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Let F𝑞 be a finite field with 𝑞 elements and 𝑛 a positive integer. In this paper, we use matrix method to give all primitive idempotents
of irreducible cyclic codes of length 𝑛, whose prime divisors divide 𝑞 − 1.

1. Introduction

Let F𝑞 be a finite field with 𝑞 elements, where 𝑞 = 𝑝𝑠
and 𝑝 is a prime. Let C be a [𝑛, 𝑘, 𝑑] linear code over F𝑞,
i.e., it is a 𝑘-dimensional subspace of F𝑛𝑞 with minimum
Hamming distance 𝑑. If for each codeword (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) ∈
C, (𝑐𝑛−1, 𝑐0, . . . , 𝑐𝑛−2) is also inC, then we callC a cyclic code.
In fact, each cyclic code of length 𝑛 over F𝑞 can be viewed as
an ideal in the ring 𝑅 = F𝑞[𝑥]/⟨𝑥𝑛 − 1⟩ and each irreducible
cyclic code of length 𝑛 over F𝑞 is an ideal of 𝑅 generated by a
primitive idempotent.

A lot of papers investigate primitive idempotents of𝑅.We
list some results about the length 𝑛.

(1) In [1, 2], 𝑛 = 2, 4, 𝑙𝑚, and 2𝑙𝑚, where 𝑙 is an odd prime
and 𝑝 is a primitive root modulo 𝑛.

(2) In [3, 4], 𝑛 = 2𝑚, 𝑚 ≥ 3.
(3) In [5], 𝑛 = 𝑙𝑚1 𝑙2, where 𝑙1, 𝑙2, 𝑝 are distinct odd primes

with gcd(𝜑(𝑙𝑚1 )/2, 𝜑(𝑙2)/2) = 1 and 𝑝 is a common
primitive root modulo 𝑙𝑚1 and 𝑙2.

(4) In [6], 𝑛 = 𝑙𝑚11 𝑙𝑚22 , where 𝑙1, 𝑙2, and 𝑝 are three
distinct odd primes, ord𝑙𝑚11 (𝑝) = 𝜑(𝑙𝑚11 )/2, ord𝑙𝑚22 (𝑝) =𝜑(𝑙𝑚22 )/2, and gcd(𝜑(𝑙𝑚11 ), 𝜑(𝑙𝑚22 )) = 2.

(5) In [7, 8], 𝑛 = 𝑡𝑙𝑚, 𝑡, 𝑚 ≥ 1, where 𝑙 is an odd
prime different from the characteristic of F𝑞, 𝑡 | (𝑞 −1), gcd(𝑡, 𝑙) = 1 and ord𝑡𝑙𝑚(𝑞) = 𝜑(𝑙𝑚); 𝑛 = 𝑙𝑚, 𝑚 ≥ 1,
where 𝑙 is an odd prime and 𝑙 | (𝑞 − 1).

(6) In [9, 10], 𝑛 = 𝑙𝑚11 𝑙𝑚22 , where 𝑙1, 𝑙2 are two distinct
primes with 𝑙1𝑙2 | (𝑞 − 1); 𝑛 = 4𝑙𝑚 and 8𝑙𝑚, where 𝑙
is an odd prime with 𝑙 | (𝑞 − 1).

(7) In [11], 𝑛 = 2𝑚𝑙𝑚11 𝑙𝑚22 , where 𝑙1, 𝑙2 are two distinct
primes with 4𝑙1𝑙2 | (𝑞 − 1).

(8) In [12], 𝑛 = 𝑙𝑚11 ⋅ ⋅ ⋅ 𝑙𝑚𝑟𝑟 , where 𝑙1, . . . , 𝑙𝑟 are distinct odd
primes with 𝑙1 ⋅ ⋅ ⋅ 𝑙𝑟 | (𝑞 − 1).

In this paper, suppose that rad(𝑛) | (𝑞 − 1). We shall use
matrix method to give all primitive idempotents of the ring𝑅. The rest of paper is organized as follows: in Section 2, we
give some basic results, in Section 3, we obtain all primitive
idempotents in F𝑞[𝑥]/⟨𝑥𝑛 − 1⟩ under the condition: rad(𝑛) |(𝑞 − 1), and in Section 4, we conclude this paper.

2. Preliminaries

If a positive integer 𝑛 has a prime factorization, 𝑛 =𝑝𝛼11 𝑝𝛼22 ⋅ ⋅ ⋅ 𝑝𝛼𝑙𝑙 , where 𝑝1, 𝑝2, . . . , 𝑝𝑙 are distinct primes and
positive integers 𝛼𝑖 ≥ 1 for 1 ≤ 𝑖 ≤ 𝑙, we denote rad(𝑛) =𝑝1𝑝2 ⋅ ⋅ ⋅ 𝑝𝑙 and V𝑝𝑖(𝑛) = 𝛼𝑖, 1 ≤ 𝑖 ≤ 𝑙, and ord(𝛼) is the
order of 𝛼 ∈ F∗𝑞 . Through this paper, we always assume that
gcd(𝑛, 𝑞) = 1.

Every cyclic code of length 𝑛 over a finite field F𝑞 is
identified with exactly one ideal of the quotient algebra
F𝑞[𝑥]/⟨𝑥𝑛 − 1⟩. Some explicit factorizations of 𝑥𝑛 − 1 can be
found in [7–11, 13–16]. We need the following results about
the irreducible factorization of 𝑥𝑛 − 1 over F𝑞.
Lemma 1 ([14, Corollary 1]). Let F𝑞 be a finite field and 𝑛 a
positive integer such that both rad(𝑛) | (𝑞 − 1) and either𝑞 ̸≡ 3 (mod 4) or 8 ∤ 𝑛. Let 𝑚1 = 𝑛/ gcd(𝑛, 𝑞 − 1), 𝑙1 =(𝑞− 1)/ gcd(𝑛, 𝑞 − 1), and 𝜃 be a generator of F∗𝑞 . Then one has
the following:
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(1) The factorization of 𝑥𝑛 − 1 into irreducible factors in
F𝑞[𝑥] is ∏

𝑡|𝑚1

∏
1≤𝑢≤gcd(𝑛,𝑞−1)

gcd(𝑢,𝑡)=1

(𝑥𝑡 − 𝜃𝑢𝑙1) .
(1)

(2) For each 𝑡|𝑚1, the number of irreducible factors of
degree 𝑡 is𝜑(𝑡)/𝑡⋅gcd(𝑛, 𝑞−1), where𝜑 denotes the Euler Totient
function, and the number of irreducible factors is𝑁1 = gcd (𝑛, 𝑞 − 1) ⋅ ∏

𝑝|𝑚1
𝑝 𝑝𝑟𝑖𝑚𝑒

(1 + V𝑝 (𝑚1) ⋅ 𝑝 − 1𝑝 ) . (2)

Lemma 2 ([14, Corollary 2]). Let F𝑞 be a finite field and 𝑛 a
positive integer such that rad(𝑛) | (𝑞 − 1), 𝑞 ≡ 3 (mod 4), and8 | 𝑛. Let 𝑚2 = 𝑛/ gcd(𝑛, 𝑞2 − 1), 𝑙1 = (𝑞 − 1)/ gcd(𝑛, 𝑞 − 1),𝑙2 = (𝑞2 − 1)/ gcd(𝑛, 𝑞2 − 1), 𝑟 = min{V2(𝑛/2), V2(𝑞 + 1)}, and𝛼 be a generator of F∗𝑞2 satisfying 𝜃 = 𝛼𝑞+1. Then one has the
following:

(1) The factorization of 𝑥𝑛 − 1 into irreducible factors in
F𝑞[𝑥] is ∏

𝑡|𝑚2
𝑡 𝑜𝑑𝑑

∏
1≤𝑤≤gcd(𝑛,𝑞−1)

gcd(𝑤,𝑡)=1

(𝑥𝑡 − 𝜃𝑤𝑙1)
⋅ ∏
𝑡|𝑚2

∏
𝑢∈R𝑡

(𝑥2𝑡 − (𝛼𝑢𝑙2 + 𝛼𝑞𝑢𝑙2) 𝑥𝑡 + 𝜃𝑢𝑙2) , (3)

whereR𝑡 is the set{𝑢 ∈ N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1 ≤ 𝑢 ≤ gcd (𝑛, 𝑞2 − 1) , 2𝑟 ∤ 𝑢,
gcd (𝑢, 𝑡) = 1, 𝑢 < {𝑞𝑢}gcd(𝑛,𝑞2−1) } (4)

and {𝑎}𝑏 denotes the remainder of the division of 𝑎 by 𝑏.
(2) For each 𝑡 odd with 𝑡 | 𝑚2, the number of irreducible

polynomials of degree 𝑡 is 𝜑(𝑡)/𝑡 ⋅gcd(𝑛, 𝑞−1), and the number
irreducible polynomials of degree 2𝑡 is𝜑 (𝑡)𝑡 ⋅ 2𝑟−1 ⋅ gcd (𝑛, 𝑞 − 1) if 𝑡 is even,𝜑 (𝑡)2𝑡 ⋅ (2𝑟 − 1) ⋅ gcd (𝑛, 𝑞 − 1) if 𝑡 is odd. (5)

The total number of irreducible factors is𝑁2 = gcd (𝑛, 𝑞 − 1) ⋅ (12 + 2𝑟−2 (2 + V2 (𝑚)))⋅ ∏
𝑝|𝑚2
𝑝 odd prime

(1 + V𝑝 (𝑚2) ⋅ 𝑝 − 1𝑝 ) . (6)

Lemma 3 (see [17]). Let 𝑚1, . . . , 𝑚𝑡 be positive integers. For
a set of integers 𝑎1, . . . , 𝑎𝑡, the system of congruences 𝑦 ≡𝑎𝑖 (mod𝑚𝑖), 𝑖 = 1, . . . , 𝑡, has solutions if and only if𝑎𝑖 ≡ 𝑎𝑗 (modgcd (𝑚𝑖, 𝑚𝑗)) , 𝑖 ̸= 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑡. (7)

If (7) is satisfied, the solution is unique modulo 𝑙𝑐𝑚(𝑚1, . . . ,𝑚𝑡).

3. Primitive Idempotents in 𝑅
In this section, we shall give all primitive idempotents in 𝑅 if
rad(𝑛) | (𝑞 − 1).
First, we consider the case 𝑞 ̸≡ 3 (mod 4) or 8 ∤ 𝑛.

In Lemma 1, let 𝑡1, . . . , 𝑡𝑑 be all positive factors of 𝑚1 =𝑛/ gcd(𝑛, 𝑞 − 1). For each 𝑡𝑖 with 1 ≤ 𝑖 ≤ 𝑑, there are𝑠𝑖 = 𝜑(𝑡𝑖)/𝑡𝑖 ⋅ gcd(𝑛, 𝑞 − 1) positive integers 𝑢𝑖1, 𝑢𝑖2, . . . , 𝑢𝑖𝑠𝑖
satisfying 1 ≤ 𝑢𝑖𝑗 ≤ gcd(𝑛, 𝑞 − 1) and gcd(𝑢𝑖𝑗, 𝑡𝑖) = 1, 𝑗 =1, . . . , 𝑠𝑖. Since 𝑙1 = (𝑞−1)/ gcd(𝑛, 𝑞 − 1) and ⟨𝜃⟩ = F∗𝑞 , 𝛿 = 𝜃𝑙1
is of order gcd(𝑛, 𝑞 − 1). Then the irreducible factorization of𝑥𝑛 − 1 over F𝑞 can be rewritten as𝑥𝑛 − 1 = ∏

1≤𝑖≤𝑑
1≤𝑗≤𝑠𝑖

(𝑥𝑡𝑖 − 𝛿𝑢𝑖𝑗)
= ∏
1≤𝑗≤𝑠1

(𝑥𝑡1 − 𝛿𝑢1𝑗) ⋅ ⋅ ⋅ ∏
1≤𝑗≤𝑠𝑑

(𝑥𝑡𝑑 − 𝛿𝑢𝑑𝑗) . (8)

Note that the number of primitive idempotents in 𝑅
coincides with the number of irreducible factors of 𝑥𝑛−1 over
F𝑞.

Theorem 4. Let rad(𝑛) | (𝑞 − 1) and either 𝑞 ̸≡ 3 (mod 4) or8 ∤ 𝑛. Then there are𝑁1 primitive idempotents in 𝑅 as follows:𝜃𝑖𝑗 (𝑥) = 𝑡𝑖𝑛 𝑛/𝑡𝑖−1∑
𝑘=0

(𝛿−𝑢𝑖𝑗)𝑘 𝑥𝑘𝑡𝑖 , (9)

corresponding to the irreducible polynomials 𝑥𝑡𝑖 − 𝛿𝑢𝑖𝑗 over F𝑞,𝑖 = 1, . . . , 𝑑, 𝑗 = 1, . . . , 𝑠𝑖.
Proof. For each 𝑖, 1 ≤ 𝑖 ≤ 𝑑, let 𝑅𝑖 = ∏1≤𝑗≤𝑠𝑖F𝑞[𝑥]/⟨𝑥𝑡𝑖 − 𝛿𝑢𝑖𝑗⟩
be a ringwith 𝑠𝑖 direct summands; for 0 ≤ 𝑘 ≤ 𝑛−1, 𝑘 = 𝑡𝑖𝑢+V,0 ≤ 𝑢 ≤ 𝑛/𝑡𝑖 − 1, and 0 ≤ V ≤ 𝑡𝑖 − 1. By (8) and Chinese
Remainder Theorem, there is an F𝑞-algebra isomorphism:𝜓 = (𝜓1, 𝜓2, . . . , 𝜓𝑑) : 𝑅 󳨀→ 𝑅1 × 𝑅2 × ⋅ ⋅ ⋅ × 𝑅𝑑, (10)

where each 𝜓𝑖 : 𝑅 → 𝑅𝑖, ∑𝑛−1𝑘=0 𝑎𝑘𝑥𝑘 󳨃→ 𝐴 𝑖,0 + 𝐴 𝑖,1𝑥 + ⋅ ⋅ ⋅ +𝐴 𝑖,𝑡𝑖−1𝑥𝑡𝑖−1 is an F𝑞-algebraic epimorphism and each𝐴 𝑖,V = (𝑛/𝑡𝑖−1∑
𝑢=0

𝑎𝑡𝑖𝑢+V𝛿𝑢𝑢𝑖1 , 𝑛/𝑡𝑖−1∑
𝑢=0

𝑎𝑡𝑖𝑢+V𝛿𝑢𝑢𝑖2 , . . . ,
𝑛/𝑡𝑖−1∑
𝑢=0

𝑎𝑡𝑖𝑢+V𝛿𝑢𝑢𝑖𝑠𝑖) ∈ F
𝑠𝑖
𝑞 , 0 ≤ V ≤ 𝑡𝑖 − 1. (11)

Note that ∑𝑑𝑖=1 𝑠𝑖𝑡𝑖 = 𝑛. Hence there is a F𝑞-linear space
isomorphism:𝜙 = (𝜙1, 𝜙2, . . . , 𝜙𝑑) : 𝑅1 × 𝑅2 × ⋅ ⋅ ⋅ × 𝑅𝑑 󳨀→ 𝑑∏

𝑖=1

F
𝑠𝑖𝑡𝑖
𝑞= F

𝑛
𝑞 , (12)

where each 𝜙𝑖 : 𝑅𝑖 → F 𝑠𝑖𝑡𝑖𝑞 , 𝐴 𝑖,0 + 𝐴 𝑖,1𝑥 + ⋅ ⋅ ⋅ +𝐴 𝑖,𝑡𝑖−1𝑥𝑡𝑖−1 󳨃→ (𝐴 𝑖,0, 𝐴 𝑖,1, . . . , 𝐴 𝑖,𝑡𝑖−1) is a F𝑞-linear space
epimorphism. Hence there is a F𝑞-linear space isomorphism:
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𝑛
𝑞 ,

𝑛−1∑
𝑘=0

𝑎𝑘𝑥𝑘 󳨃󳨀→ (𝐴1,0, . . . , 𝐴1,𝑡1−1, . . . , 𝐴𝑑,0, . . . , 𝐴𝑑,𝑡𝑑−1) , (13)

(𝐴1,0, . . . , 𝐴1,𝑡1−1, . . . , 𝐴𝑑,0, . . . , 𝐴𝑑,𝑡𝑑−1)= (𝑎0, 𝑎1, . . . 𝑎𝑛−1) 𝐵, (14)

where 𝐵 is a 𝑛 × 𝑛 invertible matrix over F𝑞. Now we shall
determine 𝐵 and 𝐵−1.

In (14), let 𝐵 := (𝐵1(𝛿), . . . , 𝐵𝑑(𝛿)) be a 𝑛×𝑛matrix, where
each 𝐵𝑖(𝛿) = (𝐵(1)𝑖 (𝛿), . . ., 𝐵(𝑡𝑖)𝑖 (𝛿)) is a 𝑛× 𝑠𝑖𝑡𝑖 matrix and each𝐵(V)𝑖 (𝛿), 1 ≤ V ≤ 𝑡𝑖, is a 𝑛 × 𝑠𝑖 matrix:

𝐵𝑖(V) (𝛿) =

(((((((((((((((((((((((((((((((
(

...0(𝛿𝑢𝑖1)00...0(𝛿𝑢𝑖1)10...0(𝛿𝑢𝑖1)𝑛/𝑡𝑖−10...

...0(𝛿𝑢𝑖2)00...0(𝛿𝑢𝑖2)10...0(𝛿𝑢𝑖2)𝑛/𝑡𝑖−10...

⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅

...0(𝛿𝑢𝑖𝑠𝑖 )00...0(𝛿𝑢𝑖𝑠𝑖 )10...0(𝛿𝑢𝑖𝑠𝑖 )𝑛/𝑡𝑖−10...

)))))))))))))))))))))))))))))))
)

(V)
(𝑡𝑖 + V)

(( 𝑛𝑡𝑖 − 1) 𝑡𝑖 + V)
1 ≤ V ≤ 𝑡𝑖. (15)

In fact, each 𝐵(V)(𝛿) is determined by these 𝑘 rows, where 𝑘 =𝑡𝑖𝑢 + V, 0 ≤ 𝑢 ≤ 𝑛/𝑡𝑖 − 1.
We know that ord(𝛿) = gcd(𝑛, 𝑞 − 1), 𝑥𝑡𝑖 − 𝛿𝑢𝑖𝑗 , 1 ≤ 𝑢𝑖𝑗 ≤

gcd(𝑛, 𝑞−1), and gcd(𝑡𝑖, 𝑢𝑖𝑗) = 1 are an irreducible polynomial

of 𝑥𝑛 − 1, so (𝛿𝑢𝑖𝑗)𝑛/𝑡𝑖 = 1. Fix 𝑖 and 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑑. If 1 ≤ 𝑢𝑖𝑗 ̸=𝑢𝑖𝑗󸀠 ≤ gcd(𝑛, 𝑞 − 1), gcd(𝑢𝑖𝑗, 𝑡𝑖) = 1, gcd(𝑢𝑖𝑗󸀠 , 𝑡𝑖) = 1. Then𝛿𝑢𝑖𝑗−𝑢𝑖𝑗󸀠 ̸= 1 and (𝛿𝑢𝑖𝑗−𝑢𝑖𝑗󸀠 )𝑛/𝑡𝑖 = 1. Let

(𝐵𝑖(V) (𝛿−1))𝑇 = ( ⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

00...0
(𝛿−𝑢𝑖1)0(𝛿−𝑢𝑖2)0...(𝛿−𝑢𝑖𝑠𝑖 )0

00...0
⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

(𝛿−𝑢𝑖1)1(𝛿−𝑢𝑖2)1...(𝛿−𝑢𝑖𝑠𝑖 )1
00...0

⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

(𝛿−𝑢𝑖1)𝑛/𝑡𝑖−1(𝛿−𝑢𝑖2)𝑛/𝑡𝑖−1...(𝛿−𝑢𝑖𝑠𝑖 )𝑛/𝑡𝑖−1
00...0

⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅ )(V) (𝑡𝑖 + V) (( 𝑛𝑡𝑖 − 1) 𝑡𝑖 + V)

(16)

be a 𝑠𝑖 × 𝑛matrix over F𝑞. Then,(𝐵𝑖(V) (𝛿−1))𝑇 𝐵𝑖(V) (𝛿) = 𝑛𝑡𝑖𝐸𝑠𝑖 ,(𝐵𝑖(V) (𝛿−1))𝑇 𝐵𝑖(V󸀠) (𝛿) = 0 if 1 ≤ V ̸= V󸀠 ≤ 𝑡𝑖, (17)

i.e.,

(𝐵𝑖 (𝛿−1))𝑇 ⋅ 𝐵𝑖 (𝛿)
= ((𝐵(1)𝑖 (𝛿−1))𝑇...(𝐵(𝑡𝑖)𝑖 (𝛿−1))𝑇)(𝐵(1)1 (𝛿) , . . . , 𝐵(𝑡𝑖)𝑖 (𝛿))
= 𝑛𝑡𝑖𝐸𝑠𝑖𝑡𝑖 ,

(18)
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where𝐸𝑠𝑖 and 𝐸𝑠𝑖𝑡𝑖 are the identity matrices of order 𝑠𝑖×𝑠𝑖 and𝑠𝑖𝑡𝑖 × 𝑠𝑖𝑡𝑖, respectively.
Let

(𝐵𝑖 (𝛿−1))𝑇 =((𝐵(1)𝑖 (𝛿−1))𝑇...(𝐵(𝑡𝑖)𝑖 (𝛿−1))𝑇) (19)

be a 𝑠𝑖𝑡𝑖 × 𝑛 matrix. Next, we shall prove that (𝐵𝑖(𝛿−1))𝑇 ⋅𝐵𝑖󸀠(𝛿) = 0, 1 ≤ 𝑖 ̸= 𝑖󸀠 ≤ 𝑑. In fact,(𝐵𝑖 (𝛿−1))𝑇 ⋅ 𝐵𝑖󸀠 (𝛿)
= ((𝐵(1)𝑖 (𝛿−1))𝑇...(𝐵(𝑡𝑖)𝑖 (𝛿−1))𝑇)(𝐵(1)

𝑖󸀠
(𝛿) , . . . , 𝐵(𝑡𝑖󸀠 )

𝑖󸀠
(𝛿))

= ((𝐵(1)𝑖 (𝛿−1))𝑇 𝐵(1)
𝑖󸀠
(𝛿) ⋅ ⋅ ⋅ (𝐵(1)𝑖 (𝛿−1))𝑇 𝐵(𝑡𝑖󸀠 )

𝑖󸀠
(𝛿)... ...(𝐵(𝑡𝑖)𝑖 (𝛿−1))𝑇 𝐵(1)

𝑖󸀠
(𝛿) ⋅ ⋅ ⋅ (𝐵(𝑡𝑖)𝑖 (𝛿−1))𝑇 𝐵(𝑡𝑖󸀠 )

𝑖󸀠
(𝛿)) .

(20)

Hence we only need to show that(𝐵(V)𝑖 (𝛿−1))𝑇 𝐵(V󸀠)𝑖󸀠 (𝛿) = 0, 1 ≤ V ≤ 𝑡𝑖, 1 ≤ V󸀠 ≤ 𝑡𝑖󸀠 . (21)

We consider the following congruence equations:𝑥 ≡ V (mod 𝑡𝑖)𝑥 ≡ V󸀠 (mod 𝑡𝑖󸀠) . (22)

Suppose that gcd(𝑡𝑖, 𝑡𝑖󸀠 ) ∤ (V − V󸀠). Then it has no solution
in (22) by Lemma 3, so it holds in (21).

Suppose that gcd(𝑡𝑖, 𝑡𝑖󸀠) | (V − V󸀠). Then this is unique
solution 𝑥 = 𝑎0 in (22) with 1 ≤ 𝑥 ≤ lcm(𝑡𝑖, 𝑡𝑖󸀠). Let
lcm(𝑡𝑖, 𝑡𝑖󸀠 ) = 𝑐 = 𝑡𝑖𝛼 = 𝑡𝑖󸀠𝛽. Then 𝑥 = 𝑎0 + 𝑐𝑙, 𝑙 =0, 1, . . . , 𝑛/𝑐 − 1 are all solutions in (22) with 1 ≤ 𝑥 ≤ 𝑛. Let(𝑀(V)𝑖 (𝛿−1))𝑇𝑀(V󸀠)𝑖󸀠 (𝛿) = (𝑐𝑗𝑗󸀠) be a 𝑠𝑖 × 𝑠𝑖󸀠 matrix over F𝑞. Then
for 1 ≤ 𝑗 ≤ 𝑠𝑖, 1 ≤ 𝑗󸀠 ≤ 𝑠𝑖󸀠 , the (𝑗, 𝑗󸀠) entry is𝑐𝑗𝑗󸀠 = 𝑛/𝑐−1∑

𝑙=0

(𝛿−𝑢𝑖𝑗)𝛼𝑙 (𝛿𝑢𝑖󸀠𝑗󸀠 )𝛽𝑙 = 𝑛/𝑐−1∑
𝑙=0

(𝛿−𝑢𝑖𝑗𝛼+𝑢𝑖󸀠𝑗󸀠𝛽)𝑙 , (23)

where 1 ≤ 𝑢𝑖𝑗, 𝑢𝑖󸀠𝑗󸀠 ≤ gcd(𝑛, 𝑞 − 1), gcd(𝑢𝑖𝑗, 𝑡𝑖) = 1, and
gcd(𝑢𝑖󸀠𝑗󸀠 , 𝑡𝑖󸀠) = 1. Since 𝑥𝑡𝑖 − 𝛿𝑢𝑖𝑗 is an irreducible divisor of𝑥𝑛 − 1 over F𝑞, (𝛿𝑢𝑖𝑗)𝑛/𝑡𝑖 = 1; similarly, (𝛿𝑢𝑖󸀠𝑗󸀠 )𝑛/𝑡𝑖󸀠 = 1. Hence(𝛿−𝑢𝑖𝑗𝛼+𝑢𝑖󸀠𝑗󸀠𝛽)𝑛/𝑐 = (𝛿−𝑢𝑖𝑗)𝑛/𝑡𝑖 (𝛿𝑢𝑖󸀠𝑗󸀠 )𝑛/𝑡𝑖󸀠 = 1. (24)

On the other hand, by 𝑡𝑖 ̸= 𝑡𝑖󸀠 we assume that there is a
prime 𝑝 such that V𝑝(𝑡𝑖) > V𝑝(𝑡𝑖󸀠). Then 𝑝 | 𝛽 and 𝑝 ∤ 𝛼
by lcm(𝑡𝑖, 𝑡𝑖󸀠) = 𝑐 = 𝑡𝑖𝛼 = 𝑡𝑖󸀠𝛽, so 𝑝 ∤ (−𝑢𝑖𝑗𝛼 + 𝑢𝑖󸀠𝑗󸀠𝛽)

and 𝑝 | gcd(𝑛, 𝑞 − 1). Hence 𝛿−𝑢𝑖𝑗𝛼+𝑢𝑖󸀠𝑗󸀠𝛽 ̸= 1. Therefore,𝑐𝑗𝑗󸀠 = ∑𝑛/𝑐−1𝑙=0 (𝛿−𝑢𝑖𝑗𝛼+𝑢𝑖󸀠𝑗󸀠𝛽)𝑙 = 0, and it holds in (21).
In conclusion, (𝐵𝑖(𝛿−1))𝑇𝐵𝑖(𝛿) = (𝑛/𝑡𝑖)𝐸𝑠𝑖𝑡𝑖 ,(𝐵𝑖(𝛿−1))𝑇𝐵𝑖󸀠(𝛿) = 0, 1 ≤ 𝑖 ̸= 𝑖󸀠 ≤ 𝑑, and

𝐵−1 = 1𝑛((((
(

𝑡1 (𝐵1 (𝛿−1))𝑇𝑡2 (𝐵2 (𝛿−1))𝑇...𝑡𝑑 (𝐵𝑑 (𝛿−1))𝑇
))))
)

. (25)

In the following, we present all primitive idempotents in𝑅 by lifting some primitive idempotents in F𝑛𝑞 through the
isomorphism 𝜒.

By Lemma 1, the number of irreducible factors of𝑥𝑛 − 1, which coincides with the number of primitive
idempotents in 𝑅, is 𝑁1. Let {𝑒1, . . . , 𝑒𝑛} denote the standard
basis of F𝑛𝑞 . Hence the vectors of F𝑛𝑞 , 𝑒1, 𝑒2, . . . , 𝑒𝑠1 , 𝑒𝑡1𝑠1+1,𝑒𝑡1𝑠1+2, . . . , 𝑒𝑡1𝑠1+𝑠2 , . . . , 𝑒∑𝑑−1ℎ=1 𝑡ℎ𝑠ℎ+1, 𝑒∑𝑑−1ℎ=1 𝑡ℎ𝑠ℎ+2, . . . , 𝑒∑𝑑−1ℎ=1 𝑡ℎ𝑠ℎ+𝑠𝑑 ,
correspond to all primitive idempotents in 𝑅. Hence for 𝑖, 𝑗,1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑠𝑖, let 𝜃𝑖𝑗(𝑥) = ∑𝑛−1𝑘=0 𝑎𝑘𝑥𝑘 be a primitive
idempotent in 𝑅, which is corresponding to 𝑒∑𝑖−1ℎ=1 𝑡ℎ𝑠ℎ+𝑗. By
(14), 𝜒 (𝜃𝑖𝑗 (𝑥)) = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) 𝐵= (0, . . . , 0,∑𝑖−1ℎ=1 𝑡ℎ𝑠ℎ+𝑗1 , 0, . . . , 0)= 𝑒∑𝑖−1ℎ=1 𝑡ℎ𝑠ℎ+𝑗,

(26)

and (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) = 𝑒∑𝑖−1ℎ=1 𝑡ℎ𝑠ℎ+𝑗𝐵−1. So we have proved the
theorem.

Remark 5. In special cases in Theorem 4, we can give those
results in [8–11].

Second, we consider the case 𝑞 ≡ 3 (mod 4) and 8 | 𝑛.
In Lemma 2, let 𝑡1, 𝑡2, . . . , 𝑡𝑑 be all odd factors of 𝑚2 =𝑛/ gcd(𝑛, 𝑞2 − 1) and let 𝑡𝑑+1, 𝑡𝑑+2, . . . , 𝑡𝑑+𝑑󸀠 be all even factors

of 𝑚2. For each 𝑡𝑖 with 1 ≤ 𝑖 ≤ 𝑑, there are 𝑠𝑖 = 𝜑(𝑡𝑖)/𝑡𝑖 ⋅
gcd(𝑛, 𝑞 − 1) positive integers 𝑤𝑖1, 𝑤𝑖2, . . . , 𝑤𝑖𝑠𝑖 satisfying 1 ≤𝑤𝑖𝑗 ≤ gcd(𝑛, 𝑞 − 1) and gcd(𝑤𝑖𝑗, 𝑡𝑖) = 1, 𝑗 = 1, 2, . . . , 𝑠𝑖.
For each 𝑡𝑖 with 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠, there are 𝑔𝑖 positive
integers 𝑢𝑖1, 𝑢𝑖2, . . . , 𝑢𝑖𝑔𝑖 satisfying 1 ≤ 𝑢𝑖𝑗 ≤ 2𝑟 gcd(𝑛, 𝑞 −1), gcd(𝑡𝑖, 𝑢𝑖𝑗) = 1, 2𝑟 ∤ 𝑢𝑖𝑗, 𝑗 = 1, . . . , 𝑔𝑖. In fact, 𝑛 =∑𝑑𝑖=1 𝑠𝑖𝑡𝑖 + ∑𝑑+𝑑󸀠𝑖=1 2𝑡𝑖𝑔𝑖.

Since 𝑙1 = (𝑞−1)/ gcd(𝑛, 𝑞−1), 𝑙2 = (𝑞2−1)/ gcd(𝑛, 𝑞2−1),⟨𝜃⟩ = F∗𝑞 , and ⟨𝛼⟩ = F∗𝑞2 , there exist 𝛿 ∈ F∗𝑞 and 𝜎 ∈ F∗𝑞2 such
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that 𝜃𝑙1 = 𝛿 and 𝛼𝑙2 = 𝜎.Then the irreducible factorization of𝑥𝑛 − 1 over F𝑞 can be rewritten as𝑥𝑛 − 1= ∏
1≤𝑖≤𝑑
1≤𝑗≤𝑠𝑖

(𝑥𝑡𝑖 − 𝛿𝑤𝑖𝑗)
⋅ ∏
1≤𝑖≤𝑑+𝑑󸀠

1≤𝑗≤𝑔𝑖

(𝑥2𝑡𝑖 − (𝜎𝑢𝑖𝑗 + 𝜎𝑞𝑢𝑖𝑗) 𝑥𝑡𝑖 + 𝜎(𝑞+1)𝑢𝑖𝑗) . (27)

Theorem 6. Suppose that rad(𝑛) | (𝑞 − 1), 𝑞 ≡ 3 (mod 4), and8 | 𝑛.Then there are𝑁2 primitive idempotents in 𝑅 as follows:
(1) 𝜃𝑖𝑗 = 𝑡𝑖𝑛 𝑛/𝑡𝑖−1∑

𝑘=0

(𝛿−𝑤𝑖𝑗)𝑘 𝑥𝑘𝑡𝑖 (28)

correspond to the irreducible polynomials 𝑥𝑡𝑖 −𝛿𝑤𝑖𝑗 over F𝑞, 𝑖 =1, . . . , 𝑑, 𝑗 = 1, . . . , 𝑠𝑖.
(2) 𝜂𝑖𝑗 = 𝑡𝑖𝑛 𝑛/𝑡𝑖−1∑

𝑘=0

Tr ((𝜎−𝑢𝑖𝑗)𝑘) 𝑥𝑘𝑡𝑖 (29)

correspond to the irreducible polynomials𝑥2𝑡𝑖−(𝜎𝑢𝑖𝑗+𝜎𝑞𝑢𝑖𝑗)𝑥𝑡𝑖+𝜎(𝑞+1)𝑢𝑖𝑗 over F𝑞, 𝑖 = 1, . . . , 𝑑 + 𝑑󸀠, 𝑗 = 1, . . . , 𝑔𝑖, where Tr is the
trace map from F𝑞2 into F𝑞.

Proof. The factorization of 𝑥𝑛 − 1 into irreducible factors in
F𝑞2[𝑥] is 𝑥𝑛 − 1 = ∏

1≤𝑖≤𝑑
1≤𝑗≤𝑠𝑖

(𝑥𝑡𝑖 − 𝛿𝑤𝑖𝑗)
⋅ ∏
1≤𝑖≤𝑑+𝑑󸀠

1≤𝑗≤𝑔𝑖

(𝑥𝑡𝑖 − 𝜎𝑢𝑖𝑗) (𝑥𝑡𝑖 − 𝜎𝑞𝑢𝑖𝑗) . (30)

Similarly to proving Theorem 4, there is a F𝑞2-linear space
isomorphism:𝜒 = (𝜒1, . . . , 𝜒𝑑, 𝜆1, . . . , 𝜆𝑑+𝑑󸀠 , 𝜆(𝑞)1 , . . . , 𝜆(𝑞)𝑑+𝑑󸀠) :

F𝑞2 [𝑥]⟨𝑥𝑛 − 1⟩ 󳨀→ F
𝑛
𝑞2 , (31)

𝑛−1∑
𝑘=0

𝑎𝑘𝑥𝑘 󳨃󳨀→ (𝐴1,0, . . . , 𝐴𝑑,𝑡𝑑−1, 𝐷1,0, . . . , 𝐷𝑑+𝑑󸀠,𝑡𝑑+𝑑󸀠−1,𝐷(𝑞)1,0, . . . , 𝐷(𝑞)𝑑+𝑑󸀠,𝑡
𝑑+𝑑󸀠
−1
) , (32)

where there are F𝑞2-epimorphisms: for 1 ≤ 𝑖 ≤ 𝑑,𝜒𝑖 : F𝑞2 [𝑥](𝑥𝑛 − 1) 󳨀→ ∏
1≤𝑗≤𝑠𝑖

F𝑞2 [𝑥]⟨𝑥𝑡𝑖 − 𝛿𝑤𝑖𝑗⟩ 󳨀→ F
𝑠𝑖𝑡𝑖
𝑞2 (33)

𝑛−1∑
𝑘=0

𝑎𝑘𝑥𝑘 󳨃󳨀→ (𝐴 𝑖,0, . . . , 𝐴 𝑖,𝑡𝑖−1) , (34)

for 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠,
𝜆𝑖 : F𝑞2 [𝑥](𝑥𝑛 − 1) 󳨀→ ∏

1≤𝑗≤𝑔𝑖

F𝑞2 [𝑥]⟨𝑥𝑡𝑖 − 𝜎𝑢𝑖𝑗⟩ 󳨀→ F
𝑔𝑖𝑡𝑖
𝑞2 (35)

𝑛−1∑
𝑘=0

𝑎𝑘𝑥𝑘 󳨃󳨀→ (𝐷𝑖,0, . . . , 𝐷𝑖,𝑡𝑖−1) , (36)

and for 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠,
𝜆(𝑞)𝑖 : F𝑞2 [𝑥](𝑥𝑛 − 1) 󳨀→ ∏

1≤𝑗≤𝑔𝑖

F𝑞2 [𝑥]⟨𝑥𝑡𝑖 − 𝜎𝑞𝑢𝑖𝑗⟩ 󳨀→ F
𝑔𝑖𝑡𝑖
𝑞2 (37)

𝑛−1∑
𝑘=0

𝑎𝑘𝑥𝑘 󳨃󳨀→ (𝐷(𝑞)𝑖,0 , . . . , 𝐷(𝑞)𝑖,𝑡𝑖−1) . (38)

Hence there is a 𝑛 × 𝑛 invertible matrix 𝐵 over F𝑞2 such that

(𝑎0, 𝑎1, . . . , 𝑎𝑛−1) 𝐵 = (𝐴1,0, . . . , 𝐴𝑑,𝑡𝑑−1, 𝐷1,0, . . . ,𝐷𝑑+𝑑󸀠,𝑡
𝑑+𝑑󸀠
−1, 𝐷(𝑞)1,0, . . . , 𝐷(𝑞)𝑑+𝑑󸀠,𝑡

𝑑+𝑑󸀠
−1
) . (39)

Now we shall construct the matrix 𝐵. Let
𝐵 = (𝐵1 (𝛿) , . . . , 𝐵𝑑 (𝛿) , 𝐵1 (𝜎) , . . . , 𝐵𝑑+𝑑󸀠 (𝜎) , 𝐵1 (𝜎𝑞) , . . . ,𝐵𝑑+𝑑󸀠 (𝜎𝑞)) , (40)

where𝐵𝑖(𝛿) are 𝑛×𝑠𝑖𝑡𝑖matrices over F𝑞2 , 1 ≤ 𝑖 ≤ 𝑑, and 𝐵𝑖(𝜎),𝐵𝑖(𝜎𝑞) are 𝑛 × 𝑔𝑖𝑡𝑖 matrices over F𝑞2 , 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠.
(a) For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑑, by (33) we have
(𝑎0, 𝑎1, . . . , 𝑎𝑛−1) 𝐵𝑖 (𝛿) = (𝐴 𝑖,0, 𝐴 𝑖,1, . . . , 𝐴 𝑖,𝑡𝑖−1) , (41)

where 𝐴 𝑖,0, 𝐴 𝑖,1, . . . , 𝐴 𝑖,𝑡𝑖−1 ∈ F 𝑠𝑖𝑞 . Let 𝐵𝑖(𝛿) = (𝐵(1)𝑖 (𝛿),. . . , 𝐵(𝑡𝑖)𝑖 (𝛿)) be a 𝑛 × 𝑠𝑖𝑡𝑖 matrix, and each 𝐵(V)𝑖 (𝛿), 1 ≤ V ≤ 𝑡𝑖
be a 𝑛 × 𝑠𝑖 matrix as shown in Theorem 4.

(b) For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠, by (35) we have
that (𝑎0, 𝑎1, . . . , 𝑎𝑛−1)𝐵𝑖(𝜎) = (𝐷𝑖,0, 𝐷𝑖,1, . . . , 𝐷𝑖,𝑡𝑖−1), where𝐷𝑖,0, 𝐷𝑖,1, . . . , 𝐷𝑖,𝑡𝑖−1 ∈ F𝑔𝑖𝑞 . Let 𝐵𝑖(𝜎) = (𝐵(1)𝑖 (𝜎), . . . , 𝐵(𝑡𝑖)𝑖 (𝜎))
be a 𝑛×𝑔𝑖𝑡𝑖matrix and each 𝐵(V)𝑖 (𝜎), 1 ≤ V ≤ 𝑡𝑖, a 𝑛×𝑔𝑖matrix:
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𝐵𝑖(V) (𝜎) =

(((((((((((((((((((((((((((((((
(

...0(𝜎𝑢𝑖1)00...0(𝜎𝑢𝑖1)10...0(𝜎𝑢𝑖1)𝑛/𝑡𝑖−10...

...0(𝜎𝑢𝑖2)00...0(𝜎𝑢𝑖2)10...0(𝜎𝑢𝑖2)𝑛/𝑡𝑖−10...

⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅

...0(𝜎𝑢𝑖𝑠𝑖 )00...0(𝜎𝑢𝑖𝑠𝑖 )10...0(𝜎𝑢𝑖𝑠𝑖 )𝑛/𝑡𝑖−10...

)))))))))))))))))))))))))))))))
)

(V)
(𝑡𝑖 + V)

(( 𝑛𝑡𝑖 − 1) 𝑡𝑖 + V)
1 ≤ V ≤ 𝑡𝑖. (42)

(c) For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠, by (37) we have that(𝑎0, 𝑎1, . . . , 𝑎𝑛−1)𝐵𝑖(𝜎𝑞) = (𝐷(𝑞)𝑖,0 , 𝐷(𝑞)𝑖,1 , . . . , 𝐷(𝑞)𝑖,𝑡𝑖−1), where 𝐷(𝑞)𝑖,0 , 𝐷(𝑞)𝑖,1 , . . . , 𝐷(𝑞)𝑖,𝑡𝑖−1 ∈ F𝑔𝑖𝑞 . Let 𝐵𝑖(𝜎𝑞) = (𝐵(1)𝑖 (𝜎𝑞), . . . , 𝐵(𝑡𝑖)𝑖 (𝜎𝑞)) be
a 𝑛×𝑔𝑖𝑡𝑖 matrix, and each 𝐵(V)𝑖 (𝜎𝑞), 1 ≤ V ≤ 𝑡𝑖, a 𝑛×𝑔𝑖matrix:

𝐵𝑖(V) (𝜎𝑞) =

(((((((((((((((((((((((((((((((
(

...0(𝜎𝑞𝑢𝑖1)00...0(𝜎𝑞𝑢𝑖1)10...0(𝜎𝑞𝑢𝑖1)𝑛/𝑡𝑖−10...

...0(𝜎𝑞𝑢𝑖2)00...0(𝜎𝑞𝑢𝑖2)10...0(𝜎𝑞𝑢𝑖2)𝑛/𝑡𝑖−10...

⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅

...0(𝜎𝑞𝑢𝑖𝑠𝑖 )00...0(𝜎𝑞𝑢𝑖𝑠𝑖 )10...0(𝜎𝑞𝑢𝑖𝑠𝑖 )𝑛/𝑡𝑖−10...

)))))))))))))))))))))))))))))))
)

(V)
(𝑡𝑖 + V)

((𝑛𝑡𝑖 − 1) 𝑡𝑖 + V)
1 ≤ V ≤ 𝑡𝑖. (43)
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Similarly to proving Theorem 4, we obtain that

𝐵−1 = 1𝑛
(((((((((((((((
(

𝑡1 (𝐵1 (𝛿−1))𝑇...𝑡𝑑 (𝐵𝑑 (𝛿−1))𝑇𝑡1 (𝐵1 (𝜎−1))𝑇...𝑡𝑑+𝑑󸀠 (𝐵𝑑+𝑑󸀠 (𝜎−1))𝑇𝑡1 (𝐵1 (𝜎−𝑞))𝑇...𝑡𝑑+𝑑󸀠 (𝐵𝑑+𝑑󸀠 (𝜎−𝑞))𝑇

)))))))))))))))
)

, (44)

where

(a) for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑑, (𝐵𝑖(𝛿−1))𝑇 = ( (𝐵(1)𝑖 (𝛿−1))𝑇...
(𝐵
(𝑡𝑖)

𝑖 (𝛿
−1))𝑇

),

and for each V with 1 ≤ V ≤ 𝑡𝑖, (𝐵(V)𝑖 (𝛿−1))𝑇 is a 𝑠𝑖 × 𝑛 matrix
as shown inTheorem 4.

(b) for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠, (𝐵𝑖(𝜎−1))𝑇 =( (𝐵(1)𝑖 (𝜎−1))𝑇...
(𝐵
(𝑡𝑖)

𝑖 (𝜎
−1))𝑇

), and for each V with 1 ≤ V ≤ 𝑡𝑖, (𝐵(V)𝑖 (𝜎−1))𝑇 is
a 𝑔𝑖 × 𝑛matrix:

(𝐵𝑖(V) (𝜎−1))𝑇 = ((((
(

⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

00...0
(𝜎−𝑢𝑖1)0(𝜎−𝑢𝑖2)0...(𝜎−𝑢𝑖𝑠𝑖 )0

00...0
⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

00...0
(𝜎−𝑢𝑖1)1(𝜎−𝑢𝑖2)1...(𝜎−𝑢𝑖𝑠𝑖 )1

00...0
⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

(𝜎−𝑢𝑖1)𝑛/𝑡𝑖−1(𝜎−𝑢𝑖2)𝑛/𝑡𝑖−1...(𝜎−𝑢𝑖𝑠𝑖 )𝑛/𝑡𝑖−1
00...0

⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

))))
)(V) (𝑡𝑖 + V) (( 𝑛𝑡𝑖 − 1) 𝑡𝑖 + V)

; (45)

(c) for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠, (𝐵𝑖(𝜎−𝑞))𝑇 =( (𝐵(1)𝑖 (𝜎−𝑞))𝑇...
(𝐵
(𝑡𝑖)

𝑖 (𝜎
−𝑞))𝑇

), and for each V with 1 ≤ V ≤ 𝑡𝑖, (𝐵(V)𝑖 (𝜎−𝑞))𝑇 is
a 𝑔𝑖 × 𝑛matrix:

(𝐵𝑖(V) (𝜎−𝑞))𝑇 = ((((
(

⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

00...0
(𝜎−𝑞𝑢𝑖1)0(𝜎−𝑞𝑢𝑖2)0...(𝜎−𝑞𝑢𝑖𝑠𝑖 )0

00...0
⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

00...0
(𝜎−𝑞𝑢𝑖1)1(𝜎−𝑞𝑢𝑖2)1...(𝜎−𝑞𝑢𝑖𝑠𝑖 )1

00...0
⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

(𝜎−𝑞𝑢𝑖1)𝑛/𝑡𝑖−1(𝜎−𝑞𝑢𝑖2)𝑛/𝑡𝑖−1...(𝜎−𝑞𝑢𝑖𝑠𝑖 )𝑛/𝑡𝑖−1
00...0

⋅ ⋅ ⋅⋅ ⋅ ⋅
⋅ ⋅ ⋅

))))
)(V) (𝑡𝑖 + V) ((𝑛𝑡𝑖 − 1) 𝑡𝑖 + V)

. (46)

In the following, we give all primitive idempotents in
F𝑞[𝑥]/⟨𝑥𝑛 − 1⟩.

(1) For fixed 𝑖 and 𝑗 with 1 ≤ 𝑖 ≤ 𝑑 and 1 ≤ 𝑗 ≤ 𝑠𝑖, 𝛿𝑤𝑖𝑗 ∈
F𝑞. Hence the primitive idempotents in F𝑞2[𝑥]/⟨𝑥𝑡𝑖 − 𝛿𝑤𝑖𝑗⟩ are
the same as F𝑞[𝑥]/⟨𝑥𝑡𝑖 − 𝛿𝑤𝑖𝑗⟩. We have the result.

(2) For fixed 𝑖 and 𝑗 with 1 ≤ 𝑖 ≤ 𝑑 + 𝑑󸀠 and 1 ≤ 𝑗 ≤ 𝑔𝑖,
the polynomial 𝑥2𝑡𝑖 − (𝜎𝑢𝑖𝑗 + 𝜎𝑞𝑢𝑖𝑗)𝑥𝑡𝑖 + 𝜎(𝑞+1)𝑢𝑖𝑗 is irreducible
over F𝑞. In fact, the primitive idempotents in F𝑞2[𝑥]/⟨𝑥2𝑡𝑖 −(𝜎𝑢𝑖𝑗 +𝜎𝑞𝑢𝑖𝑗)𝑥𝑡𝑖 +𝜎(𝑞+1)𝑢𝑖𝑗⟩ are the same as F𝑞[𝑥]/⟨𝑥2𝑡𝑖 − (𝜎𝑢𝑖𝑗 +𝜎𝑞𝑢𝑖𝑗)𝑥𝑡𝑖 + 𝜎(𝑞+1)𝑢𝑖𝑗⟩.
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Note that there are F𝑞2-algebra isomorphisms:𝜏𝑖 : F𝑞2 [𝑥]⟨𝑥2𝑡𝑖 − (𝜎𝑢𝑖𝑗 + 𝜎𝑞𝑢𝑖𝑗) 𝑥𝑡𝑖 + 𝜎(𝑞+1)𝑢𝑖𝑗⟩ 󳨀→
F𝑞2 [𝑥]⟨𝑥𝑡𝑖 − 𝜎𝑢𝑖𝑗⟩ × F𝑞2 [𝑥]⟨𝑥𝑡𝑖 − 𝜎𝑞𝑢𝑖𝑗⟩ ,𝑐 (𝑥) = 2𝑡𝑖−1∑

𝑘=0

𝑎𝑘𝑥𝑘 = 𝑦 + 𝑧𝑥𝑡𝑖 󳨃󳨀→ (𝑦, 𝑧)𝑁 = (𝑦󸀠, 𝑧󸀠) ,
(47)

where 𝑦 = ∑𝑡𝑖−1𝑘=0 𝑎𝑖𝑥𝑖, 𝑧 = ∑𝑡𝑖−1𝑘=0 𝑎𝑡𝑖+𝑘𝑥𝑘 ∈ F𝑞2[𝑥], and 𝑁 is a2 × 2matrix over F𝑞2 :𝑁 = ( 1 1𝜎𝑢𝑖𝑗 𝜎𝑞𝑢𝑖𝑗) . (48)

Note that the identity of F𝑞2 [𝑥]/⟨𝑥2𝑡𝑖−(𝜎𝑢𝑖𝑗+𝜎𝑞𝑢𝑖𝑗)𝑥𝑡𝑖+𝜎(𝑞+1)𝑢𝑖𝑗⟩
is equal to the identity of F𝑞[𝑥]/⟨𝑥2𝑡𝑖 − (𝜎𝑢𝑖𝑗 + 𝜎𝑞𝑢𝑖𝑗)𝑥𝑡𝑖 +𝜎(𝑞+1)𝑢𝑖𝑗⟩. Now, take 𝑐(𝑥) = 1, then𝜏𝑖 (𝑐 (𝑥)) = 𝜏𝑖 (1) = (1, 0)𝑁 = (1, 1) . (49)

Let 𝜂𝑖𝑗(𝑥) = ∑𝑛−1𝑘=0 𝑎𝑘𝑥𝑘 be a primitive idempotent in 𝑅
corresponding to the irreducible polynomials 𝑥2𝑡𝑖 − (𝜎𝑢𝑖𝑗 +𝜎𝑞𝑢𝑖𝑗)𝑥𝑡𝑖 + 𝜎(𝑞+1)𝑢𝑖𝑗 . By (31)𝜒 (𝜂𝑖𝑗 (𝑥)) = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) 𝐵 = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1)= (𝐴1,0, . . . , 𝐴𝑑,𝑡𝑑−1, 𝐷1,0, . . . , 𝐷𝑑+𝑑󸀠,𝑡𝑑+𝑑󸀠−1, 𝐷(𝑞)1,0, . . . ,𝐷(𝑞)

𝑑+𝑑󸀠,𝑡
𝑑+𝑑󸀠
−1
)= (0, . . . , 0, 𝐷𝑖,0, 0, . . . , 0, 𝐷(𝑞)𝑖,0 , 0, . . . , 0) ,

(50)

where 𝐷𝑖,0 = (0, . . . , 0, 𝑗1, 0, . . . , 0), 𝐷(𝑞)𝑖,0 = (0, . . . , 0, 𝑗1, 0, . . . , 0).Hence(𝑎0, 𝑎1, . . . , 𝑎𝑛−1) = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1) 𝐵−1= 𝑡𝑖𝑛 (Tr ((𝜎−𝑢𝑖𝑗)0) , 0, . . . , 0,Tr ((𝜎−𝑢𝑖𝑗)1) , 0, . . . , 0,
Tr ((𝜎−𝑢𝑖𝑗)𝑛/𝑡𝑖−1) , 0, . . . , 0) . (51)

Hence we complete the proof.

4. Concluding Remarks

In this paper, suppose that rad(𝑛) | (𝑞 − 1), we use
matrix method to give all primitive idempotents in the ring
F𝑞[𝑥]/⟨𝑥𝑛−1⟩. Suppose that the order of 𝑞modulo rad(𝑛) is𝑤,
where𝑤 is a positive integer. We can also obtain all primitive
idempotents of irreducible cyclic codes by the similar method
in Theorems 4 and 6. Hence, all primitive idempotents of
simple root irreducible cyclic codes can be presented by the
method in Theorems 4 and 6.
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