Primitive Idempotents of Irreducible Cyclic Codes of Length n

Yuqian Lin ${ }^{(D)}$, Qin Yue ${ }^{(D)}$, and Yansheng Wu
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
Correspondence should be addressed to Qin Yue; yueqin@nuaa.edu.cn

Received 2 March 2018; Accepted 18 April 2018; Published 3 June 2018
Academic Editor: Jean Jacques Loiseau
Copyright © 2018 Yuqian Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let \mathbb{F}_{q} be a finite field with q elements and n a positive integer. In this paper, we use matrix method to give all primitive idempotents of irreducible cyclic codes of length n, whose prime divisors divide $q-1$.

1. Introduction

Let \mathbb{F}_{q} be a finite field with q elements, where $q=p^{s}$ and p is a prime. Let \mathscr{C} be a $[n, k, d]$ linear code over \mathbb{F}_{q}, i.e., it is a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum Hamming distance d. If for each codeword $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in$ $\mathscr{C},\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right)$ is also in \mathscr{C}, then we call \mathscr{C} a cyclic code. In fact, each cyclic code of length n over \mathbb{F}_{q} can be viewed as an ideal in the ring $R=\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$ and each irreducible cyclic code of length n over \mathbb{F}_{q} is an ideal of R generated by a primitive idempotent.

A lot of papers investigate primitive idempotents of R. We list some results about the length n.
(1) In $[1,2], n=2,4, l^{m}$, and $2 l^{m}$, where l is an odd prime and p is a primitive root modulo n.
(2) In $[3,4], n=2^{m}, m \geq 3$.
(3) In [5], $n=l_{1}^{m} l_{2}$, where l_{1}, l_{2}, p are distinct odd primes with $\operatorname{gcd}\left(\varphi\left(l_{1}^{m}\right) / 2, \varphi\left(l_{2}\right) / 2\right)=1$ and p is a common primitive root modulo l_{1}^{m} and l_{2}.
(4) In [6], $n=l_{1}^{m_{1}} l_{2}^{m_{2}}$, where l_{1}, l_{2}, and p are three distinct odd primes, $\operatorname{ord}_{l_{1}^{m_{1}}}(p)=\varphi\left(l_{1}^{m_{1}}\right) / 2, \operatorname{ord}_{l_{2}^{m_{2}}}(p)=$ $\varphi\left(l_{2}^{m_{2}}\right) / 2$, and $\operatorname{gcd}\left(\varphi\left(l_{1}^{m_{1}}\right), \varphi\left(l_{2}^{m_{2}}\right)\right)=2$.
(5) In $[7,8], n=t l^{m}, t, m \geq 1$, where l is an odd prime different from the characteristic of $\mathbb{F}_{q}, t \mid(q-$ 1), $\operatorname{gcd}(t, l)=1$ and $\operatorname{ord}_{t l^{m}}(q)=\varphi\left(l^{m}\right) ; n=l^{m}, m \geq 1$, where l is an odd prime and $l \mid(q-1)$.
(6) In $[9,10], n=l_{1}^{m_{1}} l_{2}^{m_{2}}$, where l_{1}, l_{2} are two distinct primes with $l_{1} l_{2} \mid(q-1) ; n=4 l^{m}$ and $8 l^{m}$, where l is an odd prime with $l \mid(q-1)$.
(7) In [11], $n=2^{m} l_{1}^{m_{1}} l_{2}^{m_{2}}$, where l_{1}, l_{2} are two distinct primes with $4 l_{1} l_{2} \mid(q-1)$.
(8) In [12], $n=l_{1}^{m_{1}} \cdots l_{r}^{m_{r}}$, where l_{1}, \ldots, l_{r} are distinct odd primes with $l_{1} \cdots l_{r} \mid(q-1)$.

In this paper, suppose that $\operatorname{rad}(n) \mid(q-1)$. We shall use matrix method to give all primitive idempotents of the ring R. The rest of paper is organized as follows: in Section 2, we give some basic results, in Section 3, we obtain all primitive idempotents in $\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$ under the condition: $\operatorname{rad}(n) \mid$ ($q-1$), and in Section 4, we conclude this paper.

2. Preliminaries

If a positive integer n has a prime factorization, $n=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{l}^{\alpha_{l}}$, where $p_{1}, p_{2}, \ldots, p_{l}$ are distinct primes and positive integers $\alpha_{i} \geq 1$ for $1 \leq i \leq l$, we denote $\operatorname{rad}(n)=$ $p_{1} p_{2} \cdots p_{l}$ and $v_{p_{i}}(n)=\alpha_{i}, 1 \leq i \leq l$, and $\operatorname{ord}(\alpha)$ is the order of $\alpha \in \mathbb{F}_{q}^{*}$. Through this paper, we always assume that $\operatorname{gcd}(n, q)=1$.

Every cyclic code of length n over a finite field \mathbb{F}_{q} is identified with exactly one ideal of the quotient algebra $\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$. Some explicit factorizations of $x^{n}-1$ can be found in [7-11, 13-16]. We need the following results about the irreducible factorization of $x^{n}-1$ over \mathbb{F}_{q}.

Lemma 1 ([14, Corollary 1]). Let \mathbb{F}_{q} be a finite field and n a positive integer such that both $\operatorname{rad}(n) \mid(q-1)$ and either $q \not \equiv 3(\bmod 4)$ or $8+n$. Let $m_{1}=n / \operatorname{gcd}(n, q-1), l_{1}=$ $(q-1) / \operatorname{gcd}(n, q-1)$, and θ be a generator of \mathbb{F}_{q}^{*}. Then one has the following:
（1）The factorization of $x^{n}-1$ into irreducible factors in $\mathbb{F}_{q}[x]$ is

$$
\begin{equation*}
\prod_{t \mid m_{1} \leq \leq u \leq \operatorname{gcd}(n, q-1)}^{\operatorname{gcc}(u, t)=1} ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ 囗 十 . \tag{1}
\end{equation*}
$$

（2）For each $t \mid m_{1}$ ，the number of irreducible factors of degreet is $\varphi(t) / t \cdot g c d(n, q-1)$ ，where φ denotes the Euler Totient function，and the number of irreducible factors is

$$
\begin{equation*}
N_{1}=\operatorname{gcd}(n, q-1) \cdot \prod_{\substack{p l m_{1} \\ p \text { prime }}}\left(1+v_{p}\left(m_{1}\right) \cdot \frac{p-1}{p}\right) . \tag{2}
\end{equation*}
$$

Lemma 2 （［14，Corollary 2］）．Let \mathbb{F}_{q} be a finite field and n a positive integer such that $\operatorname{rad}(n) \mid(q-1), q \equiv 3(\bmod 4)$ ，and $8 \mid n$ ．Let $m_{2}=n / \operatorname{gcd}\left(n, q^{2}-1\right), l_{1}=(q-1) / \operatorname{gcd}(n, q-1)$ ， $l_{2}=\left(q^{2}-1\right) / \operatorname{gcd}\left(n, q^{2}-1\right), r=\min \left\{v_{2}(n / 2), v_{2}(q+1)\right\}$ ，and α be a generator of $\mathbb{F}_{q^{2}}^{*}$ satisfying $\theta=\alpha^{q+1}$ ．Then one has the following：
（1）The factorization of $x^{n}-1$ into irreducible factors in $\mathbb{F}_{q}[x]$ is

$$
\begin{align*}
& \prod_{\substack{t \mid m m_{2} \\
\text { todd }}} \prod_{\substack{\leq u g \operatorname{gcd}(n, q-1) \\
\operatorname{gcd}(w, t)=1}}\left(x^{t}-\theta^{w l_{1}}\right) \tag{3}\\
& \quad \cdot \prod_{t \mid m m_{2}} \prod_{u \in \mathscr{R}_{t}}\left(x^{2 t}-\left(\alpha^{u l_{2}}+\alpha^{q u l_{2}}\right) x^{t}+\theta^{u l_{2}}\right)
\end{align*}
$$

where \mathscr{R}_{t} is the set

$$
\left\{u \in \mathbb{N} \left\lvert\, \begin{array}{c}
1 \leq u \leq \operatorname{gcd}\left(n, q^{2}-1\right), 2^{r}+u, \tag{4}\\
\operatorname{gcd}(u, t)=1, u<\{q u\}_{\operatorname{gcd}\left(n, q^{2}-1\right)}
\end{array}\right.\right\}
$$

and $\{a\}_{b}$ denotes the remainder of the division of a by b ．
（2）For each t odd with $t \mid m_{2}$ ，the number of irreducible polynomials of degreet is $\varphi(t) / t \cdot \operatorname{gcd}(n, q-1)$ ，and the number irreducible polynomials of degree $2 t$ is

$$
\begin{gather*}
\frac{\varphi(t)}{t} \cdot 2^{r-1} \cdot \operatorname{gcd}(n, q-1) \quad \text { ift is even, } \tag{5}\\
\frac{\varphi(t)}{2 t} \cdot\left(2^{r}-1\right) \cdot \operatorname{gcd}(n, q-1) \quad \text { ift is odd. }
\end{gather*}
$$

The total number of irreducible factors is

$$
\begin{align*}
N_{2}= & \operatorname{gcd}(n, q-1) \cdot\left(\frac{1}{2}+2^{r-2}\left(2+v_{2}(m)\right)\right) \\
& \cdot \prod_{\substack{p \mid m_{2} \\
\text { podd prime }}}\left(1+v_{p}\left(m_{2}\right) \cdot \frac{p-1}{p}\right) . \tag{6}
\end{align*}
$$

Lemma 3 （see［17］）．Let m_{1}, \ldots, m_{t} be positive integers．For a set of integers a_{1}, \ldots, a_{t} ，the system of congruences $y \equiv$ $a_{i}\left(\bmod m_{i}\right), i=1, \ldots, t$ ，has solutions if and only if

$$
\begin{equation*}
a_{i} \equiv a_{j} \quad\left(\operatorname{modgcd}\left(m_{i}, m_{j}\right)\right), i \neq j, 1 \leq i, j \leq t . \tag{7}
\end{equation*}
$$

If（7）is satisfied，the solution is unique modulo $\operatorname{lcm}\left(m_{1}, \ldots\right.$ ， m_{t} ）．

3．Primitive Idempotents in R

In this section，we shall give all primitive idempotents in R if $\operatorname{rad}(n) \mid(q-1)$ ．

First，we consider the case $q \neq 3(\bmod 4)$ or $8 \dagger n$ ．
In Lemma 1，let t_{1}, \ldots, t_{d} be all positive factors of $m_{1}=$ $n / \operatorname{gcd}(n, q-1)$ ．For each t_{i} with $1 \leq i \leq d$ ，there are $s_{i}=\varphi\left(t_{i}\right) / t_{i} \cdot \operatorname{gcd}(n, q-1)$ positive integers $u_{i 1}, u_{i 2}, \ldots, u_{i s_{i}}$ satisfying $1 \leq u_{i j} \leq \operatorname{gcd}(n, q-1)$ and $\operatorname{gcd}\left(u_{i j}, t_{i}\right)=1, j=$ $1, \ldots, s_{i}$ ．Since $l_{1}=(q-1) / \operatorname{gcd}(n, q-1)$ and $\langle\theta\rangle=\mathbb{F}_{q}^{*}, \delta=\theta^{l_{1}}$ is of order $\operatorname{gcd}(n, q-1)$ ．Then the irreducible factorization of $x^{n}-1$ over \mathbb{F}_{q} can be rewritten as

$$
\begin{align*}
x^{n}-1 & =\prod_{\substack{1 \leq i \leq d \\
1 \leq j \leq s_{i}}}\left(x^{t_{i}}-\delta^{u_{i_{j}}}\right) \tag{8}\\
& =\prod_{1 \leq j \leq s_{1}}\left(x^{t_{1}}-\delta^{u_{1 j}}\right) \cdots \prod_{1 \leq j \leq s_{d}}\left(x^{t_{d}}-\delta^{u_{d j}}\right) .
\end{align*}
$$

Note that the number of primitive idempotents in R coincides with the number of irreducible factors of $x^{n}-1$ over \mathbb{F}_{q} ．

Theorem 4．Let $\operatorname{rad}(n) \mid(q-1)$ and either $q \equiv 3(\bmod 4)$ or $8 \dagger n$ ．Then there are N_{1} primitive idempotents in R as follows：

$$
\begin{equation*}
\theta_{i j}(x)=\frac{t_{i}}{n} \sum_{k=0}^{n / t_{i}-1}\left(\delta^{-u_{i j}}\right)^{k} x^{k t_{i}}, \tag{9}
\end{equation*}
$$

corresponding to the irreducible polynomials $x^{t_{i}}-\delta^{u_{j}}$ over \mathbb{F}_{q} ， $i=1, \ldots, d, j=1, \ldots, s_{i}$ ．
Proof．For each $i, 1 \leq i \leq d$ ，let $R_{i}=\prod_{1 \leq j \leq s_{i}} \mathbb{F}_{q}[x] /\left\langle x^{t_{i}}-\delta^{u_{i j}}\right\rangle$ be a ring with s_{i} direct summands；for $0 \leq k \leq n-1, k=t_{i} u+v$ ， $0 \leq u \leq n / t_{i}-1$ ，and $0 \leq v \leq t_{i}-1$ ．By（8）and Chinese Remainder Theorem，there is an \mathbb{F}_{q}－algebra isomorphism：

$$
\begin{equation*}
\psi=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{d}\right): R \longrightarrow R_{1} \times R_{2} \times \cdots \times R_{d} \tag{10}
\end{equation*}
$$

where each $\psi_{i}: R \rightarrow R_{i}, \sum_{k=0}^{n-1} a_{k} x^{k} \mapsto A_{i, 0}+A_{i, 1} x+\cdots+$ $A_{i, t_{i}-1} x^{t_{i}-1}$ is an \mathbb{F}_{q}－algebraic epimorphism and each

$$
\begin{align*}
& A_{i, v}=\left(\sum_{u=0}^{n / t_{i}-1} a_{t_{i} u+v} \delta^{u u_{i 1}}, \sum_{u=0}^{n / t_{i}-1} a_{t_{i} u+v} \delta^{u u_{i}}, \ldots,\right. \tag{11}\\
& \left.\sum_{u=0}^{n / t_{i}-1} a_{t_{i} u+v} \delta^{u u_{i_{i}}}\right) \in \mathbb{F}_{q}^{s_{i}}, \quad 0 \leq v \leq t_{i}-1 .
\end{align*}
$$

Note that $\sum_{i=1}^{d} s_{i} t_{i}=n$ ．Hence there is a \mathbb{F}_{q}－linear space isomorphism：

$$
\begin{align*}
\phi & =\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d}\right): R_{1} \times R_{2} \times \cdots \times R_{d} \rightarrow \prod_{i=1}^{d} \mathbb{F}_{q}^{s t_{i}} \tag{12}\\
& =\mathbb{F}_{q}^{n},
\end{align*}
$$

where each $\phi_{i}: R_{i} \rightarrow \mathbb{F}_{q}^{s_{i} t_{i}}, A_{i, 0}+A_{i, 1} x+\cdots+$ $A_{i, t_{i}-1} x^{t_{i}-1} \mapsto\left(A_{i, 0}, A_{i, 1}, \ldots, A_{i, t_{i}-1}\right)$ is a \mathbb{F}_{q}－linear space epimorphism．Hence there is a \mathbb{F}_{q}－linear space isomorphism：

$$
\begin{align*}
& \chi=\phi \psi: R \longrightarrow \mathbb{F}_{q}^{n} \\
& \sum_{k=0}^{n-1} a_{k} x^{k} \longmapsto\left(A_{1,0}, \ldots, A_{1, t_{1}-1}, \ldots, A_{d, 0}, \ldots, A_{d, t_{d}-1}\right) \tag{13}\\
& \left(A_{1,0}, \ldots, A_{1, t_{1}-1}, \ldots, A_{d, 0}, \ldots, A_{d, t_{d}-1}\right) \tag{14}\\
& \quad=\left(a_{0}, a_{1}, \ldots a_{n-1}\right) B
\end{align*}
$$

$$
B_{i}{ }^{(v)}(\delta)=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \tag{15}\\
0 & 0 & \cdots & 0 \\
\left(\delta^{u_{i 1}}\right)^{0} & \left(\delta^{u_{i 2}}\right)^{0} & \cdots & \left(\delta^{u_{i_{i} i}}\right)^{0} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 \\
\left(\delta^{u_{i 1}}\right)^{1} & \left(\delta^{u_{i 2}}\right)^{1} & \cdots & \left(\delta^{u_{i s_{i}}}\right)^{1} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 \\
\left(\delta^{u_{i 1}}\right)^{n / t_{i}-1} & \left(\delta^{u_{i 2}}\right)^{n / t_{i}-1} & \cdots & \left(\delta^{u_{i s_{i}}}\right)^{n / t_{i}-1} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots
\end{array}\right) \quad\left(t_{i}+v\right) \quad 1 \leq v \leq t_{i} .
$$

where B is a $n \times n$ invertible matrix over \mathbb{F}_{q}. Now we shall determine B and B^{-1}.

In (14), let $B:=\left(B_{1}(\delta), \ldots, B_{d}(\delta)\right)$ be a $n \times n$ matrix, where each $B_{i}(\delta)=\left(B_{i}^{(1)}(\delta), \ldots, B_{i}^{\left(t_{i}\right)}(\delta)\right)$ is a $n \times s_{i} t_{i}$ matrix and each $B_{i}^{(v)}(\delta), 1 \leq v \leq t_{i}$, is a $n \times s_{i}$ matrix:

In fact, each $B^{(v)}(\delta)$ is determined by these k rows, where $k=$ $t_{i} u+v, 0 \leq u \leq n / t_{i}-1$.

We know that $\operatorname{ord}(\delta)=\operatorname{gcd}(n, q-1), x^{t_{i}}-\delta^{u_{i j}}, 1 \leq u_{i j} \leq$ $\operatorname{gcd}(n, q-1)$, and $\operatorname{gcd}\left(t_{i}, u_{i j}\right)=1$ are an irreducible polynomial
of $x^{n}-1$, so $\left(\delta^{u_{i j}}\right)^{n / t_{i}}=1$. Fix i and $t_{i}, 1 \leq i \leq d$. If $1 \leq u_{i j} \neq$ $u_{i j^{\prime}} \leq \operatorname{gcd}(n, q-1), \operatorname{gcd}\left(u_{i j}, t_{i}\right)=1, \operatorname{gcd}\left(u_{i j^{\prime}}, t_{i}\right)=1$. Then $\delta^{u_{i j}-u_{i j^{\prime}}} \neq 1$ and $\left(\delta^{u_{i j}-u_{i j^{\prime}}}\right)^{n / t_{i}}=1$. Let

$$
\left(B_{i}{ }^{(v)}\left(\delta^{-1}\right)\right)^{T}=\left(\begin{array}{ccccccccccc}
\cdots & 0 & \left(\delta^{-u_{i 1}}\right)^{0} & 0 & \cdots & \left(\delta^{-u_{i 1}}\right)^{1} & 0 & \cdots & \left(\delta^{-u_{i 1}}\right)^{n / t_{i}-1} & 0 & \cdots \tag{16}\\
\cdots & 0 & \left(\delta^{-u_{i 2}}\right)^{0} & 0 & \cdots & \left(\delta^{-u_{i 2}}\right)^{1} & 0 & \cdots & \left(\delta^{-u_{i 2}}\right)^{n / t_{i}-1} & 0 & \cdots \\
& \vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots & \\
\cdots & 0 & \left(\delta^{-u_{i s_{i}}}\right)^{0} & 0 & \cdots & \left(\delta^{-u_{i s_{i}}}\right)^{1} & 0 & \cdots & \left(\delta^{-u_{i i_{i}}}\right)^{n / t_{i}-1} & 0 & \cdots \\
& (v) & & & \left(t_{i}+v\right) & & & \left(\left(\frac{n}{t_{i}}-1\right) t_{i}+v\right) &
\end{array}\right)
$$

be a $s_{i} \times n$ matrix over \mathbb{F}_{q}. Then,

$$
\begin{align*}
& \left(B_{i}^{(v)}\left(\delta^{-1}\right)\right)^{T} B_{i}^{(v)}(\delta)=\frac{n}{t_{i}} E_{s_{i}} \tag{17}\\
& \left(B_{i}^{(v)}\left(\delta^{-1}\right)\right)^{T} B_{i}^{\left(v^{\prime}\right)}(\delta)=0 \quad \text { if } 1 \leq v \neq v^{\prime} \leq t_{i}, \tag{18}
\end{align*}
$$

i.e.,

$$
\begin{aligned}
& \left(B_{i}\left(\delta^{-1}\right)\right)^{T} \cdot B_{i}(\delta) \\
& \quad=\left(\begin{array}{c}
\left(B_{i}^{(1)}\left(\delta^{-1}\right)\right)^{T} \\
\vdots \\
\left(B_{i}^{\left(t_{i}\right)}\left(\delta^{-1}\right)\right)^{T}
\end{array}\right)\left(B_{1}^{(1)}(\delta), \ldots, B_{i}^{\left(t_{i}\right)}(\delta)\right) \\
& \quad=\frac{n}{t_{i}} E_{s_{i} t_{i}}
\end{aligned}
$$

where $E_{s_{i}}$ and $E_{s_{i} t_{i}}$ are the identity matrices of order $s_{i} \times s_{i}$ and $s_{i} t_{i} \times s_{i} t_{i}$, respectively.

Let

$$
\left(B_{i}\left(\delta^{-1}\right)\right)^{T}=\left(\begin{array}{c}
\left(B_{i}^{(1)}\left(\delta^{-1}\right)\right)^{T} \tag{19}\\
\vdots \\
\left(B_{i}^{\left(t_{i}\right)}\left(\delta^{-1}\right)\right)^{T}
\end{array}\right)
$$

be a $s_{i} t_{i} \times n$ matrix. Next, we shall prove that $\left(B_{i}\left(\delta^{-1}\right)\right)^{T}$. $B_{i^{\prime}}(\delta)=0,1 \leq i \neq i^{\prime} \leq d$. In fact,

$$
\begin{align*}
& \left(B_{i}\left(\delta^{-1}\right)\right)^{T} \cdot B_{i^{\prime}}(\delta) \\
& =\left(\begin{array}{c}
\left(B_{i}^{(1)}\left(\delta^{-1}\right)\right)^{T} \\
\vdots \\
\left(B_{i}^{\left(t_{i}\right)}\left(\delta^{-1}\right)\right)^{T}
\end{array}\right)\left(B_{i^{\prime}}^{(1)}(\delta), \ldots, B_{i^{\prime}}^{\left(t_{\prime^{\prime}}\right)}(\delta)\right) \tag{20}\\
& =\left(\begin{array}{ccc}
\left(B_{i}^{(1)}\left(\delta^{-1}\right)\right)^{T} B_{i^{\prime}}^{(1)}(\delta) & \cdots & \left(B_{i}^{(1)}\left(\delta^{-1}\right)\right)^{T} B_{i^{\prime}}^{\left(t_{i^{\prime}}\right)}(\delta) \\
\vdots & \vdots \\
\left(B_{i}^{\left(t_{i}\right)}\left(\delta^{-1}\right)\right)^{T} B_{i^{\prime}}^{(1)}(\delta) & \cdots & \left(B_{i}^{\left(t_{i}\right)}\left(\delta^{-1}\right)\right)^{T} B_{i^{\prime}}^{\left(t_{i^{\prime}}\right)}(\delta)
\end{array}\right)
\end{align*}
$$

Hence we only need to show that

$$
\begin{equation*}
\left(B_{i}^{(v)}\left(\delta^{-1}\right)\right)^{T} B_{i^{\prime}}^{\left(v^{\prime}\right)}(\delta)=0, \quad 1 \leq v \leq t_{i}, \quad 1 \leq v^{\prime} \leq t_{i^{\prime}} \tag{21}
\end{equation*}
$$

We consider the following congruence equations:

$$
\begin{align*}
& x \equiv v \\
& x \equiv v^{\prime} \tag{22}\\
& \left(\bmod t_{i}\right) \\
& \left(\bmod t_{i^{\prime}}\right) .
\end{align*}
$$

Suppose that $\operatorname{gcd}\left(t_{i}, t_{i^{\prime}}\right) \nmid\left(v-v^{\prime}\right)$. Then it has no solution in (22) by Lemma 3, so it holds in (21).

Suppose that $\operatorname{gcd}\left(t_{i}, t_{i^{\prime}}\right) \mid\left(v-v^{\prime}\right)$. Then this is unique solution $x=a_{0}$ in (22) with $1 \leq x \leq \operatorname{lcm}\left(t_{i}, t_{i^{\prime}}\right)$. Let $\operatorname{lcm}\left(t_{i}, t_{i^{\prime}}\right)=c=t_{i} \alpha=t_{i^{\prime}} \beta$. Then $x=a_{0}+c l, l=$ $0,1, \ldots, n / c-1$ are all solutions in (22) with $1 \leq x \leq n$. Let $\left(M_{i}^{(\nu)}\left(\delta^{-1}\right)\right)^{T} M_{i^{\prime}}^{\left(\nu^{\prime}\right)}(\delta)=\left(c_{j j^{\prime}}\right)$ be a $s_{i} \times s_{i^{\prime}}$ matrix over \mathbb{F}_{q}. Then for $1 \leq j \leq s_{i}, 1 \leq j^{\prime} \leq s_{i^{\prime}}$, the $\left(j, j^{\prime}\right)$ entry is

$$
\begin{equation*}
c_{j j^{\prime}}=\sum_{l=0}^{n / c-1}\left(\delta^{-u_{i j}}\right)^{\alpha l}\left(\delta^{u_{i} j^{\prime}}\right)^{\beta l}=\sum_{l=0}^{n / c-1}\left(\delta^{-u_{i j} \alpha+u_{i^{\prime} j^{\prime}} \beta}\right)^{l}, \tag{23}
\end{equation*}
$$

where $1 \leq u_{i j}, u_{i^{\prime} j^{\prime}} \leq \operatorname{gcd}(n, q-1), \operatorname{gcd}\left(u_{i j}, t_{i}\right)=1$, and $\operatorname{gcd}\left(u_{i^{\prime} j^{\prime}}, t_{i^{\prime}}\right)=1$. Since $x^{t_{i}}-\delta^{u_{i j}}$ is an irreducible divisor of $x^{n}-1$ over $\mathbb{F}_{q},\left(\delta^{u_{i j}}\right)^{n / t_{i}}=1$; similarly, $\left(\delta^{u_{i^{\prime} j^{\prime}}}\right)^{n / t_{i}^{\prime}}=1$. Hence

$$
\begin{equation*}
\left(\delta^{-u_{i j} \alpha+u_{i^{\prime} j^{\prime}} \beta}\right)^{n / c}=\left(\delta^{-u_{i j}}\right)^{n / t_{i}}\left(\delta^{u_{i^{\prime} j^{\prime}}}\right)^{n / t_{i^{\prime}}}=1 \tag{24}
\end{equation*}
$$

On the other hand, by $t_{i} \neq t_{i^{\prime}}$ we assume that there is a prime p such that $v_{p}\left(t_{i}\right)>v_{p}\left(t_{i^{\prime}}\right)$. Then $p \mid \beta$ and $p+\alpha$ by $\operatorname{lcm}\left(t_{i}, t_{i^{\prime}}\right)=c=t_{i} \alpha=t_{i^{\prime}} \beta$, so $p+\left(-u_{i j} \alpha+u_{i^{\prime} j^{\prime}} \beta\right)$
and $p \mid \operatorname{gcd}(n, q-1)$. Hence $\delta^{-u_{i j} \alpha+u_{i^{\prime} j^{\prime}} \beta} \neq 1$. Therefore, $c_{j j^{\prime}}=\sum_{l=0}^{n / c-1}\left(\delta^{-u_{i j} \alpha+u_{i^{\prime} j^{\prime}}}\right)^{l}=0$, and it holds in (21).

In conclusion, $\left(B_{i}\left(\delta^{-1}\right)\right)^{T} B_{i}(\delta)=\left(n / t_{i}\right) E_{s_{i} t_{i}}$, $\left(B_{i}\left(\delta^{-1}\right)\right)^{T} B_{i^{\prime}}(\delta)=0, \quad 1 \leq i \neq i^{\prime} \leq d$, and

$$
B^{-1}=\frac{1}{n}\left(\begin{array}{c}
t_{1}\left(B_{1}\left(\delta^{-1}\right)\right)^{T} \tag{25}\\
t_{2}\left(B_{2}\left(\delta^{-1}\right)\right)^{T} \\
\vdots \\
t_{d}\left(B_{d}\left(\delta^{-1}\right)\right)^{T}
\end{array}\right)
$$

In the following, we present all primitive idempotents in R by lifting some primitive idempotents in \mathbb{F}_{q}^{n} through the isomorphism χ.

By Lemma 1, the number of irreducible factors of $x^{n}-1$, which coincides with the number of primitive idempotents in R, is N_{1}. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ denote the standard basis of \mathbb{F}_{q}^{n}. Hence the vectors of $\mathbb{F}_{q}^{n}, e_{1}, e_{2}, \ldots, e_{s_{1}}, e_{t_{1} s_{1}+1}$, $e_{t_{1} s_{1}+2}, \ldots, e_{t_{1} s_{1}+s_{2}}, \ldots, e_{\sum_{h=1}^{d-1} t_{h} s_{h}+1}, e_{\sum_{h=1}^{d-1} t_{h} s_{h}+2}, \ldots, e_{\sum_{h=1}^{d-1} t_{h} s_{h}+s_{d}}$, correspond to all primitive idempotents in R. Hence for i, j, $1 \leq i \leq d, 1 \leq j \leq s_{i}$, let $\theta_{i j}(x)=\sum_{k=0}^{n-1} a_{k} x^{k}$ be a primitive idempotent in R, which is corresponding to $e_{\sum_{h=1}^{i-1} t_{h} s_{h}+j}$. By (14),

$$
\begin{align*}
\chi\left(\theta_{i j}(x)\right) & =\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) B \\
& =\left(0, \ldots, 0, \sum_{h=1}^{\sum_{h=1}^{i-1} t_{h} s_{h}+j}, 0, \ldots, 0\right) \tag{26}\\
& =e_{\sum_{h=1}^{i-1} t_{h} s_{h}+j},
\end{align*}
$$

and $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=e_{\sum_{h=1}^{i-1} t_{h} s_{h}+j} B^{-1}$. So we have proved the theorem.

Remark 5. In special cases in Theorem 4, we can give those results in [8-11].

Second, we consider the case $q \equiv 3(\bmod 4)$ and $8 \mid n$.
In Lemma 2, let $t_{1}, t_{2}, \ldots, t_{d}$ be all odd factors of $m_{2}=$ $n / \operatorname{gcd}\left(n, q^{2}-1\right)$ and let $t_{d+1}, t_{d+2}, \ldots, t_{d+d^{\prime}}$ be all even factors of m_{2}. For each t_{i} with $1 \leq i \leq d$, there are $s_{i}=\varphi\left(t_{i}\right) / t_{i}$. $\operatorname{gcd}(n, q-1)$ positive integers $w_{i 1}, w_{i 2}, \ldots, w_{i s_{i}}$ satisfying $1 \leq$ $w_{i j} \leq \operatorname{gcd}(n, q-1)$ and $\operatorname{gcd}\left(w_{i j}, t_{i}\right)=1, j=1,2, \ldots, s_{i}$. For each t_{i} with $1 \leq i \leq d+d^{\prime}$, there are g_{i} positive integers $u_{i 1}, u_{i 2}, \ldots, u_{i g_{i}}$ satisfying $1 \leq u_{i j} \leq 2^{r} \operatorname{gcd}(n, q-$ 1), $\operatorname{gcd}\left(t_{i}, u_{i j}\right)=1,2^{r}+u_{i j}, j=1, \ldots, g_{i}$. In fact, $n=$ $\sum_{i=1}^{d} s_{i} t_{i}+\sum_{i=1}^{d+d^{\prime}} 2 t_{i} g_{i}$.

Since $l_{1}=(q-1) / \operatorname{gcd}(n, q-1), l_{2}=\left(q^{2}-1\right) / \operatorname{gcd}\left(n, q^{2}-1\right)$, $\langle\theta\rangle=\mathbb{F}_{q}^{*}$, and $\langle\alpha\rangle=\mathbb{F}_{q^{2}}^{*}$, there exist $\delta \in \mathbb{F}_{q}^{*}$ and $\sigma \in \mathbb{F}_{q^{2}}^{*}$ such
that $\theta^{l_{1}}=\delta$ and $\alpha^{l_{2}}=\sigma$. Then the irreducible factorization of $x^{n}-1$ over \mathbb{F}_{q} can be rewritten as

$$
\begin{align*}
& x^{n}-1 \\
&= \prod_{\substack{1 \leq \leq \leq d \\
1 \leq j \leq s_{i}}}\left(x^{t_{i}}-\delta^{w_{i j}}\right) \tag{27}\\
& \cdot \prod_{\substack{1 \leq i \leq d+d^{\prime} \\
1 \leq j \leq g_{i}}}\left(x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\sigma^{q u_{i j}}\right) x^{t_{i}}+\sigma^{(q+1) u_{i j}}\right) .
\end{align*}
$$

Theorem 6. Suppose that $\operatorname{rad}(n) \mid(q-1), q \equiv 3(\bmod 4)$, and $8 \mid n$. Then there are N_{2} primitive idempotents in R as follows: (1)

$$
\begin{equation*}
\theta_{i j}=\frac{t_{i}}{n} \sum_{k=0}^{n / t_{i}-1}\left(\delta^{-w_{i j}}\right)^{k} x^{k t_{i}} \tag{28}
\end{equation*}
$$

correspond to the irreducible polynomials $x^{t_{i}}-\delta^{w_{i j}}$ over $\mathbb{F}_{q}, i=$ $1, \ldots, d, j=1, \ldots, s_{i}$.
(2)

$$
\begin{equation*}
\eta_{i j}=\frac{t_{i}}{n} \sum_{k=0}^{n / t_{i}-1} \operatorname{Tr}\left(\left(\sigma^{-u_{i j}}\right)^{k}\right) x^{k t_{i}} \tag{29}
\end{equation*}
$$

correspond to the irreducible polynomials $x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\sigma^{q u_{i j}}\right) x^{t_{i}}+$ $\sigma^{(q+1) u_{i j}}$ over $\mathbb{F}_{q}, i=1, \ldots, d+d^{\prime}, j=1, \ldots, g_{i}$, where Tr is the trace map from $\mathbb{F}_{q^{2}}$ into \mathbb{F}_{q}.

Proof. The factorization of $x^{n}-1$ into irreducible factors in $\mathbb{F}_{q^{2}}[x]$ is

$$
\begin{align*}
x^{n}-1= & \prod_{\substack{1 \leq i \leq d \\
1 \leq j \leq s_{i}}}\left(x^{t_{i}}-\delta^{w_{i j}}\right) \\
& \cdot \prod_{\substack{1 \leq i \leq d+d^{\prime} \\
1 \leq j \leq g_{i}}}\left(x^{t_{i}}-\sigma^{u_{i j}}\right)\left(x^{t_{i}}-\sigma^{q u_{i j}}\right) . \tag{30}
\end{align*}
$$

Similarly to proving Theorem 4 , there is a $\mathbb{F}_{q^{2}}$-linear space isomorphism:

$$
\begin{align*}
& \chi=\left(\chi_{1}, \ldots, \chi_{d}, \lambda_{1}, \ldots, \lambda_{d+d^{\prime}}, \lambda_{1}^{(q)}, \ldots, \lambda_{d+d^{\prime}}^{(q)}\right): \\
& \quad \frac{\mathbb{F}_{q^{2}}[x]}{\left\langle x^{n}-1\right\rangle} \longrightarrow \mathbb{F}_{q^{2}}^{n}, \tag{31}\\
& \sum_{k=0}^{n-1} a_{k} x^{k} \longmapsto\left(A_{1,0}, \ldots, A_{d, t_{d}-1}, D_{1,0}, \ldots, D_{d+d^{\prime}, t_{d+d^{\prime}}-1},\right. \tag{32}\\
& \left.\quad D_{1,0}^{(q)}, \ldots, D_{d+d^{\prime}, t_{d+d^{\prime}}-1}^{(q)}\right),
\end{align*}
$$

where there are $\mathbb{F}_{q^{2}}$-epimorphisms: for $1 \leq i \leq d$,

$$
\begin{equation*}
\chi_{i}: \quad \frac{\mathbb{F}_{q^{2}}[x]}{\left(x^{n}-1\right)} \longrightarrow \prod_{1 \leq j \leq s_{i}} \frac{\mathbb{F}_{q^{2}}[x]}{\left\langle x^{t_{i}}-\delta^{w_{i j}}\right\rangle} \longrightarrow \mathbb{F}_{q^{2}}^{s_{i} t_{i}} \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{n-1} a_{k} x^{k} \longmapsto\left(A_{i, 0}, \ldots, A_{i, t_{i}-1}\right) \tag{34}
\end{equation*}
$$

for $1 \leq i \leq d+d^{\prime}$,

$$
\begin{align*}
\lambda_{i}: & \frac{\mathbb{F}_{q^{2}}[x]}{\left(x^{n}-1\right)} \longrightarrow \prod_{1 \leq j \leq g_{i}} \frac{\mathbb{F}_{q^{2}}[x]}{\left\langle x^{t_{i}}-\sigma^{u_{i j}}\right\rangle} \longrightarrow \mathbb{F}_{q^{2}}^{g_{i} t_{i}} \tag{35}\\
& \sum_{k=0}^{n-1} a_{k} x^{k} \longmapsto\left(D_{i, 0}, \ldots, D_{i, t_{i}-1}\right), \tag{36}
\end{align*}
$$

and for $1 \leq i \leq d+d^{\prime}$,

$$
\begin{align*}
\lambda_{i}^{(q)}: & \frac{\mathbb{F}_{q^{2}}[x]}{\left(x^{n}-1\right)} \longrightarrow \prod_{1 \leq j \leq g_{i}} \frac{\mathbb{F}_{q^{2}}[x]}{\left\langle x^{t_{i}}-\sigma^{q u_{i j}}\right\rangle} \longrightarrow \mathbb{F}_{q^{2}}^{g_{i} t_{i}} \tag{37}\\
& \sum_{k=0}^{n-1} a_{k} x^{k} \longmapsto\left(D_{i, 0}^{(q)}, \ldots, D_{i, t_{i}-1}^{(q)}\right) . \tag{38}
\end{align*}
$$

Hence there is a $n \times n$ invertible matrix B over $\mathbb{F}_{q^{2}}$ such that

$$
\begin{align*}
& \left(a_{0}, a_{1}, \ldots, a_{n-1}\right) B=\left(A_{1,0}, \ldots, A_{d, t_{d}-1}, D_{1,0}, \ldots\right. \\
& \left.D_{d+d^{\prime}, t_{d+d^{\prime}}-1}, D_{1,0}^{(q)}, \ldots, D_{d+d^{\prime}, t_{d+d^{\prime}}-1}^{(q)}\right) \tag{39}
\end{align*}
$$

Now we shall construct the matrix B. Let

$$
\begin{align*}
B= & \left(B_{1}(\delta), \ldots, B_{d}(\delta), B_{1}(\sigma), \ldots, B_{d+d^{\prime}}(\sigma), B_{1}\left(\sigma^{q}\right), \ldots,\right. \tag{40}\\
& \left.B_{d+d^{\prime}}\left(\sigma^{q}\right)\right),
\end{align*}
$$

where $B_{i}(\delta)$ are $n \times s_{i} t_{i}$ matrices over $\mathbb{F}_{q^{2}}, 1 \leq i \leq d$, and $B_{i}(\sigma)$, $B_{i}\left(\sigma^{q}\right)$ are $n \times g_{i} t_{i}$ matrices over $\mathbb{F}_{q^{2}}, 1 \leq i \leq d+d^{\prime}$.
(a) For each i with $1 \leq i \leq d$, by (33) we have

$$
\begin{equation*}
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) B_{i}(\delta)=\left(A_{i, 0}, A_{i, 1}, \ldots, A_{i, t_{i}-1}\right), \tag{41}
\end{equation*}
$$

where $A_{i, 0}, A_{i, 1}, \ldots, A_{i, t_{i}-1} \in \mathbb{F}_{q}^{s_{i}}$. Let $B_{i}(\delta)=\left(B_{i}^{(1)}(\delta)\right.$, $\ldots, B_{i}^{\left(t_{i}\right)}(\delta)$) be a $n \times s_{i} t_{i}$ matrix, and each $B_{i}^{(v)}(\delta), 1 \leq v \leq t_{i}$ be a $n \times s_{i}$ matrix as shown in Theorem 4.
(b) For each i with $1 \leq i \leq d+d^{\prime}$, by (35) we have that $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) B_{i}(\sigma)=\left(D_{i, 0}, D_{i, 1}, \ldots, D_{i, t_{i}-1}\right)$, where $D_{i, 0}, D_{i, 1}, \ldots, D_{i, t_{i}-1} \in \mathbb{F}_{q}^{g_{i}}$. Let $B_{i}(\sigma)=\left(B_{i}^{(1)}(\sigma), \ldots, B_{i}^{\left(t_{i}\right)}(\sigma)\right)$ be a $n \times g_{i} t_{i}$ matrix and each $B_{i}^{(v)}(\sigma), 1 \leq v \leq t_{i}$, a $n \times g_{i}$ matrix:
(c) For each i with $1 \leq i \leq d+d^{\prime}$, by (37) we have that
$D_{i, 1}^{(q)}, \ldots, D_{i, t_{i}-1}^{(q)} \in \mathbb{F}_{q}^{g_{i}}$. Let $B_{i}\left(\sigma^{q}\right)=\left(B_{i}^{(1)}\left(\sigma^{q}\right), \ldots, B_{i}^{\left(t_{i}\right)}\left(\sigma^{q}\right)\right)$ be $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) B_{i}\left(\sigma^{q}\right)=\left(D_{i, 0}^{(q)}, D_{i, 1}^{(q)}, \ldots, D_{i, t_{i}-1}^{(q)}\right)$, where $D_{i, 0}^{(q)}$,

$$
B_{i}^{(v)}\left(\sigma^{q}\right)=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \tag{43}\\
0 & 0 & \cdots & 0 \\
\left(\sigma^{q u_{i 1}}\right)^{0} & \left(\sigma^{q u_{i 2}}\right)^{0} & \cdots & \left(\sigma^{q u_{i_{i}}}\right)^{0} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 \\
\left(\sigma^{q u_{i 1}}\right)^{1} & \left(\sigma^{q u_{i 2}}\right)^{1} & \cdots & \left(\sigma^{q u_{i_{i}}}\right)^{1} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 \\
\left(\sigma^{q u_{i 1}}\right)^{n / t_{i}-1} & \left(\sigma^{q u_{i 2}}\right)^{n / t_{i}-1} & \cdots & \left(\sigma^{q u_{i_{i}}}\right)^{n / t_{i}-1} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots
\end{array}\right) \quad\binom{n}{t_{i}} \quad 1 \leq v \leq t_{i} .
$$

Similarly to proving Theorem 4, we obtain that

$$
B^{-1}=\frac{1}{n}\left(\begin{array}{c}
t_{1}\left(B_{1}\left(\delta^{-1}\right)\right)^{T} \tag{44}\\
\vdots \\
t_{d}\left(B_{d}\left(\delta^{-1}\right)\right)^{T} \\
t_{1}\left(B_{1}\left(\sigma^{-1}\right)\right)^{T} \\
\vdots \\
t_{d+d^{\prime}}\left(B_{d+d^{\prime}}\left(\sigma^{-1}\right)\right)^{T} \\
t_{1}\left(B_{1}\left(\sigma^{-q}\right)\right)^{T} \\
\vdots \\
t_{d+d^{\prime}}\left(B_{d+d^{\prime}}\left(\sigma^{-q}\right)\right)^{T}
\end{array}\right)
$$

where

$$
\left(B_{i}^{(v)}\left(\sigma^{-1}\right)\right)^{T}=\left(\begin{array}{cccccccccccc}
\ldots & 0 & \left(\sigma^{-u_{i 1}}\right)^{0} & 0 & \cdots & 0 & \left(\sigma^{-u_{i 1}}\right)^{1} & 0 & \cdots & \left(\sigma^{-u_{i 1}}\right)^{n / t_{i}-1} & 0 & \cdots \\
\cdots & 0 & \left(\sigma^{-u_{i 2}}\right)^{0} & 0 & \cdots & 0 & \left(\sigma^{-u_{i 2}}\right)^{1} & 0 & \cdots & \left(\sigma^{-u_{i 2}}\right)^{n / t_{i}-1} & 0 & \cdots \tag{v}\\
& \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \\
\cdots & 0 & \left(\sigma^{-u_{i s_{i}}}\right)^{0} & 0 & \cdots & 0 & \left(\sigma^{-u_{i i_{i}}}\right)^{1} & 0 & \cdots & \left(\sigma^{-u_{i s_{i}}}\right)^{n / t_{i}-1} & 0 & \cdots
\end{array}\right) ;
$$

$$
\left(B_{i}{ }^{(v)}\left(\sigma^{-q}\right)\right)^{T}=\left(\begin{array}{cccccccccccc}
\\
\cdots & 0 & \left(\sigma^{-q u_{i 1}}\right)^{0} & 0 & \cdots & 0 & \left(\sigma^{-q u_{i 1}}\right)^{1} & 0 & \cdots & \left(\sigma^{-q u_{i 1}}\right)^{n / t_{i}-1} & 0 & \cdots \\
\cdots & 0 & \left(\sigma^{-q u_{i 2}}\right)^{0} & 0 & \cdots & 0 & \left(\sigma^{-q u_{i 2}}\right)^{1} & 0 & \cdots & \left(\sigma^{-q u_{i 2}}\right)^{n / t_{i}-1} & 0 & \cdots \\
& \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \\
\cdots & 0 & \left(\sigma^{-q u_{i s_{i}}}\right)^{0} & 0 & \cdots & 0 & \left(\sigma^{-q u_{i i_{i}}}\right)^{1} & 0 & \cdots & \left(\sigma^{-q u_{i s_{i}}}\right)^{n / t_{i}-1} & 0 & \cdots
\end{array}\right) .
$$

In the following, we give all primitive idempotents in $\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$.
(1) For fixed i and j with $1 \leq i \leq d$ and $1 \leq j \leq s_{i}, \delta^{w_{i j}} \in$ \mathbb{F}_{q}. Hence the primitive idempotents in $\mathbb{F}_{q^{2}}[x] /\left\langle x^{t_{i}}-\delta^{w_{i j}}\right\rangle$ are the same as $\mathbb{F}_{q}[x] /\left\langle x^{t_{i}}-\delta^{w_{i j}}\right\rangle$. We have the result.
(a) for each i with $1 \leq i \leq d,\left(B_{i}\left(\delta^{-1}\right)\right)^{T}=\left(\begin{array}{c}\left(B_{i}^{(1)}\left(\delta^{-1}\right)\right)^{T} \\ \vdots \\ \left(B_{i}^{\left(t_{i}\right)}\left(\delta^{-1}\right)\right)^{T}\end{array}\right)$, and for each v with $1 \leq v \leq t_{i},\left(B_{i}^{(v)}\left(\delta^{-1}\right)\right)^{T}$ is a $s_{i} \times n$ matrix as shown in Theorem 4.
(b) for each i with $1 \leq i \leq d+d^{\prime},\left(B_{i}\left(\sigma^{-1}\right)\right)^{T}=$ $\left(\begin{array}{c}\left(B_{i}^{(1)}\left(\sigma^{-1}\right)\right)^{T} \\ \vdots \\ \left(B_{i}^{\left(t_{i}\right)}\left(\sigma^{-1}\right)\right)^{T}\end{array}\right)$, and for each v with $1 \leq v \leq t_{i},\left(B_{i}^{(v)}\left(\sigma^{-1}\right)\right)^{T}$ is a $g_{i} \times n$ matrix:
(c) for each i with $1 \leq i \leq d+d^{\prime},\left(B_{i}\left(\sigma^{-q}\right)\right)^{T}=$ $\left(\begin{array}{c}\left(B_{i}^{(1)}\left(\sigma^{-q}\right)\right)^{T} \\ \vdots \\ \left(B_{i}^{\left(t_{i}\right)}\left(\sigma^{-q}\right)\right)^{T}\end{array}\right)$, and for each v with $1 \leq v \leq t_{i},\left(B_{i}^{(v)}\left(\sigma^{-q}\right)\right)^{T}$ is a $g_{i} \times n$ matrix:
$d^{\prime},\left(B_{i}\left(\sigma^{-q}\right)\right)^{T}=$
$t_{i},\left(B_{i}^{(v)}\left(\sigma^{-q}\right)\right)^{T}$ is
(2) For fixed i and j with $1 \leq i \leq d+d^{\prime}$ and $1 \leq j \leq g_{i}$, the polynomial $x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\sigma^{q u_{i j}}\right) x^{t_{i}}+\sigma^{(q+1) u_{i j}}$ is irreducible over \mathbb{F}_{q}. In fact, the primitive idempotents in $\mathbb{F}_{q^{2}}[x] /\left\langle x^{2 t_{i}}-\right.$ $\left.\left(\sigma^{u_{i j}}+\sigma^{q u_{i j}}\right) x^{t_{i}}+\sigma^{(q+1) u_{i j}}\right\rangle$ are the same as $\mathbb{F}_{q}[x] /\left\langle x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\right.\right.$ $\left.\left.\sigma^{q u_{i j}}\right) x^{t_{i}}+\sigma^{(q+1) u_{i j}}\right\rangle$.

Note that there are $\mathbb{F}_{q^{2}}$-algebra isomorphisms:

$$
\begin{gather*}
\tau_{i}: \frac{\mathbb{F}_{q^{2}}[x]}{\left\langle x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\sigma^{q u_{i j}}\right) x^{t_{i}}+\sigma^{(q+1) u_{i j}}\right\rangle} \longrightarrow \\
\frac{\mathbb{F}_{q^{2}}[x]}{\left\langle x^{t_{i}}-\sigma^{u_{i j}}\right\rangle} \times \frac{\mathbb{F}_{q^{2}}[x]}{\left\langle x^{t_{i}}-\sigma^{\left.q u_{i j}\right\rangle}\right.}, \tag{47}\\
c(x)=\sum_{k=0}^{2 t_{i}-1} a_{k} x^{k}=y+z x^{t_{i}} \longmapsto(y, z) N=\left(y^{\prime}, z^{\prime}\right),
\end{gather*}
$$

where $y=\sum_{k=0}^{t_{i}-1} a_{i} x^{i}, z=\sum_{k=0}^{t_{i}-1} a_{t_{i}+k} x^{k} \in \mathbb{F}_{q^{2}}[x]$, and N is a 2×2 matrix over $\mathbb{F}_{q^{2}}$:

$$
N=\left(\begin{array}{cc}
1 & 1 \tag{48}\\
\sigma^{u_{i j}} & \sigma^{q u_{i j}}
\end{array}\right)
$$

Note that the identity of $\mathbb{F}_{q^{2}}[x] /\left\langle x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\sigma^{q u_{i j}}\right) x^{t_{i}}+\sigma^{(q+1) u_{i j}}\right\rangle$ is equal to the identity of $\mathbb{F}_{q}[x] /\left\langle x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\sigma^{q u_{i j}}\right) x^{t_{i}}+\right.$ $\left.\sigma^{(q+1) u_{i j}}\right\rangle$. Now, take $c(x)=1$, then

$$
\begin{equation*}
\tau_{i}(c(x))=\tau_{i}(1)=(1,0) N=(1,1) . \tag{49}
\end{equation*}
$$

Let $\eta_{i j}(x)=\sum_{k=0}^{n-1} a_{k} x^{k}$ be a primitive idempotent in R corresponding to the irreducible polynomials $x^{2 t_{i}}-\left(\sigma^{u_{i j}}+\right.$ $\left.\sigma^{q u_{i j}}\right) x^{t_{i}}+\sigma^{(q+1) u_{i j}}$. By (31)

$$
\begin{align*}
\chi & \left(\eta_{i j}(x)\right)=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) B=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) \\
= & \left(A_{1,0}, \ldots, A_{d, t_{d}-1}, D_{1,0}, \ldots, D_{d+d^{\prime}, t_{d+d^{\prime}}-1}, D_{1,0}^{(q)}, \ldots\right. \\
& \left.D_{d+d^{\prime}, t_{d+d^{\prime}}-1}^{(q)}\right) \tag{50}\\
= & \left(0, \ldots, 0, D_{i, 0}, 0, \ldots, 0, D_{i, 0}^{(q)}, 0, \ldots, 0\right)
\end{align*}
$$

where $D_{i, 0}=\left(0, \ldots, 0,{ }_{1}^{j}, 0, \ldots, 0\right), D_{i, 0}^{(q)}=\left(0, \ldots, 0,{ }_{1}^{j}\right.$ $, 0, \ldots, 0)$. Hence

$$
\begin{align*}
& \left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) B^{-1} \\
& \quad=\frac{t_{i}}{n}\left(\operatorname{Tr}\left(\left(\sigma^{-u_{i j}}\right)^{0}\right), 0, \ldots, 0, \operatorname{Tr}\left(\left(\sigma^{-u_{i j}}\right)^{1}\right), 0, \ldots, 0,\right. \tag{51}\\
& \left.\quad \operatorname{Tr}\left(\left(\sigma^{-u_{i j}}\right)^{n / t_{i}-1}\right), 0, \ldots, 0\right)
\end{align*}
$$

Hence we complete the proof.

4. Concluding Remarks

In this paper, suppose that $\operatorname{rad}(n) \mid(q-1)$, we use matrix method to give all primitive idempotents in the ring $\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$. Suppose that the order of $q \operatorname{modulo} \operatorname{rad}(n)$ is w, where w is a positive integer. We can also obtain all primitive idempotents of irreducible cyclic codes by the similar method in Theorems 4 and 6. Hence, all primitive idempotents of simple root irreducible cyclic codes can be presented by the method in Theorems 4 and 6.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The paper is supported by National Natural Science Foundation of China (nos. 61772015, 11601475, and 11661014), the Guangxi Science Research and Technology Development Project (1599005-2-13), and Foundation of Science and Technology on Information Assurance Laboratory (no. KJ-17010).

References

[1] S. K. Arora and M. Pruthi, "Minimal cyclic codes of length $2 p^{n}$," Finite Fields and Their Applications, vol. 5, no. 2, pp. 177-187, 1999.
[2] M. Pruthi and S. K. Arora, "Minimal codes of prime-power length," Finite Fields and Their Applications, vol. 3, no. 2, pp. 99113, 1997.
[3] M. Pruthi, "Cyclic codes of length 2^{m} ", The Proceedings of the Indian Academy of Sciences - Mathematical Sciences, vol. 111, no. 4, pp. 371-379, 2001.
[4] A. Sharma, G. K. Bakshi, V. C. Dumir, and M. Raka, "Irreducible cyclic codes of length 2^{n}," Ars Combinatoria, vol. 86, pp. 133-146, 2008.
[5] G. K. Bakshi and M. Raka, "Minimal cyclic codes of length $p^{n} q$," Finite Fields and Their Applications, vol. 9, no. 4, pp. 432-448, 2003.
[6] R. Singh and M. Pruthi, "Primitive idempotents of irreducible quadratic residue cyclic codes of length pnqm," International Journal of Algebra, vol. 5, no. 5-8, pp. 285-294, 2011.
[7] B. Chen, H. Liu, and G. Zhang, "Some minimal cyclic codes over finite fields," Discrete Mathematics, vol. 331, pp. 142-150, 2014.
[8] B. Chen, H. Liu, and G. Zhang, "A class of minimal cyclic codes over finite fields," Designs, Codes and Cryptography. An International Journal, vol. 74, no. 2, pp. 285-300, 2015.
[9] F. Li, Q. Yue, and C. Li, "The minimum Hamming distances of irreducible cyclic codes," Finite Fields and Their Applications, vol. 29, pp. 225-242, 2014.
[10] F. Li, Q. Yue, and C. Li, "Irreducible cyclic codes of length $4 p^{n}$ and $8 p^{n}$," Finite Fields and Their Applications, vol. 34, pp. 208234, 2015.
[11] F. Li and X. Cao, "A class of minimal cyclic codes over finite fields," Discrete Mathematics, vol. 340, no. 1, pp. 3197-3206, 2017.
[12] M. Pruthi, "The minimum Hamming distances of the irreducible cyclic codes of length $l_{1}^{m_{1}}, l_{2}^{m_{2}} \ldots l_{r}^{m_{r}}$," Journal of Discrete Mathematical Sciences and Cryptography, pp. 965-995, 2016.
[13] B. Chen, L. Li, and R. Tuerhong, "Explicit factorization of $x^{2 m p n}-1$ over a finite field," Finite Fields and Their Applications, vol. 24, pp. 95-104, 2013.
[14] F. Martnez, C. Vergara, and L. Oliveira, "Explicit factorization of $x^{n}-1 \in \mathbb{F}_{q}[x]$," Designs, Codes and Cryptography. An International Journal, vol. 77, no. 1, pp. 277-286, 2015.
[15] S. Yang and Z.-A. Yao, "Complete weight enumerators of a class of linear codes," Discrete Mathematics, vol. 340, no. 4, pp. 729739, 2017.
[16] S. Yang, X. Kong, and C. Tang, "A construction of linear codes and their complete weight enumerators," Finite Fields and Their Applications, vol. 48, pp. 196-226, 2017.
[17] C. Ding, D. Pei, and A. Salomaa, Chinses Remainder Theorem: Applications in Computing, Coding, Cryptography, Section 2.4, World Scientific Publishing Co., Inc., Singapore, 1996.

Advances in
Operations Research
$=$

Decision Sciences
Journal of
Applied Mathematics
$=$

The Scientific World Journal

Journal of
Probability and Statistics

