6𝐿 0 2√2𝑟𝑟2
𝑏

−3√2𝑟𝐿 −3√2𝑟𝐿 2𝜇𝐿2 + 12𝑟2𝐿2 6√2𝑟𝐿2 −6√2𝑟𝐿2 0
0 − 6𝐿 6√2𝑟𝐿2 12𝐿2 0 0
6𝐿 0 −6√2𝑟𝐿2 0 12𝐿2 0

−2√2𝑟𝑟2
𝑏

2√2𝑟𝑟2
𝑏

0 0 0 4𝑟2
𝑏

]]]]]]]]]]]]]]]]]]]]]]]]
]

.

(17)

Substituting (17) into (16) yields

𝐾𝑃 = [𝑘𝑝𝑖𝑗]6×6 = 𝐸𝐼𝑥𝐿

[[[[[[[[[[[
[

𝑘11 0 𝑘13 0 𝑘15 0
0 𝑘22 0 𝑘24 0 𝑘26𝑘31 0 𝑘33 0 𝑘35 0
0 𝑘42 0 𝑘44 0 0
𝑘51 0 𝑘53 0 𝑘55 0
0 𝑘62 0 0 0 𝑘66

]]]]]]]]]]]
]

, (18)

where 𝑖 = 1, 2, 3, 4, 5, 6; 𝑗 = 1, 2, 3, 4, 5, 6; and
𝑘11 = 16 + 4𝑟2𝑟2

𝑏

,

𝑘13 = 𝑘31 = 6 (1 − √2) 𝑟𝐿
𝑘15 = 𝑘51 = 24𝐿 ,
𝑘22 = 16 + 8𝑟

2 (2𝑟2 − 𝑟2𝑏)𝑟2
𝑏
(4𝑟2 − 𝑟2

𝑏
)

𝑘24 = 𝑘42 = −24𝐿 ,
𝑘26 = 𝑘62 = 4√2𝑟𝑟2

𝑏

+ 4𝑟4𝑟2 − 𝑟2
𝑏

𝑘33 = 8𝜇 + 36𝑟2𝐿2 ,
𝑘35 = 𝑘53 = 12 (1 − √2) 𝑟𝐿2
𝑘44 = 𝑘55 = 48𝐿2 ,
𝑘66 = 12𝑟2

𝑏

− 44𝑟2 − 𝑟2
𝑏

.

(19)

It can be seen that 𝐾𝑃 in (18) is determined by six
independent design parameters, 𝐸, 𝐼𝑥, 𝐿, 𝑟, 𝑟𝑏, and 𝜇.
Simultaneously, the stiffness matrix𝐾𝑃 gives the relationship
between the wrench and twist at the end of the continuum
robot. Furthermore, the compliance matrix is the inverse of
the stiffness matrix which is calculated as

𝐶𝑃 = 𝐿𝐸𝐼𝑥

[[[[[[[[[[[
[

𝑐11 0 0 0 𝑐15 0
0 𝑐22 0 𝑐24 0 𝑐260 0 𝑐33 0 𝑐35 0
0 𝑐42 0 𝑐44 0 𝑐46𝑐51 0 𝑐53 0 𝑐55 0
0 𝑐62 0 𝑐64 0 𝑐66

]]]]]]]]]]]
]

, (20)

where

𝑐11 = Γ,
𝑐15 = 𝑐51 = −𝐿Γ2

𝑐22 = 1.2𝑟2𝑟2𝑏 − 4𝑟4𝑏𝜎 × 105

𝑐24 = 𝑐42 = 2𝐿𝑟
2
𝑏 (3𝑟2 − 𝑟2𝑏)𝜎 × 105

𝑐26 = 𝑐62 = 2𝑐46 = 2𝑐64 = 125𝑟
2
𝑏𝑟 (313𝑟2𝑏 − 4452𝑟2)𝜎

𝑐33 = 2.5𝐿2𝑔 × 105,
𝑐35 = 𝑐53 = 25875𝐿2𝑟𝑔 ,

𝑐44 = 𝑞48𝜎
𝑐55 = 𝑒48𝑔 (𝑟2 + 𝑟2

𝑏
) ,
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𝑐66 = 𝑠𝜎 ,
Γ = 𝑟2𝑏4 (𝑟2 + 𝑟2

𝑏
)

𝜎 = (1.665𝑟2𝑟2𝑏 − 1.6𝑟4𝑏 + 1.652𝑟4) × 106
𝑔 = (2𝜇𝐿2 − 8.871𝑟2) × 106

𝑞 = 𝐿2 (16.065𝑟2𝑟2𝑏 − 6.4𝑟4𝑏 + 1.652𝑟4) × 106
𝑒 = 𝐿2 (8𝜇𝐿2𝑟2𝑏 + 2𝜇𝐿2𝑟2 + 35.614𝑟2𝑟2𝑏 + 9𝑟4) × 106

𝑠 = (2𝑟2𝑟4𝑏 − 𝑟6𝑏 + 4𝑟4𝑟2𝑏) × 105.
(21)

4. Stiffness Analysis of Continuum Robot

Based on the stiffnessmodel of continuum robot in Section 3,
we will first analyze the effect of the structural parameters
of continuum robot on the stiffness elements in this section.
Then, the influence of the structural parameters on the overall
rotation and translation stiffness is analyzed. Finally, to more
intuitively understand the stiffness elements of continuum
robot, the stiffness elements are analyzed by the numerical
example.

4.1. Analysis of Stiffness Elements. Each element in the stiff-
ness matrix reflects the mapping relationship between each
element in the wrench and each element in the twist. Hence,
through the analysis of the stiffness elements of stiffness
matrix𝐾𝑃 in (18), we can obtain the following conclusions.(1) The rotational stiffness around axes x, 𝑦, and 𝑧 is
calculated as

𝑘𝑃11 = 𝜏𝑥𝜙𝑥 =
𝐸𝐼𝑥𝐿 𝑘11 =

𝜋𝐸𝑟2𝑏 (4𝑟2𝑏 + 𝑟2)𝐿 (22)

𝑘𝑃22 = 𝜏𝑦𝜙𝑦 =
𝐸𝐼𝑥𝐿 𝑘22 =

𝜋𝐸𝑟2𝑏 (4𝑟4 + 14𝑟2𝑟2𝑏 − 4𝑟4𝑏)𝐿 (4𝑟2 − 𝑟2
𝑏
) (23)

𝑘𝑃33 = 𝜏𝑧𝜙𝑧 =
𝐸𝐼𝑥𝐿 𝑘33 =

𝜋𝐸𝑟4𝑏 (2𝜇𝐿2 + 9𝑟2)𝐿3 . (24)

By (22), (23), and (24), assuming that 𝑟 and 𝑟𝑏 are
constant values, it can be seen that when length 𝐿 increases,
with a decreasing of the rotational stiffness 𝑘𝑃11, 𝑘𝑃22, and𝑘𝑃33, obviously, 𝑘𝑃11 and 𝑘𝑃22 are inversely proportional to𝐿. By (22) and (24), supposing that 𝐿 and 𝑟 are constant
values, when length 𝑟𝑏 increases, 𝑘𝑃11 and 𝑘𝑃33 also increase.
Assuming that 𝐿 and 𝑟𝑏 are constant values, when length 𝑟
increases, 𝑘𝑃11 and 𝑘𝑃33 also increase. By (23), assuming that𝐿 and 𝑟𝑏 are constant values, when length 𝑟 increases, 𝑘𝑃22 also
increases, as shown Figure 3.(2) The translational stiffness along axes x, 𝑦, and 𝑧 is
expressed as

4Er4b
L

kp22

r

Figure 3: Relationship between 𝑘𝑃22 and 𝑟.

𝑘𝑃44 = 𝑓𝑥𝛿𝑥 =
𝐸𝐼𝑥𝐿 𝑘44 =

12𝜋𝐸𝑟4𝑏𝐿3 (25)

𝑘𝑃55 = 𝑓𝑦𝛿𝑦 =
𝐸𝐼𝑥𝐿 𝑘55 =

12𝜋𝐸𝑟4𝑏𝐿3 (26)

𝑘𝑃66 = 𝑓𝑧𝛿𝑧 =
𝐸𝐼𝑥𝐿 𝑘66 =

4𝜋𝐸𝑟2𝑏 (3𝑟2 − 𝑟2𝑏)
𝐿 (4𝑟2 − 𝑟2𝑏) . (27)

By (25) and (26), changing 𝑟 has no effect on the 𝑘𝑃44
and 𝑘𝑃55. Assuming that 𝑟𝑏 is constant value, when length 𝐿
increases, with a decreasing of the translational stiffness 𝑘𝑃44
and 𝑘𝑃55, which are inversely proportional to 𝐿3. Assume that𝑟𝑏 is constant value, when length 𝐿 increases, with decreasing
of the translational stiffness 𝑘𝑃44 and 𝑘𝑃55, which are inversely
proportional to 𝐿3. Supposing that the length 𝐿 is constant
value, when length 𝑟𝑏 increases, 𝑘𝑃44 and 𝑘𝑃55 also increase,
which are directly proportional to 𝑟4𝑏 . By (27), assuming that𝑟 and 𝑟𝑏 are constant values, it can be seen that when length𝐿 increases, but 𝑘𝑃66 decreases, obviously, 𝑘𝑃66 is inversely
proportional to 𝐿. Supposing that 𝐿 and 𝑟𝑏 are constant
values, when length 𝑟 increases, 𝑘𝑃66 decreases. By (18), the
translational stiffness of 𝑘𝑃44, 𝑘𝑃55, and 𝑘𝑃66 is decoupled; that
is, the forces 𝑓𝑥, 𝑓𝑦, and 𝑓𝑧 only produce translation along
axes x, 𝑦, and 𝑧, respectively.(3)The rotational stiffness which is produced by force 𝑓𝑥
is calculated as

𝑘𝑃42 = 𝑓𝑥𝜙𝑦 =
𝐸𝐼𝑥𝐿 𝑘42 = −

6𝜋𝐸𝑟4𝑏𝐿2 . (28)

By (28),𝑓𝑥 only produce rotation around axis 𝑦. Dividing
(25) by (28) and taking the absolute value, which is defined as𝜀1, yield

𝜀1 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘𝑃44𝑘𝑃42

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜙𝑦𝛿𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =

2𝐿 . (29)

By (29), if length 𝐿 increases, 𝜀1 decreases. The result
shows that when the force 𝑓𝑥 is a constant value and length 𝐿
increases, the value |𝜙𝑦/𝛿𝑥| decreases.
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(4)The rotational stiffness which is produced by force 𝑓𝑦
is calculated as

𝑘𝑃51 = 𝑓𝑦𝜙𝑥 =
𝐸𝐼𝑥𝐿 𝑘51 =

6𝜋𝐸𝑟4𝑏𝐿2 (30)

𝑘𝑃53 = 𝑓𝑦𝜙𝑧 =
𝐸𝐼𝑥𝐿 𝑘53 =

3 (1 − √2) 𝜋𝐸𝑟4𝑏𝑟𝐿3 . (31)

By (30) and (31), 𝑓𝑦 produce two rotational stiffness
elements. One is the rotation stiffness 𝑘𝑃51 around the axis
x, which is a function of the variables 𝐿 and 𝑟𝑏, The effects of
variables 𝐿 and 𝑟𝑏 on 𝑘𝑃51 can be easily obtained by (30). The
other is the rotational stiffness 𝑘𝑃53 around the axis 𝑧, which is
a function of the variables 𝐿, 𝑟, and 𝑟𝑏, The effects of variables𝐿, 𝑟, and 𝑟𝑏 on 𝑘𝑃53 can be easily given by (31). Equation (26)
is divided by (30), which is defined as 𝜀2. Equation (26) is
divided by (31), taking the absolute value, which is defined as𝜀3. Equation (31) is divided by (30), taking the absolute value,
which is defined as 𝜀4. This yields

𝜀2 = 𝑘𝑃55𝑘𝑃51 =
𝜙𝑥𝛿𝑦 =

2𝐿 (32)

𝜀3 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘𝑃55𝑘𝑃53

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜙𝑧𝛿𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
4 (1 + √2)

𝑟 (33)

𝜀4 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘𝑃53𝑘𝑃51

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜙𝑥𝜙𝑧
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
(√2 − 1) 𝑟

2𝐿 . (34)

By (32), when length 𝐿 increases, 𝜀2 decreases. The result
explains that when the force 𝑓𝑦 is a constant value and length𝐿 increases, the value 𝜙𝑥/𝛿𝑦 decreases. By (33), when length𝑟 increases, 𝜀3 decreases, indicating that when the force 𝑓𝑦
is a constant value and length 𝑟 increases, the value |𝜙𝑧/𝛿𝑦|
decreases. By (34), assuming that 𝐿 is constant value, it can
be seen that when 𝑟 increases, 𝜀4 also increases. The result
indicates that when 𝑓𝑦, 𝐿 are constant values and 𝑟 increases,
the value |𝜙𝑥/𝜙𝑧| increases. Supposing that 𝑟 is constant value,
when 𝐿 increases, 𝜀5 also decreases. Indicating that when 𝑓𝑦,𝑟 are a constant values and 𝐿 increases, the value |𝜙𝑥/𝜙𝑧|
decreases.(5)The rotational stiffness which is produced by force 𝑓𝑧
is calculated as

𝑘𝑃62 = 𝑓𝑧𝜙𝑦 =
𝐸𝐼𝑥𝐿 𝑘62

= 𝜋𝐸𝑟2𝑏𝑟 (4√2𝑟2 − (√2 − 1) 𝑟2𝑏)𝐿 (4𝑟2 − 𝑟2
𝑏
) .

(35)

Dividing (27) by (35), which is defined as 𝜀5, we obtain
𝜀5 = 𝑘𝑃66𝑘𝑃62 =

𝜙𝑦𝛿𝑧 =
4 (3𝑟2 − 𝑟2𝑏)

𝑟 (4√2𝑟2 − (√2 − 1) 𝑟2
𝑏
) . (36)

When 𝑟𝑏 ≪ 𝑟, (36) is simplified as

𝜀5 = 𝑘𝑃66𝑘𝑃62 ≈
3√2𝑟 . (37)

By (37), when 𝑟𝑏 ≪ 𝑟 and 𝑟 increases, 𝜀5 decreases. The
result explains that when the force𝑓𝑧 is a constant value, 𝑟𝑏 ≪𝑟, and 𝑟 increases, the value 𝜙𝑦/𝛿𝑧 decreases. When 𝑟 ≪ 𝑟𝑏,
(36) is simplified as

𝜀5 = 𝑘𝑃66𝑘𝑃62 󳨀→ +∞. (38)

By (38), when 𝑟 ≪ 𝑟𝑏, 𝜀5 tends to positive infinity. The
result indicates that when the force 𝑓𝑧 is a constant value and𝑟 ≪ 𝑟𝑏, the value 𝜙𝑦/𝛿𝑧 tends to positive infinity.
4.2. Eigen-Stiffness Analysis of Continuum Robot. Since the
eigenvalues of the stiffness matrix in (18) are not consistent
unit, there is no way to compare the sizes of eigenval-
ues; the conventional minimum/maximum stiffness can-
not be applied to a 6 × 6 symmetric stiffness/compliance
matrix. Here, we define the minimum and maximum
rotation/translation stiffness to evaluate the effect of the
structural parameters of continuum robot on the rota-
tion/translation stiffness. In order to facilitate the presenta-
tion of this definition, we first block the stiffness matrix 𝐾𝑃
in (18), which can be generally represented in the form of

𝐾𝑃 = [ 𝐴 𝐵
𝐵𝑇 𝐶] , (39)

where the symmetric 3 × 3 blockmatrices𝐴 and𝐶 denote the
pure rotation and translation matrices, 𝐵 is the coupling one,𝐵𝑇 is transpose of the matrix 𝐵, and

𝐴 = 𝐸𝐼𝑥𝐿 [[
[
𝑘11 0 𝑘130 𝑘22 0
𝑘31 0 𝑘33

]]
]
,

𝐵 = 𝐸𝐼𝑥𝐿 [[
[
0 𝑘15 0
𝑘24 0 𝑘260 𝑘35 0

]]
]
,

𝐶 = 𝐸𝐼𝑥𝐿 [[
[
𝑘44 0 0
0 𝑘55 0
0 0 𝑘66

]]
]
.

(40)

Then, by (1), we obtain

𝜏 = 𝐴𝜙 + 𝐵𝛿
𝑓 = 𝐵𝑇𝜙 + 𝐶𝛿 (41)

Since the pure translation matrix 𝐶 is already a diago-
nal matrix, the eigenvalues of matrix 𝐶 are (𝐸𝐼𝑥/𝐿)𝑘44,(𝐸𝐼𝑥/𝐿)𝑘55, and (𝐸𝐼𝑥/𝐿)𝑘66, respectively. Define 𝐾𝑇min =
min{(𝐸𝐼𝑥/𝐿)𝑘44, (𝐸𝐼𝑥/𝐿)𝑘55, (𝐸𝐼𝑥/𝐿)𝑘66} and 𝐾𝑇max =
max{(𝐸𝐼𝑥/𝐿)𝑘44, (𝐸𝐼𝑥/𝐿)𝑘55, (𝐸𝐼𝑥/𝐿)𝑘66} as the minimum
and maximum translation stiffness for the matrix 𝐶, re-
spectively. The pure rotation matrix 𝐴 is symmetric, but not
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Figure 4: (a) The influence of parameter 𝐿 on the minimum rotation stiffness. (b) The influence of parameter 𝐿 on the maximum rotation
stiffness.

a diagonal matrix; thus, there is an orthogonal matrix 𝑄,
making 𝑄𝑇𝐴𝑄 a diagonal matrix [33]; that is,

𝑄𝑇𝐴𝑄 = [[
[
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]]
]
, (42)

where 𝑄 = [𝑞1, 𝑞2, 𝑞3] ∈ SO(3) represents an orthogonal
matrix whose columns are just the eigenvectors of matrix 𝐴
and 𝑄𝑇𝐴𝑄 = diag[𝜆1, 𝜆2, 𝜆3] is a diagonal matrix consisting
of the corresponding eigenvalues of matrix 𝐴. We define𝐾𝑅min = min{𝜆1, 𝜆2, 𝜆3} and 𝐾𝑅max = max{𝜆1, 𝜆2, 𝜆3} as the
minimum and maximum rotation stiffness for the matrix 𝐴,
respectively.

The matrix 𝐶 is diagonal matrix, it is easy to obtain the
minimum and maximum translation stiffness; therefore, we
do not do a lot of analysis here. However, the matrix 𝐴 is
not a diagonal matrix and is coupled, In the following, we
analyze the effect of mainly structural parameters 𝐿 and 𝑟
onminimum rotation stiffness𝐾𝑅min andmaximum rotation
stiffness𝐾𝑅max. The parameters of the NiTi wire are shown in
Table 1.

First, the influence of parameter 𝐿 on the minimum and
maximum rotation stiffness is analyzed. For ease of research,
assuming that 𝑟 is a constant and 𝑟 = 3mm, the images of
minimum andmaximum rotation stiffness with the change 𝐿
are shown in Figure 4.

In Figure 4(a), it can be seen that when 𝐿 increases,𝐾𝑅min decreases. When 𝐿 ∈ [50, 125]mm, the speed of
change of 𝐾𝑅min is bigger. When 𝐿 ∈ [125, 400]mm, the
speed of change of 𝐾𝑅min is smaller. In Figure 4(b), when𝐿 increases, 𝐾𝑅max decreases. When 𝐿 ∈ [50, 150]mm, the
speed of change of𝐾𝑅max is bigger. When 𝐿 ∈ [150, 400]mm,

Table 1: The parameters of the NiTi wire.

Parameter Value
𝑟𝑏 6 × 10−4m𝐴 1.13 × 10−6m2𝐼𝑥 1.017 × 10−13m4𝐼𝑦 1.017 × 10−13m4
J 2.034 × 10−13m4
G 2.5 × 1010 Pa
E 6.5 × 1010 Pa

the speed of change of 𝐾𝑅max is smaller. Considering the
minimum and maximum rotation stiffness comprehensively,
if 𝐿 ∈ [50, 125]mm, the influence of 𝐿 on the minimum and
maximum rotation stiffness is bigger. If 𝐿 ∈ [125, 400]mm,
the influence of 𝐿 on the minimum and maximum rotation
stiffness is smaller.

Next, we analyze the influence of parameter 𝑟 on themin-
imum and maximum rotation stiffness. Here, it is supposed
that 𝐿 is a constant and 𝐿 = 200mm; the minimum and
maximum rotation stiffness of the image with the change 𝑟
are shown in Figure 5.

In Figure 5(a), if 𝑟 increases, 𝐾𝑅min decreases. When 𝑟 ∈[1, 17]mm, the speed of change of 𝐾𝑅min is bigger. When𝑟 ∈ [17, 30]mm, the speed of change of 𝐾𝑅min is smaller.
In Figure 5(b), when 𝑟 increases, 𝐾𝑅max decreases. When𝑟 ∈ [1, 10]mm, the speed of change of 𝐾𝑅max is bigger.
When 𝑟 ∈ [10, 30]mm, the speed of change of 𝐾𝑅min is
smaller. In summary, if 𝑟 ∈ [1, 15]mm, the influence of 𝑟
on the minimum and maximum rotation stiffness is bigger.
If 𝑟 ∈ [15, 30]mm, the influence of 𝑟 on the minimum and
maximum rotation stiffness is smaller.
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Figure 5: (a) The influence of parameter 𝑟 on the minimum rotation stiffness. (b) The influence of parameter 𝑟 on the maximum rotation
stiffness.

The block matrices 𝐴 and 𝐶 have been analyzed above.
Next, the matrix 𝐵 is researched. In order to facilitate the
study, the lemma is first given as follows.

Lemma 1. If amatrix𝐴 is an 𝑛-order asymmetric matrix, then
the matrix 𝐴must not be orthogonal to diagonalization.

Proof. Set a matrix 𝐴 as an 𝑛-order asymmetric matrix, and
suppose there is an 𝑛-order orthogonal matrix 𝑃, making

𝑃𝑇𝐴𝑃 = Λ, (43)

where Λ is a diagonal matrix and the diagonal elements are
the eigenvalues of the matrix 𝐴. Transposing (43) yields

(𝑃𝑇𝐴𝑃)𝑇 = Λ𝑇. (44)

Since

(𝑃𝑇𝐴𝑃)𝑇 = 𝑃𝑇𝐴𝑇𝑃,
Λ𝑇 = Λ, (45)

by (43), (49), and (50), we obtain
𝑃𝑇𝐴𝑇𝑃 = 𝑃𝑇𝐴𝑃. (46)

Multiplying 𝑃 and its transpose 𝑃𝑇 of (51) yields
𝑃𝑃𝑇𝐴𝑇𝑃𝑃𝑇 = 𝑃𝑃𝑇𝐴𝑃𝑃𝑇. (47)

Since the matrix 𝑃 is an orthogonal matrix, that is, 𝑃𝑃𝑇 is
a unit matrix, then, this yields

𝐴𝑇 = 𝐴. (48)

Thus, it is obtained that the matrix 𝐴 is symmetric
matrix. It is inconsistent with the hypothetical matrix 𝐴
which is an 𝑛-order asymmetric matrix at the beginning of
the proof. Therefore, the matrix 𝐴 cannot be orthogonal to
diagonalization.

The matrix 𝐵 reflects the relationship between 𝜏 and 𝛿,
and the units of each element in the matrix 𝐵 are consistent.
However, the matrix 𝐵 is not a symmetric matrix in (40),
by Lemma 1, obtaining that matrix 𝐵 cannot be orthogonal
to diagonalization. Therefore, the matrix 𝐵 has no minimum
eigenvalue andmaximum eigenvalue. Here, we cannot define
the minimum stiffness and maximum stiffness of matrix 𝐵.
The transpose matrix 𝐵𝑇 also cannot define the minimum
stiffness and maximum stiffness.

4.3. Numerical Analysis of Stiffness Elements. In this section,
in order to understand the stiffness elements of continuum
robot more intuitively, the stiffness elements of continuum
robot are analyzed by the numerical example. Here, we select
the structural parameters of continuum robot such as 𝐿 =210mm, 𝑟 = 5mm. The parameters of NiTi wire are shown
in Table 1.

The results are tabulated in Table 2, where the unit for
force component is Newton, the unit of moment is N∙m, and
the units for translational and rotational displacements are
meter and radian, respectively. By analyzing the numerical
results, the following conclusions can be obtained.(1)The rotational stiffness elements 𝜏𝑥/𝜙𝑥 and 𝜏𝑦/𝜙𝑦 are
approximately equal. It is indicated that the same moment is,
respectively, applied around the axes 𝑥 and 𝑦 at the end of
continuum robot; then the rotational angles of the end are the
approximately equal. Moreover, 𝜏𝑥/𝜙𝑥 is about 94.88 times
larger than 𝜏𝑦/𝛿𝑧, and 𝜏𝑦/𝜙𝑦 is about 94.47 times larger than𝜏𝑦/𝛿𝑧. It is shown that the rotation around the axes 𝑥 and 𝑦 is
harder than that around the axis 𝑧.
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Table 2: Numerical results of stiffness elements.

Stiffness
element Value

𝜏𝑥/𝜙𝑥 9.26
𝜏𝑥/𝜙𝑧 −1.86 × 10−3
𝜏𝑥/𝛿𝑦 3.6
𝜏𝑦/𝜙𝑦 9.22
𝜏𝑦/𝛿𝑥 −3.6
𝜏𝑦/𝛿𝑧 2.48 × 103
𝜏𝑧/𝜙𝑥 −1.86 × 10−3
𝜏𝑧/𝜙𝑧 9.76 × 10−2
𝜏𝑧/𝛿𝑦 −1.77 × 10−2
𝑓𝑥/𝜙𝑦 −3.6
𝑓𝑥/𝛿𝑥 3.43 × 10
𝑓𝑦/𝜙𝑥 3.6
𝑓𝑦/𝜙𝑧 −1.77 × 10−2
𝑓𝑦/𝛿𝑦 3.43 × 10
𝑓𝑧/𝜙𝑦 2.48 × 103
𝑓𝑧/𝛿𝑧 1.05 × 106
Major stiffness elements. Elements not listed are zeros; Units: 𝜏𝑥,𝑦,𝑧 (N⋅m),
𝑓𝑥,𝑦,𝑧 (N), 𝜙𝑥,𝑦,𝑧 (rad), 𝛿𝑥,𝑦,𝑧 (m).

Continuum robot
Tension sensor

Stepping motor

NiTi wire

Figure 6: A single section NiTi wire continuum robot.

(2)The translational stiffness elements 𝑓𝑥/𝛿𝑥 and 𝑓𝑦/𝛿𝑦
are equal. It is shown that the same force is, respectively,
applied along the axes 𝑥 and 𝑦 at the end of continuum
robot; then the translational distances of the end are equal.
Meanwhile, the translational stiffness element 𝑓𝑧/𝛿𝑧 = 1.05×106 (N/m) is significantly larger than translational stiffness
element 𝑓𝑥/𝛿𝑥 = 𝑓𝑦/𝛿𝑦 = 3.43 × 10 (N/m). It is indicated
that the translation along the axis 𝑧 is harder than translation
along the axes 𝑥 and 𝑦, respectively. It all fits our intuition.
5. Experiments

The proposed stiffness model is validated by a single section
NiTi wire driving continuum robot, as shown in Figure 6.The
structural parameters of continuum robot are 𝐿 = 210mm,𝑟 = 5mm.The parameters of NiTi wire are shown in Table 1.
The disks are made of 3D printed machine (EDEN-260V)

Teaching apparatus

Control cabinet

Robotic arm

Continuum robot

6 DOF force/torque sensor

Computer

Figure 7: Experimental setup for stiffness experiments.

with hard material (VeroClear RGD810), and the disks are
very hard.The secondary backbones are connectedwith three
steppingmotors, which produce the driving force to bend the
continuum robot. The tension sensor is used to record the
driving force which is produced by motors.

The experimental setup is shown as Figure 7, which
consists of a continuum robot, a control cabinet, a teaching
apparatus, a robotic arm, a computer, and a force/torque
sensor. The robotic arm (STEP-SD500) is used to provide an
external load at the end of continuum robot, and the 6DOF
force/torque commercial sensor (OPTOFORCE-HEX-70-
XE-450) is mounted at the end of robotic arm to record the
external load force.

Here, we facilitate the experimental operations by ver-
ifying the compliance matrix to indicate that the stiffness
matrix is correct. Meanwhile, we pay more attention to the
relations between forces and deformations at the end of
continuum robot along the three translational directions.
Therefore, we operate the experiment to verify the relations
between forces and deformations in three translational direc-
tions. It is assumed that the external forces applied at the
end of continuum robot are twists 𝜉1, 𝜉2, and 𝜉3, where𝜉1 = (0, 0, 0, 𝑓𝑥, 0, 0)𝑇, 𝜉2 = (0, 0, 0, 0, 𝑓𝑦, 0)𝑇, and 𝜉3 =(0, 0, 0, 0, 0, 𝑓𝑧)𝑇. Substituting twists 𝜉1, 𝜉2, and 𝜉3 into (20),
respectively, we obtain external load force and translational
distance that meet the following relationship:

𝛿𝑥 = 2.785𝑓𝑥 (49)

𝛿𝑦 = 2.624𝑓𝑦 (50)

𝛿𝑧 = 9.5 × 10−4𝑓𝑧, (51)

where 𝑓𝑥 (N), 𝑓𝑦 (N), 𝑓𝑧 (N), 𝛿𝑥 (cm), 𝛿𝑦 (cm), and 𝛿𝑧 (mm).
Next, through the experiments we verify that (49), (50),

and (51) are correct. The experiments were done at low
moving speed to reduce the effect of vibration. First, the
experiments along the axis 𝑥 are shown in Figure 8.The force
and translational distance at the end of continuum robot is
recorded by 6DOF force/torque commercial sensor and the
operation of robotic arm, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 8: The experiments along the axis 𝑥.

The experimental values and the functional image of(49) are shown in Figure 9. The experimental values are
distributed around the theoretical image, and the errors
between the theoretical values and the experimental values
are no more than 4%, thus, indicating that (49) is correct.

Then, the experiments along the axis 𝑦 are shown in
Figure 10.

The experimental values and the functional image of (50)
are shown in Figure 11. The errors between the theoretical
values and the experimental values are no more than 5%,
therefore, demonstrating that (50) is correct.

Finally, the experiments along the axis 𝑧 are shown in
Figure 12.

The experimental values and the functional image of (51)
are shown in Figure 13. The errors between the theoretical
values and the experimental values are no more than 7%,
thence, showing that (51) is correct.

Through the above experiments, we verify that the trans-
lational stiffness of continuum robot along the axes 𝑥, 𝑦,
and 𝑧, respectively, is correct. By comparing the translational
experimental values along the axes 𝑥 and 𝑦, respectively, if
the external force 𝑓𝑥= 𝑓𝑦, the translational distances 𝛿𝑥 and𝛿𝑦 are approximately equal. By comparing the translational
experimental values along the axes 𝑥 and 𝑧, respectively, if the
external force 𝑓𝑥= 𝑓𝑧, the translational distance 𝛿𝑥 is much

larger than translational distance 𝛿𝑧; it also fits our intuitive
perception.

6. Discussions

In this paper, we mainly establish the stiffness model of
a single section multibackbone continuum robot, with the
initial configuration of continuum robot being a straight
line and 𝐿 𝑖 = 𝐿 (𝑖 = 1, 2, 3). If the continuum robot is
multisection and the initial configuration of continuum robot
is a straight line, then the stiffness model of a multisection
continuum robot can be studied by each lower section as
a payload of its upper sections. In addition, the stiffness
model of continuum robot is based on the initial config-
uration which is a straight line. If the initial configuration
of continuum robot is a bending shape, then the length of
the four NiTi wires of continuum robot is not equal. Thus,
the stiffness model in (18) is not suitable for analyzing the
load model of continuum robot. Simultaneously, it should be
pointed out that the deformations of all backbones should be
small; otherwise, the elastic properties of the backbone are
damaged; then the stiffness model in (18) is also not suitable
for analyzing the load model of continuum robot.

In our model, the 6 × 6 stiffness matrix in (18) indicates
relationship between force/moment and motion/rotation at
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Figure 9: Theoretical and experimental values along the axis 𝑥.
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Figure 10: The experiments along the axis 𝑦.
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Figure 11: Theoretical and experimental values along the axis 𝑦.

(a) (b) (c)

(d) (e) (f)

Figure 12: The experiments along the axis 𝑧.
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Figure 13: Theoretical and experimental values along the axis 𝑧.

the end of continuum robot. If the end of continuum robot is
subjected to force 𝑓𝑥 along the forward direction of the axis𝑥, the shape of continuum robot at this time is defined as 𝐴.
Next, on the basis of shape 𝐴, the force 𝑓𝑦 is applied to the
end of continuum robot along the forward direction of the
axis 𝑦; then the final bending shape of continuum robot is
defined as 𝐵. The shape 𝐵 is equivalent to the resultant force
of forces 𝑓𝑥 and 𝑓𝑦, which is applied to the end of continuum
robot; the end position of continuum robot with the shape𝐵 can be obtained by substituting 𝑓𝑥 and 𝑓𝑦 into the stiffness
matrix of (18). Furthermore, on the basis of the shape𝐴, if the
force 𝑓𝑧 is applied to the end of continuum robot along the
opposite direction of the axis 𝑧, then the final bending shape
of continuum robot is defined as𝐶. However, the end position
of continuum robot with the shape 𝐶 cannot be obtained
by substituting 𝑓𝑥 and 𝑓𝑧 into the stiffness matrix of (18).
Therefore the stiffness element 𝑘𝑝66 = 𝑓𝑧/𝛿𝑧 is only applicable
to the case in which the continuum robot does not have
any deformations. Through the same analytical method, the
stiffness element 𝑘𝑝33 = 𝜏𝑧/𝜙𝑧 is only applicable to the case in
which the continuum robot does not have any deformations.
However, the other main stiffness elements 𝑘𝑝11, 𝑘𝑝22, 𝑘𝑝44,
and 𝑘𝑝55 are applicable to the case in which the continuum
robot is deformed and nondeformed.

7. Conclusions

In this paper, the main contribution is to propose a sim-
plified method to establish the stiffness model of a single
section multibackbone continuum robot, so as to obtain the
relationship between force and deformation at the end of
continuum. First, the stiffness model of continuum robot is
established bymeans of the screw theory and Euler-Bernoulli
beam. Second, the stiffness elements of the stiffnessmodel are
analyzed, obtaining the influence of the structural parameters

of continuum robot on the stiffness elements. Third, the
minimum and maximum rotation/translation stiffness are
defined to analyze the effect of the structural parameters
of continuum robot on the overall rotation and translation
stiffness. In addition, the stiffness elements of continuum
robot are analyzed by the numerical example. Finally, the
stiffness model is verified by experiments; simultaneously,
the experimental results indicate that the proposed stiffness
model of continuum robot is correct. The research of this
paper fully indicates the relationship between the force
and deformation at the end of continuum robot and, thus,
provides an effective theoretical basis for the real-time control
of continuum robot.
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