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A DG-FEM based numerical investigation has been performed to explore the influence of the various geometric configurations
on the thermal performance of the conjugate heat transfer analysis in the triangular finned double pipe heat exchanger. The
computed results dictate that Nusselt number in general rises with values of the conductivity ratio of solid and fluid, for the
specific configuration parameters considered here. However, the performance of these parameters shows strong influence on the
conductivity ratio. Consequently, these parameters must be selected in consideration of the thermal resistance, for better design of
heat exchanger.

1. Introduction

A review of the literature [1–23] of the heat transfer enhance-
ment shows that this is an emergent area. The investigation
of the solid-wall conductivities on the heat transfer enhance-
ment in internally finned tube was done by Soliman [1].
Krishen [2] investigated the wall conduction effects on con-
jugate heat transfer problem in a pipe with finite thickness.
Barrozi and Pagliarini [3] showed the conjugate heat transfer
results in a circular pipe based on their numerical simulation.
Sakakibara et al. [4] performed their analytical study of
conjugate heat transfer in the annulus. Their results dictated
that conduction has inverse relation to the ratio of the
conductivities. Tao [5] performed his work on conjugate heat
problem in internally finned tube. One of the outcomes of his
study was that heat capacities have stronger influence on heat
transfer enhancement. Pagliarini [6] studied the influence of
wall conductance in the conjugate problem in the tube. He
suggested various limits of the values of wall thickness. A
finned double pipe (FDP) heat exchanger, comprising two
circular pipes, uses one of the most efficient augmentation

techniques in which fins of various shapes are augmented
on the inner pipe. Agrawal and Sengupta [7] investigated
the heat transfer problem with periodic circular FDP and
reported substantial heat transfer rate improvement. Kettner
et al. [8] investigated the study of the internally finned tube
and recommended that the fin height may be more than
40% relative to radius of pipe for enhancement of heat with
respect to conductivities ratio. Suryanarayana and Apparao
[9] reported enhancement of the heat transfer rate in FDP.
Fiebig et al. [10, 11] did their investigation of heat reversal
occurrence and its avoidance in a finned tube. A review
of FDP and multitube was presented by Taborek [12]. Syed
[13] numerically investigated the heat transfer enhancement
in the rectangular FDP. He investigated the influence of
various parameters of the configuration of the FDP on the
heat transfer characteristics. While investigating the relative
performance of the two heated surfaces, he showed that the
fin surface is highly effective compared with the inner pipe
surface in promoting the convective heat transfer. Dorfman
and Renner [14] presented their review on the conjugate
problems on heat transfer. They discussed the analytical
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solutions of such problems. An investigation based on the
finite element method for the study of the fluid and the heat
transfer characteristics in the triangular FDP heat exchanger
with fins of equal height was presented by Syed et al. [15]. A
uniform heat flux boundary condition (H1) was imposed at
the inner pipe.The comparison of triangular and rectangular
fins shows that former fin is low in weight compared to
latter due to thin top and thus results in low cost. Due to
the complexity and mathematical convenience, in the heat
transfer problem, some assumptions were always made relax
so that the problem may be explored easily. The assumptions
of infinitesimal inner pipe wall thickness and infinite thermal
conductivity were considered in [15]. Their investigation
presented that the Nusselt number is enhanced more than
four times as a result of augmentation of triangular fins. Iqbal
et al. [16] studied the parabolic FDP and suggested many
optimal configurations of FDP based on the Nusselt number.
Ishaq et al. [17] studied the heat transfer enhancement in FDP
with different fin heights of triangular shape. They showed
that a group of triangular fins with unequal heights perform
better than the equal heights. Iqbal et al. [18] proposed many
optimal fin shapes in FDP. Salman et al. [19] numerically
presented the heat transfer enhancement in a tube induced
by elliptic-cut and classical twist tape (ECT). Their results
showed that the performance of ECT is better than classical
twist tape. Iqbal et al. [21] reported many optimum FDP
configurations using genetic algorithm based on the weight,
heat quantity, cost, and structural integrity of FDP. Syed et al.
[22] numerically investigated FDP with variable thickness of
the tip of the triangular fins. Their results recommended that
the tip thickness may be considered in the designing of FDP.
Waseem et al. [23] presented the performance of exponential
FDP numerically. They found that Nusselt number may have
significant effect on the conductivities ratio values of solid
and fluid.

In the present investigation, problem [15] is enhanced by
taking into account the assumptions of finite thickness of
inner pipe wall of FDP and finite thermal conductivity in the
inner pipe wall-fin assembly, carried out in chapter 6 of Ph.D.
thesis of corresponding author [20]. It may be remembered
that in most of the finned annulus fin surface plays a
dominant role in heat transfer. Therefore, it is necessary for
an accurate solution of the heat transfer problem in FDP
to consider fin conduction in wall-fin assembly. Thus, two-
dimensional energy equation is considered in the triangular
fins and inner pipe wall, in the present investigation. In this
way, the present problem takes the form of conjugate heat
transfer analysis by considering the conduction in the solid
and the convection in the fluid, simultaneously. At the solid-
fluid interface of such problems, the temperature and heat
flux are considered as continuous functions. In the present
work, this condition is implemented successfully. The 2-
dimensional energy equation in the inner pipe wall and fin
will be solved subject to H1-boundary conditions. The effect
of this more realistic situation of wall-fin conductance will
be investigated on the triangular FDP design by studying the
temperature distribution and the Nusselt number with the
influence of the variations in the height of the triangular fin

(𝐻∗), the inner pipe wall thickness (𝛿), the ratio of radii of
both pipes (𝑅̂), and the number of triangular fins (𝑀).

The outline of present work consists of 5 sections. Sec-
tion 2 deals with the present problem and its mathematical
model.TheDG-FEMbased numericalmethod is described in
Section 3. Sections 4 and 5 are, respectively, devoted to results
and discussion, as well as the conclusions.

2. Problem Statement and Its
Mathematical Model

The cross section of the triangular FDP is drawn in Fig-
ure 1(a). FDP consists of two concentric circular pipes with
a number of longitudinal triangular fins augmented on the
inner pipe. Triangular fins are nonporous, straight, and
uniformly distributed around the periphery of the outer
surface of inner pipe. Thus, the geometry is described by
five parameters: the ratio of radii of both pipes, the number
of triangular fins, fin half angle, inner pipe wall thickness,
and the triangular fin height. The computational domain is
sketched in Figure 1(b).

The analysis of the present investigation is based on the
following assumptions: there is a steady, laminar flow of a
constant property fluid with fully developed motion in the
triangular FDP; the fluid motion is in the axial direction due
to pressure gradient only; all body forces and the viscous
dissipation are taken to be negligible; the axial conduction
in both pipe walls and fluid is assumed to be negligible; a
uniform heat flux per unit axial length with circumferentially
uniform temperature is considered at every cross section; the
conditions of adiabatic and thermal boundary are assumed
at the inner surface of the outer pipe and at the inner surface
of the inner pipe, respectively; a finite thermal resistance of
the material of the inner pipe wall-fin assembly is assumed;
the continuity conditions of temperature and heat flux are
assumed at interface between fluid and wall-fin assembly, and
a finite inner pipe wall thickness is considered.

The objective of the present instigation is that a DG-
FEM based numerical work is to explore the influence
of the numerous geometric configurations on the thermal
characteristics of the conjugate heat transfer analysis in the
triangular finned double pipe heat exchanger.

To make the model equations dimensionless, the follow-
ing equations are employed.

𝑈∗ = 𝑈𝑈max
,

𝑅 = 𝑟𝑟o ,
𝑅̂ = 𝑟𝑖𝑟o ,
𝑅1 = 𝑟1𝑟o ,

𝜏 (𝑟) = 𝑇 (𝑟, 𝑧) − 𝑇𝑤 (𝑧)𝑄̇󸀠/𝜆𝑓 ,

(1)
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Figure 1: (a) Cross section of the triangular FDP. (b) Computational domain.

where 𝑈max = −(1/4𝜇)(𝑑𝑝/𝑑𝑧)𝑟o2{1 − 𝑅2m + 2𝑅2m ln𝑅m}
and 𝑅m = 𝑟m/𝑟o = √(1 − 𝑅̂2)/2 ln(1/𝑅̂). Using these
variables, the governing equations—momentum, energy, and
heat equations—together with the corresponding boundary
conditions may be expressed in dimensionless form as in
[15, 23].

Momentum equation:

1𝑅 𝜕𝑈∗

𝜕𝑅 + 𝜕2𝑈∗

𝜕𝑅2 + 1𝑅2 𝜕
2𝑈∗

𝜕𝜙2 = −4𝐶 , (2)

where 𝐶 = (1 − 𝑅2m + 2𝑅2m ln𝑅m).
Boundary conditions:

(i) 𝑈∗ = 0 at 𝑅 = 𝑅̂ and 0 ≤ 𝜙 ≤ 𝛼 (3a)

(ii) 𝑈∗ = 0
at 𝑅 = 𝑅1𝑅̂ sin 𝛽

𝑅̂ sin (𝜙 − 𝛼) − 𝑅1 sin (𝜙 − 𝛼 − 𝛽) and 𝛼 ≤ 𝜙 ≤ 𝛼 + 𝛽 (3b)

(iii) 𝑈∗ = 0 at 𝑅 = 1 and 0 ≤ 𝜙 ≤ 𝛼 + 𝛽 (3c)

(iv) 𝜕𝑈∗

𝜕𝜙 = 0 at 𝜙 = 0 and 𝑅̂ ≤ 𝑅 ≤ 1 (3d)

(v) 𝜕𝑈∗

𝜕𝜙 = 0 at 𝜙 = 𝛼 + 𝛽 and 𝑅1 ≤ 𝑅 ≤ 1 (3e)

Energy equation:

𝜕2𝜏𝑓𝜕𝑅2 + 1𝑅 𝜕𝜏𝑓𝜕𝑅 + 1𝑅2 𝜕
2𝜏𝑓𝜕𝜙2 = 𝑈∗

𝐴∗
𝑐𝑈∗ (4)

Heat equation:

𝜕2𝜏𝑠𝜕𝑅2 + 1𝑅 𝜕𝜏𝑠𝜕𝑅 + 1𝑅2 𝜕
2𝜏𝑠𝜕𝜙2 = 0 (5)

Corresponding Boundary conditions are

(i) 𝜏𝑠 = 0 at 𝑅 = 𝑅𝑤 and 0 ≤ 𝜙 ≤ 𝛼 + 𝛽 (6a)

(ii) 𝜕𝜏𝑓𝜕𝑅 = 0 at 𝑅 = 1 and 0 ≤ 𝜙 ≤ 𝛼 + 𝛽 (6b)

(iii) 𝜕𝜏𝑠𝜕𝜙 = 0 at 𝜙 = 0 and 𝑅𝑤 ≤ 𝑅 ≤ 𝑅̂ (6c)

(iv) 𝜕𝜏𝑓𝜕𝜙 = 0 at 𝜙 = 0 and 𝑅̂ ≤ 𝑅 ≤ 1 (6d)

(v) 𝜕𝜏𝑠𝜕𝜙 = 0 at 𝜙 = 𝛼 + 𝛽 and 𝑅𝑤 ≤ 𝑅 ≤ 𝑅1 (6e)

(vi) 𝜕𝜏𝑓𝜕𝜙 = 0 when 𝑅1 ≤ 𝑅 ≤ 1 and 𝜙 = 𝛼 + 𝛽 (6f)

To maintain the energy balance at the solid-fluid interface,
the following conditions of continuity of the temperature and
flux are employed.

𝜏𝑠 = 𝜏𝑓 at 𝑅 = 𝑅̂ and 0 ≤ 𝜙 ≤ 𝛼 (6g)

𝜏𝑠 = 𝜏𝑓
at 𝑅 = 𝑅1𝑅̂ sin 𝛽

𝑅̂ sin (𝜙 − 𝛼) − 𝑅1 sin (𝜙 − 𝛼 − 𝛽) and 𝛼 ≤ 𝜙 ≤ 𝛼 + 𝛽 (6h)

𝜕𝜏𝑠𝜕𝑅 = 1Ω 𝜕𝜏𝑓𝜕𝑅 at 𝑅 = 𝑅̂ and 0 ≤ 𝜙 ≤ 𝛼 (6i)

𝜕𝜏𝑠𝜕𝜙 = 1Ω 𝜕𝜏𝑓𝜕𝜙
at 𝑅 = 𝑅1𝑅̂ sin 𝛽

𝑅̂ sin (𝜙 − 𝛼) − 𝑅1 sin (𝜙 − 𝛼 − 𝛽) and 𝛼 ≤ 𝜙 ≤ 𝛼 + 𝛽,
(6j)
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where Ω = 𝜆𝑠/𝜆𝑓 is the thermal conductivity ratio of the
inner pipe wall-fin assembly and the fluid; 𝜏𝑠 and 𝜏𝑓 denote
temperature in the inner pipewall and triangular fin assembly
and the fluid, respectively.

3. DG-FEM Based Numerical Method

The higher order discontinuous Galerkin finite element
method (DG-FEM) is chosen to compute the solution of
the present conjugate heat transfer problem in the triangular
FDP. DG-FEM possesses the characteristics of finite volume
method (FVM) and finite element method (FEM). In DG-
FEM, the solution is assumed to be discontinuous over the
local elemental boundaries instead of continuous as in the
case of the classical FEM. The numerical fluxes are used to
tackle this discontinuity across the elemental faces [24]. DG-
FEM based on [24] is employed to compute the solution of
the conjugate heat transfer in triangular FDP.

The DG-FEM formulation of the governing equations is
described below.

The momentum equation may be written as

∇2𝑈∗ = 𝑓, (7)

where 𝑓 = −4/𝐶. This equation is equivalent to the following
system of first-order partial differential equations:

∇ ⋅ q = 𝑓 (x) ,
∇𝑢 = q. (8)

Using q in its components form in the above equation, the
resulting first-order system is

𝑞𝑥 = 𝜕𝑢𝜕𝑥 ,
𝑞𝑦 = 𝜕𝑢𝜕𝑦

(9)

𝜕𝑞𝑥𝜕𝑥 + 𝜕𝑞𝑦𝜕𝑦 = 𝑓 (𝑢) . (10)

The domain Ω𝑑 is divided into 𝐾 nonoverlapping triangular
meshΩ𝑑

𝑘 with condition

Ω𝑑 = 𝐾⋃
𝑘=1

Ω𝑑
𝑘 (11)

The solution in each subdomain Ω𝑑
𝑘 is well approximated by

the local polynomial of degree𝑁:

[𝑢𝑘 (x)
q𝑘 (x)] ≅ [𝑢𝑘ℎ (x)

q𝑘ℎ (x)] = 𝑁𝑝∑
𝑖=1

[
[
𝑢𝑘ℎ (x𝑘𝑖 )
q𝑘ℎ (x𝑘𝑖 )]]

ℓ𝑘𝑖 (x)

= 𝑁𝑝∑
𝑖=1

[𝑢𝑘𝑖
q𝑘𝑖
] ℓ𝑘𝑖 (x) ,

(12)

and 𝑓(𝑢) is
𝑓𝑘 (𝑢𝑘) ≅ 𝑓𝑘ℎ (𝑢𝑘ℎ) =

𝑁𝑝∑
𝑖=1

𝑓𝑘ℎ (x𝑘𝑖 ) ℓ𝑘𝑖 (x) =
𝑁𝑝∑
𝑖=1

𝑓𝑘𝑖 ℓ𝑘𝑖 (x) , (13)

where x𝑘𝑖 are the 𝑁𝑝 = (𝑁 + 1)(𝑁 + 2)/2 grid points in the
kth element and ℓ𝑘𝑖 (x) is the 2D Lagrange polynomial based
on these points.

The local element approximation of (9)-(10) may be
written as

𝑞𝑥𝑘ℎ = 𝜕𝑥𝑢𝑘ℎ
𝑞𝑦𝑘
ℎ

= 𝜕𝑦𝑢𝑘ℎ
𝜕𝑥𝑞𝑥𝑘ℎ + 𝜕𝑦𝑞𝑦𝑘ℎ = 𝑓 (𝑢𝑘ℎ)

(14)

Eq. (14) is first multiplied with test functions ℓ𝑘𝑖 (x), followed
by integrating by parts twice over the element Ω𝑑

𝑘 , to obtian
the following strong form.

∫
Ω𝑑
𝑘

𝑞𝑥𝑘ℎ ℓ𝑘𝑖 (x) 𝑑x = ∫
Ω𝑑
𝑘

ℓ𝑘𝑖 (x) 𝜕𝑥𝑢𝑘ℎ𝑑x − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑥
⋅ (𝑢𝑘ℎ − (𝑢𝑘ℎ)∗)) ℓ𝑘𝑖 (x) 𝑑x

(15)

∫
Ω𝑑
𝑘

𝑞𝑦𝑘
ℎ
ℓ𝑘𝑖 (x) 𝑑x = ∫

Ω𝑑
𝑘

ℓ𝑘𝑖 (x) 𝜕𝑦𝑢𝑘ℎ𝑑x − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑦 ⋅ (𝑢𝑘ℎ
− (𝑢𝑘ℎ)∗) ℓ𝑘𝑖 (x) 𝑑x

(16)

∫
Ω𝑑
𝑘

(𝜕𝑥𝑞𝑥𝑘ℎ + 𝜕𝑦𝑞𝑦𝑘ℎ ) ℓ𝑘𝑖 (x) 𝑑x − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑥
⋅ (𝑞𝑥𝑘ℎ − (𝑞𝑥𝑘ℎ )∗) + 𝑛𝑦 ⋅ (𝑞𝑦𝑘ℎ − (𝑞𝑦𝑘

ℎ
)∗)) ℓ𝑘𝑖 (x) 𝑑x

= ∫
Ω𝑑
𝑘

𝑓 (𝑢𝑘ℎ) ℓ𝑘𝑖 (x) 𝑑x
(17)

Using (12)-(13) in (15)-(17), the following system of differen-
tial algebraic equations is obtained.

𝑀𝑘q𝑥𝑘ℎ = 𝑆𝑥u𝑘ℎ − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑥 ⋅ (𝑢𝑘ℎ − (𝑢𝑘ℎ)∗)) 𝐿𝑘ℎ (x) 𝑑x (18)

𝑀𝑘q𝑦𝑘ℎ = 𝑆𝑦u𝑘ℎ − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑦 ⋅ (𝑢𝑘ℎ − (𝑢𝑘ℎ)∗)) 𝐿𝑘ℎ (x) 𝑑x (19)

𝑆𝑥q𝑥𝑘ℎ + 𝑆𝑦q𝑦𝑘
ℎ
− ∫

𝜕Ω𝑑
𝑘

(𝑛𝑥 ⋅ (𝑞𝑥𝑘ℎ − (𝑞𝑥𝑘ℎ )∗) + 𝑛𝑦
⋅ (𝑞𝑦𝑘

ℎ
− (𝑞𝑦𝑘

ℎ
)∗)) 𝐿𝑘ℎ (x) 𝑑x = 𝑀𝑘f𝑘ℎ ,

(20)

where 𝑀𝑘
𝑖𝑗 = ∫

Ω𝑑
𝑘

ℓ𝑘𝑖 (x)ℓ𝑘𝑗 (x)𝑑x is the mass matrix; 𝑆𝑥𝑖𝑗 =
∫
Ω𝑑
𝑘

ℓ𝑘𝑖 (x)𝜕𝑥ℓ𝑘𝑗 (x)𝑑x and 𝑆𝑦𝑖𝑗 = ∫
Ω𝑑
𝑘

ℓ𝑘𝑖 (x)𝜕𝑦ℓ𝑘𝑗 (x)𝑑x are the
stiffness matrices.
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Similarly, the strong form of the energy equation can be
derived using ∇𝜏𝑓∗ = 𝜏𝑓q, as

𝑆𝑥 𝜏𝑓q𝑥𝑘ℎ + 𝑆𝑦 𝜏𝑓q𝑦𝑘
ℎ
− ∫

𝜕Ω𝑑
𝑘

(𝑛𝑥 ⋅ (𝜏𝑓𝑞𝑥𝑘ℎ − (𝜏𝑓𝑞𝑥𝑘ℎ )∗)
+ 𝑛𝑦 ⋅ (𝜏𝑓𝑞𝑦𝑘ℎ − (𝜏𝑓𝑞𝑦𝑘ℎ )∗))𝐿𝑘ℎ (x) 𝑑x = 𝑀𝑘g𝑘ℎ

(21)

𝑀𝑘 𝜏𝑓q𝑥𝑘ℎ = 𝑆𝑥𝜏∗𝑘ℎ − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑥 ⋅ (𝜏∗𝑘ℎ − (𝜏∗𝑘ℎ )∗))
⋅ 𝐿𝑘ℎ (x) 𝑑x

(22)

𝑀𝑘 𝜏𝑓q𝑦𝑘ℎ = 𝑆𝑦𝜏∗𝑘ℎ − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑦 ⋅ (𝜏∗𝑘ℎ − (𝜏∗𝑘ℎ )∗))
⋅ 𝐿𝑘ℎ (x) 𝑑x

(23)

where 𝑔 = 𝑈∗/𝐴∗
c𝑈∗.

In the same way, the strong form of the heat equation may
be derived using ∇𝜏𝑠∗ = 𝜏𝑠q, as

𝑆𝑥 𝜏𝑠q𝑥𝑘ℎ + 𝑆𝑦 𝜏𝑠q𝑦𝑘ℎ − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑥 ⋅ (𝜏𝑠𝑞𝑥𝑘ℎ − (𝜏𝑠𝑞𝑥𝑘ℎ )∗)
+ 𝑛𝑦 ⋅ (𝜏𝑠𝑞𝑦𝑘ℎ − (𝜏𝑠𝑞𝑦𝑘ℎ )∗)) 𝐿𝑘ℎ (x) 𝑑x = 0

(24)

𝑀𝑘 𝜏𝑠q𝑥𝑘ℎ = 𝑆𝑥𝜏∗𝑘ℎ − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑥 ⋅ (𝜏∗𝑘ℎ − (𝜏∗𝑘ℎ )∗))
⋅ 𝐿𝑘ℎ (x) 𝑑x

(25)

𝑀𝑘 𝜏𝑠q𝑦𝑘ℎ = 𝑆𝑦𝜏∗𝑘ℎ − ∫
𝜕Ω𝑑
𝑘

(𝑛𝑦 ⋅ (𝜏∗𝑘ℎ − (𝜏∗𝑘ℎ )∗))
⋅ 𝐿𝑘ℎ (x) 𝑑x

(26)

In [17], they proposed 2nd-order local polynomial approx-
imation on the coarse mesh for DG-FEM and the same
is employed here. The steps of algorithm employed in the
present investigation are as follows: Initial (coarser) mesh is
generated in the domain (Figure 1(b)); first the fluid region
mesh is extracted and then momentum equation in it is
solved; and in the last step, both the heat and energy equations
are simultaneously solved in the whole domain. Due to the
approximation of Riemann’s problem by stabilized internal
penalty flux in DG-FEM, the conditions of continuity at
the fluid-solid interface are weakly imposed, automatically
[23, 24]. If the temperature gradient (𝑞𝑛) is along the normal,
then the interface conditions (6i) and (6j) may be expressed
as

𝑞𝑠𝑥 = 1Ω𝑞𝑓𝑥 (27)

𝑞𝑠𝑦 = 1Ω𝑞𝑓𝑦 , (28)

where 𝑞𝑓𝑥 = 𝜕𝑇𝑓/𝜕𝑥, 𝑞𝑠𝑥 = 𝜕𝑇𝑠/𝜕𝑥, 𝑞𝑓𝑦 = 𝜕𝑇𝑓/𝜕𝑦, and 𝑞𝑠𝑦 =𝜕𝑇𝑠/𝜕𝑦.

It may be noted that there are two values of the field
variables: interior (-) and exterior (+), across the edge of an
element in DG-FEM.Therefore, one should impose fluid side
fluxes as interior and the solid side fluxes as exterior fluxes
for the solution of energy equation in fluid region and to find
solution of the heat equation in the solid region, the case is
vice versa. Thus, these are implemented as

𝑞𝑠,−𝑥 = 𝑞𝑠𝑥,
𝑞𝑠,+𝑥 = 1Ω𝑞𝑓,+𝑥
𝑞𝑓,−𝑥 = 𝑞𝑓𝑥 ,
𝑞𝑓,+𝑥 = Ω𝑞𝑠,+𝑥
𝑑𝑞𝑓𝑥 = 𝑞−𝑥 − 𝑞+𝑥 = 𝑞𝑓𝑥 − Ω𝑞𝑠𝑥
𝑑𝑞𝑠𝑥 = 𝑞−𝑥 − 𝑞+𝑥 = 𝑞𝑠𝑥 − 1Ω𝑞𝑓𝑥
𝑞𝑠,−𝑦 = 𝑞𝑠𝑦,
𝑞𝑠,+𝑦 = 1Ω𝑞𝑓,+𝑦
𝑞𝑓,−𝑦 = 𝑞𝑓𝑦 ,
𝑞𝑓,+𝑦 = Ω𝑞𝑠,+𝑦
𝑑𝑞𝑓𝑦 = 𝑞−𝑦 − 𝑞+𝑦 = 𝑞𝑓𝑦 − Ω𝑞𝑠𝑦
𝑑𝑞𝑠𝑦 = 𝑞−𝑦 − 𝑞+𝑦 = 𝑞𝑠𝑦 − 1Ω𝑞𝑓𝑦

(29)

3.1. Validation of Computed Results. The validation of com-
putational procedure and its computer implementation are
carried out by comparing the numerical solution and the
exact solution of the nonconjugate problem of laminar flow
on the shell side of unfinned double pipe.The products of the
Fanning friction factor and the Reynolds number 𝑓Re and
the Nusselt number 𝑁𝑢 are used as performance measures.
These quantities have been computed for various values of𝑅̂. The maximum percentage errors in these quantities are,
respectively, 0.06% and 0.15%.Another source of validation of
the present results is their comparisonwith those of [15] when
the conductive resistance in the wall-fin assembly is taken
to be negligible. This is to note that the results of [15] were
obtained using the finite element method with ℎ-adaptivity.
The comparison is shown in Figure 2.

4. Results and Discussion

Thepresent work is aimed at investigating the overall thermal
performance, in terms of fully developed𝑁𝑢 of the triangular
FDP heat exchanger when the thermal conductivity and
inner pipe wall thickness are varied as parameters. Other
parameters to be investigated are the design parameters, the
fin height 𝐻∗, the number of fins 𝑀, the ratio of radii
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Figure 2: Comparison of the results of 𝑁𝑢 based on the hydraulic
diameter against𝑀 at 𝑅̂ = 0.25, 𝛽 = 3∘, and 𝛿 = 0.05 with those of
[15].

𝑅̂, and the fin thickness 𝛽, so that a better design for the
present more realistic situation may be reached as compared
to that given in [15]. The inner pipe wall thickness is made
dimensionless as by the relation 𝛿 = (𝑟𝑖 − 𝑟𝑤)/𝑟𝑜. The values
of the above stated parameters taken in the present work are𝐻∗ = {0.2, 0.4, 0.6, 0.8}, 𝛽 = {3∘, 5∘}, 𝑅̂ = {0.25, 0.5, 0.6}, 𝛿 ={0.05, 0.1, 0.2}, Ω = {1, 2, 10, 20, 50, 100, 500, 1000, 5000,∞},
and 𝑀 = {4, 8, 12, 16, 20, 24}. Here Ω = ∞ represents the
case of [15].

To understand the physical performance of the present
problem, the velocity and temperature contours are presented
in Figure 3 for the specified parameters 𝛽 = 3∘, 5∘, 𝑅̂ =0.25, 0.5, 𝑀 = 12, 18, 𝐻∗ = 0.6, 0.8, and Ω varying
from 1 to ∞, where the velocity field is normalized by the
maximum velocity so that its values lie between 0 and 1
and the temperature field 𝜏∗, being a normalized difference
of fluid and wall temperatures, has smaller values in the
regions of higher temperature and larger values in the lower
temperature zones.

Figures 3(a)–3(d)(i) present the velocity contours for
various geometric parameters mentioned in the correspond-
ing figure. The observations/comments like large velocity
gradients, high velocity zone, formation of one-dimensional
flow, stagnant fluid at wall-fin assembly, and the effects of
increasing fin height as well as number of fins, as mentioned
in [15, 23], can easily be observed in these figures. It may be
noted again that the results of [15] are based on FEM. The
effects of 𝛿 are not significant. Moreover, the zero velocity at
the outer surface of inner pipe, the inner surface of the outer
pipe, and the fin surface confirms the validity of the present
model and its numerical implementation.

Figures 3(a)–3(d)(ii) show the isotherms of the case when
the material of the inner pipe, fin, and fluid is same; i.e.,
conductivity ratio (Ω) is one. One can easily observe that
the isotherms in the inner pipe, in the fluid area that is
in the vicinity of outside surface of inner pipe and in the
triangular fins, are in circular shape, represent heat transfer

process at equal rate, and confirm the validity of the physical
model and numerical method. As the values of Ω rise from
1 to ∞ relative to the fluid, the circular isotherms start
changing its behavior as shown in Figures 3(a)–3(d)(iii-xii).
The temperature contours tend to become straight between
two consecutive fins. This isotherm behavior is matchable as
in case of exponential fin [23]. Its means that the temperature
gradient in this region is increasing with increase of the
conductivity of the inner pipe and fin material. It is also clear
that the rate of heat transfer at fluid-fin interface is more
than that of inner pipe-fluid interface. It may be interesting
to note that, with rising the value ofΩ, the heat is transferred
quickly at the solid-fluid interface, which is the cause of larger
temperature differences and hence plays its significant role in
promoting the heat transfer coefficient.

As described earlier,𝑁𝑢 is used as a thermal performance
measure of the triangular FDP heat exchanger. It is defined
below based on the two diameter values: hydraulic and
equivalent.

𝑁𝑢 = 𝐷∗
𝐻𝑝∗

ℎ
𝜏∗
𝑏

, (30)

𝑁𝑢𝑒 = 𝐷∗
𝑒𝑝∗𝑒 𝜏∗𝑏 , (31)

The terms 𝑝∗ℎ , 𝐷∗
𝐻, 𝐷∗

𝑒 , 𝜏∗𝑏 , and 𝑝∗𝑒 are described in nomen-
clature.𝑁𝑢 is plotted against the ratio of conductivities (Ω) at𝑅̂ = 0.25, 𝛽 = 3∘, 𝐻∗ = 0.4 and 0.8, 𝛿 = 0.05 and 0.2, and4 ≤ 𝑀 ≤ 24, as presented in Figure 4. The effect of the
rising values of Ω on𝑁𝑢 is strongly prominent which shows
the increasing trend of 𝑁𝑢 for 4 ≤ 𝑀 ≤ 24 with 40% of
fin height as depicted in Figures 4(a) and 4(b). This trend
validates the previous observations of quick heat transfer at
the fluid-solid interface, higher temperature differences, and
promoting heat transfer coefficient due to higher values ofΩ. It may also be noted from these figures that, at fixed
chosen value of Ω, the trend of𝑁𝑢 curves is decreasing with
increase of 𝑀. However, due to increase in the number of
fins, these curves get closer and in turn deteriorate the rate
of𝑁𝑢 decrease. Moreover, as the value of Ω is increased, the𝑁𝑢 curves corresponding to various number of fins get wider
apart, showing the more significant effect of 𝑀 for higher
values of the conductivity ratio. A similar trend of𝑁𝑢 curves
may be observed in Figures 4(c) and 4(d) for the case when
the triangular fins have 80% height except the case of 𝑁𝑢
curves at about Ω ≈ 1000, in which 𝑁𝑢 curves for 𝑀 = 8
are overriding the curves for𝑀 = 4. It may also be observed
in comparing Figures 4(a)/4(c) to Figures 4(b)/4(d) that, with
increase of the thickness of the inner pipe wall, at the lower
values of Ω the 𝑁𝑢 curves get closer and in turn reduce
the values of 𝑁𝑢. Thus, the effect of inner pipe wall is more
prominent only for lower values of the conductivity ratio.This
trend also supports the present work that the thicker inner
pipe walls offer more resistance in heat conduction at smallerΩ and thus reduce the values of heat transfer coefficient.
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(a) Velocity contours and isotherms at 𝑅̂ = 0.5, 𝛽 = 5∘, 𝛿 = 0.05,𝑀 = 12,𝐻∗ = 0.6, and 1 ≤ Ω ≤ ∞. (i) Velocity contours, (ii)Ω = 1 (iii)Ω = 2, (iv)Ω = 5,
(v)Ω = 10, (vi)Ω = 20, (vii)Ω = 50, (viii)Ω = 100, (ix)Ω = 500, (x) Ω = 1000, (xi)Ω = 5000, and (xii)Ω = ∞

Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 4:𝑁𝑢 is plotted against the ratio of conductivitiesΩ at 𝑅̂ = 0.25, 𝛽 = 3∘.

Triangular fin height also assists the inner pipe wall thickness
in its behavior described earlier.

Figure 5 represents the graph between 𝑁𝑢 and Ω at 𝑅̂ =0.6, 𝛽 = 3∘, 𝐻∗ = 0.4 and 0.8, 𝛿 = 0.05 and 0.2, and 4 ≤𝑀 ≤ 24. Most of previous comments are also applicable
here. On comparing Figures 4 and 5, the effect of increasing
the value of 𝑅̂ on the Nusselt number may be seen. It may

be noted from this comparison that, due to the increase of
the ratio of radii, intercurves spacing for triangular fins of
40% height and nonuniform behavior of the Nusselt number
with the number of triangular fins for various values of the
conductivity ratios tend to become uniform. However, for the
case of larger triangular fins with 80% height and for large
values of Ω an increase in the values of 𝑅̂ makes the trend
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(d) 𝐻∗ = 0.8, 𝛿 = 0.2

Figure 5: A graph of𝑁𝑢 andΩ at 𝑅̂ = 0.6, 𝛽 = 3∘.

of 𝑁𝑢 curves more complex. It may be seen that at these
values ofΩ the number of intersections of different𝑁𝑢 curves
increases with 𝑅̂.

A graph is sketched between𝑁𝑢 andΩ in Figure 6 for 𝑅̂ =0.6,𝛽=5∘,𝐻∗ =0.4 and 0.8, 𝛿 =0.05 and 0.2, and 4 ≤ 𝑀 ≤ 24.
Most of the comments made for Figure 5 are also applicable
here.The comparison of Figures 5 and 6 states that, for larger
value of 𝑅̂, the influence of the triangular fin half angle on

𝑁𝑢 becomes more substantial particularly for larger values
of triangular fin height and the conductivity ratios.

The influence of increasing triangular fin height on the
present problemmay be seen in Figure 7, where𝑁𝑢 is plotted
against Ω at 𝑅̂ = 0.25, 𝛽 = 3∘, 0.2 ≤ 𝐻∗ ≤ 0.8, 𝛿 = 0.05,
and 4 ≤ 𝑀 ≤ 16. It may be observed from this figure
that, with increase in the triangular fin height, 𝑁𝑢 decrease
particularly for smaller number of fins and for all Ω while
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Figure 6: A graph between𝑁𝑢 andΩ at 𝑅̂ = 0.6, 𝛽 = 5∘.

for higher number of fins and Ω the triangular fins of larger
height become relatively more active. It may be further noted
that, for Ω ≥ 500, the trend of 𝑁𝑢 curves becomes almost
horizontal when𝐻∗ ≤ 0.4 for other specified values of 𝑅̂, 𝛽,𝛿, and𝑀. This trend of curves shows that the assumption of
negligible thermal resistance [15] may be safely applied when
the conductivity ratio for the materials of inner pipe wall-fin
assembly is less than 500 and the configurations of triangular
FDP with fin height are not more than 40% of the annulus

of FDP. However, this assumption may not be employed for
larger triangular fin heights because of substantial influence
in 𝑁𝑢. It may be concluded that for choice of the range of
triangular fin heights to consider the assumption of infinite
conductivity strongly depends on the geometric parameters
especially the number of fins.

For the validation of this assumption which is considered
here, Table 1 represents the comparison with [15] in quantita-
tive form.This table presents percentage overestimates in the
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Figure 7:𝑁𝑢 is plotted against Ω at 𝑅̂ = 0.25, 𝛽 = 3∘, 𝛿 = 0.05, and 4 ≤ 𝑀 ≤ 16.

values of the Nusselt number for 𝑅̂ = 0.5, 𝛽 = 3∘, 𝛿 = 0.1,
and 1 ≤ Ω ≤ 5000. These overestimates in 𝑁𝑢 are due
to employing this assumption when finite conductivity ratio
(1 ≤ Ω ≤ 5000) is considered.

If up to 5% overestimate in𝑁𝑢 is tolerable, then it may be
noted from Table 1 that the assumption of negligible thermal
resistance of the material of inner pipewall-fin is not valid for
any choice of triangular fin height and the number of fins forΩ < 50.

However, the choice of Ω for the validity of this assump-
tion varies with increase in triangular fin height and number
of fins. It may be noted that, for the case of 20% triangular fin
height, it is valid for Ω ≥ 100 and all numbers of triangular

fins; for 40% triangular fin height, it is true for Ω ≥ 500 and
all number of triangular fins; for 60% triangular fin height it
is valid for Ω ≥ 500 for 𝑀 ≤ 8 and Ω ≥ 1000 for 𝑀 ≥ 12;
for 80% triangular fin height it is true forΩ ≥ 500 for𝑀 = 4,Ω ≥ 1000 for𝑀 = 8, and Ω ≥ 5000 for𝑀 ≥ 12.

A graph of 𝑁𝑢 is sketched against 𝑀 for 0.05 ≤ 𝛿 ≤0.2, 0.2 ≤ 𝐻∗ ≤ 0.8, 4 ≤ 𝑀 ≤ 24, 1 ≤ Ω ≤ 5000,
and 𝛽 = 3∘ in Figure 8, for the validity of the assumption of
negligible/zero inner pipe wall thickness considered in [15].
From this figure, one may conclude that, for small values
of the conductivity ratios, number of triangular fins, and
fin height, the Nusselt number significantly depends on the
thickness of the inner pipe wall. As Ω gradually increase its
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Figure 8:𝑁𝑢 is plotted against𝑀 for 0.05 ≤ 𝛿 ≤ 0.2, 0.2 ≤ 𝐻∗ ≤ 0.8, 4 ≤ 𝑀 ≤ 24 1 ≤ Ω ≤ 5000, and 𝛽 = 3∘.

value, the 𝑁𝑢 curves representing different values of 𝛿 get
closer and closer showing negligible influence of inner pipe
wall thickness for any values of𝑀 and𝐻∗.The present results
suggest that the assumption of negligible/zero inner pipe wall
thickness can safely be employed for Ω ≥ 500.

Now, the Nusselt number based on the equivalent diame-
ter𝑁𝑢𝑒 is plotted againstΩ at 𝑅̂ = 0.5, 𝛽 = 3∘, and 𝛿 = 0.05 in
Figure 9. It may be noted that 𝑁𝑢𝑒 curves present increasing
trendwith increase inΩ, for all choices of triangular fin height
and number of fins. It can be seen that, for lower values ofΩ, there is no significant change in 𝑁𝑢𝑒 curves for specified
values of 𝐻∗and 𝑀 while 𝑁𝑢𝑒 show significant increase in
the values for higher Ω. For lower values of Ω and for any
fixed 𝐻∗, the effect of increasing the number of triangular
fins is nonmonotonic and not much significant while it shows
monotonically increasing behavior for higher values of Ω.

The effect of increasing triangular fin height is very significant
on𝑁𝑢𝑒 which shows its increasing trend. ForΩ ≥ 500, almost
all𝑁𝑢𝑒 curves tend to be straight.

5. Conclusions

In this work, a DG-FEM based numerical investigation of
triangular FDP heat exchanger has been performed. The
conclusions are summarized as follows:

(1) The computed local result matches the physics of the
conjugate heat transfer problem in triangular finned
double pipe heat exchanger and validates the present
results.

(2) With increase of the conductivity ratio, the heat
convection rate at the outer surface of the inner pipe
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Table 1: % overestimates of Nusselt number𝑁𝑢 for 𝑅̂ = 0.5, 𝛽 = 3∘, and 𝛿 = 0.1 with [15].

𝐻∗ 𝑀 Ω
1 10 20 50 100 500 1000 5000

0.2

4 84.8 12.1 6.7 2.9 1.5 0.3 0.2 0.0
8 102.1 17.5 9.9 4.4 2.3 0.5 0.2 0.0
12 117.6 21.8 12.3 5.4 2.8 0.6 0.3 0.1
16 129.6 25.1 14.3 6.4 3.3 0.7 0.3 0.1
20 138.0 26.0 14.5 6.3 3.3 0.7 0.3 0.1
24 144.2 26.7 14.9 6.4 3.3 0.7 0.3 0.1

0.4

4 117.8 26.3 16.5 8.1 4.4 0.9 0.5 0.1
8 191.0 53.3 34.0 16.7 9.1 2.0 1.0 0.2
12 250.8 71.5 44.6 21.4 11.5 2.5 1.2 0.3
16 288.4 80.0 48.7 22.8 12.2 2.6 1.3 0.3
20 307.9 83.8 53.1 27.1 15.4 3.5 1.8 0.4
24 317.8 78.9 46.3 21.0 11.1 2.3 1.2 0.2

0.6

4 150.5 41.4 27.5 14.3 8.1 1.8 0.9 0.2
8 333.8 110.7 73.6 37.8 21.1 4.7 2.4 0.5
12 531.5 172.9 110.9 54.8 29.9 6.5 3.3 0.7
16 671.1 206.8 128.4 61.2 32.8 7.0 3.5 0.7
20 744.2 216.9 132.4 62.4 33.4 7.1 3.6 0.7
24 774.3 214.3 129.4 60.7 32.5 6.9 3.5 0.7

0.8

4 170.1 50.3 34.1 18.0 10.2 2.3 1.2 0.2
8 459.4 157.8 105.0 54.0 30.2 6.7 3.4 0.7
12 916.8 300.7 192.4 95.1 52.1 11.4 5.8 1.2
16 1460.2 446.2 275.9 131.6 70.9 15.2 7.7 1.5
20 2019.6 574.3 347.2 162.3 86.6 18.4 9.3 1.9
24 2482.4 665.9 405.2 202.0 116.2 28.2 14.6 3.0

between two consecutive fins and at the upper part of
the triangular fin surface also increases.

(3) Nusselt number, in general, increases with the con-
ductivity ratio values for the specified values of all
the other configuration parameters considered in
this work. However, the effect of these parameters
is strongly dependent on the conductivity ratio.
Therefore, for better design of the triangular finned
annulus, these parameters must be chosen in view of
the thermal resistance of thematerial of the inner pipe
wall-fin assembly.

(4) The validity of the assumption of infinite conductivity
or negligible thermal resistance strongly depends on
the height and number of fins and the conductivity
ratio. Therefore, in view of the computed results, this
assumption should be carefully employed.

(5) The assumption of negligible/zero inner pipe wall
thickness can safely be employed forΩ ≥ 500.

(6) TheNusselt number based on the equivalent diameter
also depicts its strong dependency on the conductivity

ratio for Ω ≤ 500. However, for Ω ≥ 500, 𝑁𝑢𝑒 does
not express substantial rise except for a few cases of a
larger number of higher triangular fins.

Nomenclature

𝑟o: Inner radius of the outer pipe, m𝑟i: Outer radius of the inner pipe, m𝑟1: Radius equal to fin height from the centre
of the inner pipe, m(𝑟, 𝜙, 𝑧): Cylindrical coordinates, m, rad, and m𝑅: Radius, dimensionless𝑝∗ℎ : Heated parameter, dimensionless𝐷∗

𝐻: Hydraulic diameter, dimensionless𝐷∗
𝑒 : Equivalent diameter, dimensionless𝜏∗𝑏 : Bulk mean fluid temperature,

dimensionless𝑝∗𝑒 : Heated parameter based on equivalent
diameter, dimensionless𝑈max: Maximum fluid velocity, m/s𝑅𝑚: Radial point of maximum velocity, m𝑅̂: Ratio radii, dimensionless.
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Figure 9:𝑁𝑢𝑒 is plotted against Ω at 𝑅̂ = 0.5, 𝛽 = 3∘, and 𝛿 = 0.05.
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