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In order to improve the safety, efficiency, and reliability in large scale wind turbines, a great deal of statistical andmachine-learning
models for wind turbine health monitoring system (WTHMS) are proposed based on SCADA variables. The data-drivenWTHMS
have been performed widely with the attentions on predicting the failures of the wind turbine or primary components. However,
the health status of wind turbine often degrades gradually rather than suddenly. Thus, the SCADA variables change continuously
to the occurrence of certain faults. Inspired by the ability of recurrent neural network (RNN) in redefining the raw sensory data,
we introduce a hybrid methodology that combines the analysis of variance for each sequential SCADA variable with RNN to assess
the health status of wind turbine. First, each original sequence is split by different variance ranges into several categories to improve
the generalized ability of the RNN. Then, the long short-term memory (LSTM) is procured on the normal running sequence to
learn the gradually changing situations. Finally, a weighted assessment method incorporating the health of primary components is
applied to judge the health level of the wind turbine. Experiments on real-world datasets from two wind turbines demonstrate the
effectiveness and generalization of the proposed model.

1. Introduction

With the development of wind energy, sensing technologies,
and wireless communications, various SCADA data of wind
turbines have been collected in recent years. According to
[1, 2], the research of wind turbine health monitoring system
(WTHMS) motivates the promotion of detecting faults and
predicting working conditions. The WTHMS builds the
model using historical collected data and decides on the
online SCADA data of the monitored components, which
magnifies the ability of updating in real time of WTHMS.

The existing methods for WTHMS can be roughly clas-
sified into three categories: physical-based approaches [3],
machine-learning approaches [4], and hybrid approaches
[5]. The accuracy of physical-based approaches and hybrid
approaches including physical-based approaches would be
limited because of the insufficient knowledge on specific
domains. As a result, physical-based approaches may be
incapable when handling unknown operated mechanisms.
In response to the problems of physical-based approaches,

machine-learning methods based on monitoring data are
utilized to characterize the degradation of system without
any domain knowledge or indispensable expertise [6]. Hence,
machine-learning methods are more suitable for the health
degree assessments of thewind turbines, which are composed
of different components to build the complex mechanical
system. Although many researches have been proposed for
health monitoring in different applications, there are still
several disadvantages as follows.(1) The traditional machine-learning methods, such as
support vector machines (SVM) [7], artificial neural network
(ANN) [8], and fuzzy methods [9], tend to yield binary
classification on the health status of machines (i.e., good or
bad). Moreover, the current approaches may not be available
due to the neglect of nonlinearity and complex structure of
wind turbine when it leverages the health status monitoring
[10].(2) The cost for searching the optimal parameters space
belonging to a chosen model is typically expensive, espe-
cially when it comes to the complex and nonlinear system.
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Furthermore, the performance of the traditional machine-
learning methods could be influenced by many factors, such
as the environmental volatilities, various degradation modes,
and operating discrepancies. Therefore, the single model
trained by the collected data under certain situations may
not generate good results to other conditions. As a potential
solution, the analysis of variance is performed to differentiate
the underlying trends from data. The selection of the training
samples with the similar fluctuant level is very crucial to the
corresponding individual learning model.

As the powerful branch of the machine-learning meth-
ods, deep learning is labeled by its capability of achieving the
hierarchical representations from raw input data by perform-
ing nonlinear transformations with multiple hidden layers
[1]. Deep learning techniques have been successfully used
in varying applications including natural language models
[11–13], phoneme recognition [14], and acoustic classification
[15]. The deep learning models are also actively procured
in the field of health status assessment. Stacked denoising
autoencoder (SAE) fed by the extracted frequency features
from time series data diagnoses the machinery fault [16].
Deep belief network (DBN) adopts the statistical feature
and frequency-domain feature for degradation assessment
about an accelerated bearing life [17] and the gearbox fault
diagnosis [18]. Most existing models would provide the
binary value to act as the assessing results, in which one
represents the normal status and zero represents the fault
status. They cannot produce the quantitative analysis for the
degree of degradation on some components. In addition, the
mentioned models all focused on one component or linear
system. As a complex and nonlinear system, the wind turbine
would pose great challenges on evaluating the health status by
the existing models.Therefore, to relieve the abovementioned
drawbacks, we apply a novel model for the machinery health
status assessment in a numerical perspective.

In this paper, a novel architecture combining the analysis
of variance with long short-term memory (LSTM) is pro-
posed forWTHMS.The analysis of variance for each SCADA
variable is first performed to categorize the training samples
into different subspaces. Different from the traditional neural
networks, as a variant of recurrent neural network, LSTM
exploits the internal memory from input data to analyze the
intrinsic dependencies. Generally speaking, the dependen-
cies in the time series can be classified into two types: short-
term dependency and long-term dependency. While the
health status of wind turbine has the long-term dependency,
we leverage the LSTM to monitor the health status of the
wind turbines via the sequence of SCADA variables. During
the training process, the dependencies among each sample
would be embedded into the LSTM by feeding the SCADA
value in each time point together with the previously hidden
states to the hidden layer. In addition, we apply a weighted
assessment method which performs a synthetical consider-
ation on the discrepancies between the predicted value and
actual value of the eleven SCADA variables to define the
health degree of wind turbines. Benefiting from the analysis
of variance and LSTM network, the accurate predicted results
can be obtained. While the weighted assessment method can
conduct the quantitative analysis for the health degree of

the wind turbine by considering the major components, the
experiments on two wind turbines reveal that the reasonable
accuracy and efficiency can be achieved by the proposed
model.

This paper is organized as follows. In Section 2, the
brief introduction about the proposed model is presented.
Section 3 describes the analysis of variance and LSTM for
monitoring the health status of wind turbines. Numerical
results and conclusion are presented in Sections 4 and 5,
respectively.

2. Methods/Experimental

In this section, the proposed method would be briefly
introduced and its process is shown in Figure 1. SCADA
system, as a monitoring system, reports and collects various
factors affecting the reliability of wind turbine and is widely
used for health status assessment. The analysis of variance
splits the training sample into multiple subspaces owing to
the volatility levels of each SCADA variable. The features
selected from synchronized sequence of SCADA data can be
concatenated to describe multiple sensors at the given time.
LSTM as a variant of RNN can model long-term dependency
of time series by storing the historical input and mapping
the entire inputs to target vector. Considering the discrep-
ancies between the predicted value and the actual value,
the weighted assessment method that assigns the smaller
weight to component with larger error is applied to exploit
the health monitoring. To demonstrate the generalization
and effectiveness of the proposed model, the comparisons
with several state-of-the-art models for two tasks assessing
the health status of wind turbine are conducted. The main
contributions of our work are as follows.(1) The analysis of variance designs the thought of
classifying in the offline procedure and mapping in the
online procedure. Based on the variance levels of each
SCADA variable, the sequence is categorized into different
classifications to increase the divergence among the single
learners but also avoid the overfitting problem.(2) LSTM is proposed to capture the future and past
context of each selected SCADA variable. The concatenated
matrix can be viewed as the final representations generated
in our proposed framework.(3) The weighted assessment method is fit for handling
multidimensional scenario by assigning different weights to
the corresponding features as verified in Section 4.(4) Contrastive experiments including two cases are pro-
cessed to explore the generalized ability within the proposed
model.

3. The Proposed Model

Due to the harsh environment and complex operating struc-
tures, it is challenging to perform the monitoring task. Thus,
this section would introduce a novel hybrid method to assess
the health degree of wind turbines.

3.1. The Analysis of Variance for SCADA Variables. The data
space can be described as 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑚}, 𝑋𝑖 =
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Figure 1: The process of the proposed method.

{𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛}, where m is the dimension of the selected
SCADA variables, 𝑋𝑖 is the sequence of the corresponding
feature, and n is the length of sequence. The health of
wind turbines or primary components is degrading gradually
rather than suddenly, and capturing the underlying trends
of SCADA variables is in favor of gauging the health degree
of the machine. In the proposed methodology, the variance
of each SCADA variable is first carried out to categorize the
training samples according to

𝑚𝑒𝑎𝑛𝑖 = ∑𝑛𝑗=1 𝑥𝑖𝑗𝑛 (1)

variance𝑖 = ∑𝑛𝑗=1 (𝑥𝑖𝑗 − 𝑚𝑒𝑎𝑛𝑖)2𝑛 . (2)

Then, the variance series of each SCADA variable would
be sorted in ascending order, as illustrated in Figure 2.

As shown in Figure 2, efficacious intervals are defined
between theminimum andmaximum variance, which can be
denoted as intervals = {[𝛼1, 𝛼2], [𝛼2, 𝛼3], . . . , [𝛼𝑚−1, 𝛼𝑚]}. We
can derive the following rule from the value of 𝛼𝑖.

If the variance of one training sample meets the condition𝛼𝑖−1 ≤ variance ≤ 𝛼𝑖, the training sample is added into this
category.

Samples with similar variance level being gathered into
one group can alleviate the influence of volatility in the
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Figure 2: The variance series of some SCADA feature in ascending
order.

sequence of SCADA variable efficiently. Then, each LSTM
whose parameters space is built in corresponding category
can have better approximated capacity.

3.2. Recurrent Neural Network. Recurrent neural network
(RNN) is a neural network where connections between
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Figure 3: The structure of traditional RNN.

neurons can form a directed cycle. Therefore, it can pro-
cess arbitrary-length sequences by memorizing the dynamic
information of input patterns. The structure of the traditional
RNN is illustrated in Figure 3. It consists of an input layer, an
output layer, and a hidden layer with recurrent connections.ℎ𝑡 is used as the output of the hidden layer, which can hold the
information from the input vector.The current hidden output
would be updated by receiving input from sample 𝑥𝑡 with the
same time point and the previous hidden output ℎ𝑡−1:ℎ𝑡 = 𝜓 (𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) , (3)

where𝑊ℎ ∈ 𝑅𝑑ℎ×𝑑ℎ ,𝑊𝑥 ∈ 𝑅𝑑𝑥×𝑑𝑥 , and 𝑏 ∈ 𝑅𝑑ℎ are viewed as
the parameters of RNN. 𝜓 denotes the nonlinear activation
function tanh. In (3), ℎ𝑡−1can be viewed as the memory of the
previous sample. Thus, after modeling all the sequential data,
the whole sequence would bemapped into the hidden output
at the last time step.The activation values of the output layers
are computed as

𝑦𝑡 = 𝑔 (𝑉ℎ𝑡) , (4)

where 𝑔 denotes the sigmoid activation function.
As we can see from Figure 4, RNN can be regarded as the

multiple copies of the same network.
Owing to the exploding gradients during backprop-

agation, the RNN may ignore the long-dependencies of
the sequence. To alleviate this drawback, long short-term
memory network introduces the gate function in the design
of nonlinear transformation.

3.3. Long Short-TermMemory Network. LSTM has the totally
different submodules compared with RNN. As shown in
Figure 5, there are three gates including the forget gate,
the input gate, and the output gate in the standard LSTM
network, which serve as the controller for the preservation
of the previous information. The LSTM model is built as the
following steps.

The first step is to decide the degree of forgetting the
information from the cell states. The decision would be made
by the forget gate as

𝐹𝑡 = 𝜎 (𝑊(𝑓)𝑥𝑡 + 𝑈(𝑓)ℎ𝑡−1 + 𝑏𝑓) . (5)

According to the (5), the LSTM model views ℎ𝑡−1 and 𝑥𝑡
as the input vector and produces a number between 0 and 1

as the output. If the value is 1, it means that the information
would be completely kept. If the value is 0, the information
would be totally forgotten.

The next step is to decide the degree of storing the
information in the cell states. The updating values would be
controlled by the input gate as

𝐼𝑡 = 𝜎 (𝑊(𝑖)𝑥𝑡 + 𝑈(𝑖)ℎ𝑡−1 + 𝑏𝑖) . (6)

Then, the state value would be calculated by combining
the old state and new candidate value as

𝐶𝑡 = 𝐹𝑡 ∗ 𝐶𝑡−1 + 𝐼𝑡 ∗ (𝑊(𝑐)𝑥𝑡 + 𝑈(𝑐)ℎ𝑡−1) . (7)

In the final step, the cell states would be firstly filtered as

𝑂𝑡 = 𝜎 (𝑊(𝑜)𝑥𝑡 + 𝑈(𝑜)ℎ𝑡−1 + 𝑏𝑜) . (8)

Then, the output value would be produced as

ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡) . (9)

Unlike traditional RNN, the memory module 𝑐𝑡 updated
in linear way reduces the influence of gradients. Furthermore,
the cell of the LSTM would be regulated to update with three
gates:(1) The input gate 𝐼𝑡 receives the information of the
current sample 𝑥𝑡.(2) The forget gate 𝐹𝑡 determines the degree of which
information would be extracted from the historical data.(3) The output gate 𝑂𝑡 controls the context output from
the cell.

This design would allow the LSTM model to remove the
invalid information in the long period.

3.4. The Weighted Assessment Method. The wind turbine
as a complex and nonlinear system is composed of sev-
eral subsystems having dependent interactions, such as the
gearbox, generator, and rotor. Then, assessing the health
degree of the wind turbine should adopt the SCADA data to
monitor each subsystem, of which the health state is totally
different because of the varied characteristics. Therefore,
the analysis of the degraded patterns of the wind turbine
would capture the gradual process of deterioration in each
significant component. The weighted assessment is adopted
in this paper to reinforce the ability of gauging the different
health status of wind turbines.

Compared with the existing binary fault diagnosis
method, the weighted assessment method allocates the fuzzy-
type membership function as the weight for the correspond-
ing component:

𝑊𝑖 = 𝑓𝑖 = 1 − |Δ𝑑| , (10)

where |Δ𝑑| is the Euclidean distance between the actual
measured data and the predicted data from LSTMmodel. By
this observation, the larger distance would be applied with
the smaller weight.

So the assessment of the wind turbine is as follows:

ℎ𝑗 = 1 − 𝑛∑
𝑖=1

𝑊𝑖𝑗 × Δ𝑑𝑗, (11)
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Figure 4: The feedforward structure of traditional RNN.
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Figure 5: The architecture of LSTM.

where ℎ𝑗 denotes the health of wind turbine at the jth time
point and n is the number of components. In the multiple
fault situations, levels of health degree can be decided accord-
ing to the classes to which wind turbine belong. As shown in
Figure 6, the health degree is divided into four classes. Level 4
indicates that the wind turbine works in normal status. Level
3 represents the fair state of wind turbine. Level 2 shows that
the wind turbine is going to fail. Additionally, Level 1 would
provide red alertswhichmean that thewind turbine has failed
and the alerts must be dealt with immediately.

3.5. Health Degree Assessment Based on the Proposed Model.
With the proposed model incorporating the analysis of
variance and LSTM, the health degree assessment of the wind
turbine is straightforward. Figure 7 illustrates the flowchart
of the offline training and online evaluating. The process of
offline training and online evaluating are as follows:

(i) Offline Training

(1) Select the SCADA data for training the proposed
model as the training sample.

(2) Normalize the training sample of each selected fea-
ture.(3) Classify the training sample of each feature by the
analysis of variance.(4) Train the corresponding LSTM of the selected cate-
gory.(5) If there are remaining SCADA data which have not
been trained to generate the LSTM, go to (4).(6) Output all the parameters for the LSTM in each
category.

(ii) Online Assessing

(1)Normalize the testing data andmatch the correspond-
ing category according to the variance value.(2)Obtain the output from the LSTM of each feature.(3) Compute the discrepancies between the actual value
from SCADA system and the predicted value from the
proposed model.(4) Perform the health degree assessment by the weighted
method.
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4. Results and Discussion

4.1. Data Description. This section justifies the performance
of the proposed model by concatenating the regressive value
of three significant subsystems of two wind turbines from
a wind farm in Hebei province and then computing the
discrepancies between predicted and actual values. The wind
turbine monitoring system can be roughly classified into
three subsystems: the electrical subsystem, the temperature
subsystem, and the control subsystem. Each subsystem with
different components would provide different effect on the
health status of wind turbine. To assess the performance of
the proposed model, eleven SCADA variables belonging to
the three subsystems of two wind turbines are conducted in
this paper. Two experiments which are related to different
health degrees all have 14690 training samples and 295 testing
samples, which record the mean value of SCADA variables
in the last 15min. A total of 11 variables including four
continuous generator measurements, three gearbox features,

and four other compositions are selected as the assessing
items, which are listed in Table 1. The basic parameters of
four wind turbines are as follows: the cut-in wind speed is
3m/s, the cut-out wind speed is 27m/s, the rated wind speed
is 15m/s, and the rated wind power is 1.5MW.

4.2. Performance Criterions. After the analysis of variance
and training of the LSTMare finished, performance criterions
in terms of the root mean square error (RMSE), the standard
deviation of the error (SDE), the mean absolute error (MAE),
and the bias (BIAS) are estimated on the testing data:

𝑅𝑀𝑆𝐸 = √ 1𝑚
𝑚∑
𝑗=1

(𝑦𝑗 − 𝑦𝑡)2 (12)

𝑀𝐴𝐸 = 1𝑚
𝑚∑
𝑗=1

𝑦𝑗 − 𝑦𝑡 (13)
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Table 1: The selected features in SCADA data.

index Name of the selected feature Subsystem
1 Generator speed control subsystem
2 Rotor speed control subsystem
3 Generator temperature temperature subsystem
4 Generator bearing temperature temperature subsystem
5 Gearbox temperature temperature subsystem
6 Gearbox bearing temperature temperature subsystem
7 Shaft bearing temperature temperature subsystem
8 Battery box temperature temperature subsystem
9 Top box temperature temperature subsystem
10 Hydraulic pressure electrical subsystem
11 Generator cooling air temperature temperature subsystem

𝐵𝐼𝐴𝑆 = 1𝑚
𝑚∑
𝑗=1

(𝑦𝑗 − 𝑦𝑡) (14)

𝑆𝐷𝐸 = √ 1𝑚
𝑚∑
𝑗=1

(𝑦𝑗 − 𝑦𝑡 − 𝐵𝐼𝐴𝑆)2, (15)

where 𝑦𝑗 is the predicted value from the proposed model, 𝑦𝑡
is the actual value of SCADA, and variable 𝑚 is the size of
testing data.

4.3. Experimental Setting. To further demonstrate the im-
provements derived from the proposedmodel, the traditional
LSTM neural network, the ELMAN neural network, and
ELM neural network are selected as the benchmark models.

To verify the improvements benefited from the analysis
of variance, the traditional LSTM neural network which has
the same parameters space with LSTM in each category in
the proposed model is fed with 10 inputs to compare the
generalized ability with the proposed model. It should be
noted that we fix the configurations rather than fine-tuning
them on different datasets in our experiment. The learning
rate is set to 0.2, the number of training epochs is 500, and
the size of hidden layer is 10.

The ELMAN neural network as a recurrent neural net-
work can memorize the dependencies under the SCADA
variable series by feeding the outputs from the hidden layer
to the hidden layer. Therefore, the ELMAN neural network
which is composed of four layers including input layer,
hidden layer, recurrent layer, and output layer is suitable for
modeling and predicting the fluctuation of SCADA variables.
In this paper, 14 neural nodes in the hidden layer with sig
function as the activate function are designed. The predicted
procedure of the ELMANneural network can be expressed as

ℎ𝑗𝑡 (𝑘) = 𝑓ℎ [[
𝑚∑
𝑖=1

(𝑤𝑖𝑖𝑗𝑥𝑖𝑡 (𝑘) + 𝑏𝑖) + 𝑛∑
𝑗=1

𝑤𝑟𝑗ℎ𝑗𝑡 (𝑘 − 1)]] (16)

𝑦𝑡+1 (𝑘) = 𝑓𝑜 [[
𝑚∑
𝑗

𝑤𝑜𝑗ℎ𝑗𝑡 (𝑘) + 𝑏𝑗]] , (17)
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where ℎ𝑗𝑡 denotes the output of the hidden layer, 𝑥𝑖𝑡 is the
input time series at time t, and 𝑤𝑖𝑖𝑗, 𝑤𝑟𝑗 , 𝑤𝑜𝑗 are the connecting
weights between the input layer and hidden layer, between the
recurrent layer and hidden layer, and between hidden layer
and output layer, respectively.

As a Single-Layer FeedforwardNetwork (SLFN), the ELM
neural network is gaining more and more attentions due to
its fast learning speed. Composed of one input layer, one
hidden layer, and one output layer, the ELM neural network
calculates the output weights via Moore-Penrose inverse to
avoid the local optimality and time-consuming problems. To
fairly assess the performances of the benchmark models, the
ELMneural network also has 10 inputs and 14 hidden neurons
which is identical to the ELMAN neural network.

4.4. Multiple-Variables Forecasting. To evaluate the feasibility
and high accuracy of the proposedmodel, several simulations
are conducted on the 11 selected variables. Figures 8–18
exhibit the actual time series and the corresponding predicted



8 Mathematical Problems in Engineering

Table 2: Performance criterions of the proposed model for wind turbine 1.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.217 0.119 0.066 0.206
Generator temperature 0.016 0.01 0.004 0.016
Generator cooling air temperature 0.044 0.016 0.001 0.044
Generator bearing temperature 0.062 0.02 0.016 0.06
Gearbox temperature 0.026 0.014 0 0.026
Gearbox bearing temperature 0.035 0.018 0.002 0.035
Rotor speed 0.216 0.115 0.073 0.203
Battery box temperature 0.074 0.059 -0.016 0.073
Hydraulic pressure 0.211 0.09 -0.09 0.192
Shaft bearing temperature 0.032 0.017 0.003 0.031
Top box temperature 0.037 0.02 0.001 0.037
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Figure 9: The predicted results from the proposed model and
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values of two candidate wind turbines from the proposed
model, the traditional LSTM neural network, the ELMAN
neural network, and the ELM neural network.

As shown in Figures 8–18, the selected variables listed
in Table 1 can characterize the deteriorated procedure of
the components of wind turbine and then reflect the health
degree to which the wind turbines are belonging. The curve
graphs of generator speed, rotor speed, and hydraulic pres-
sure generate the obvious error in the front part, in which
the generator speed and rotor speed drop to zero gradually
and the hydraulic pressure reduces about 15bar with the
same time. Meanwhile, the other variables present the similar
fluctuations, which indicate that the health degree of wind
turbine may degrade during this interval. To further verify
the performance of the forecasting model, four criterions
mentioned in Section 4.1 have been computed collectively,
which are listed in Table 2. As we can see from Table 2,
the detailed criterions of generator speed, rotor speed, and
hydraulic pressure have the larger errors than the other
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Figure 10: The predicted results from the proposed model and
benchmarkmodels for the generator cooling air temperature.

variables. Combining with Figures 8–18, the lines predicted
by the proposed model of the remaining features are nearly
overlapped with the actual one. Therefore, the health state
of the wind turbine may be influenced by the generator or
hydraulic press. Furthermore, comparative results of the tra-
ditional LSTM neural network, the ELMAN neural network,
and the ELM neural network are presented in Tables 3, 4, and
5 to verify the efficiency of the proposed model.

As shown in Tables 3–5, compared with the traditional
LSTM, the proposed model improved the RMSE, MAE,
BIAS, and SDE by 0.582, 0.541, 0.442, and 0.364 on the
eleven SCADA variables in total. This is mainly due to the
analysis of variance, which categorizes the time series of
SCADA variables to promote the predictability. As for the
ELMAN network and ELM network, limited by the shallow
architecture, the predicted performances are far behind than
the proposed model. The proposed model improved the
RMSE, MAE, BIAS, and SDE by 2.249, 2.316, 1.958, and 0.602
compared to the ELMANnetwork and 2.183, 2.899, 1.955, and
1.216 compared to the ELM network.
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Table 3: Performance criterions of the traditional LSTM for wind turbine 1.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.23 0.14 0.08 0.22
Generator temperature 0.046 0.034 0.01 0.046
Generator cooling air temperature 0.058 0.034 0.013 0.057
Generator bearing temperature 0.16 0.12 0.12 0.11
Gearbox temperature 0.058 0.044 0.031 0.049
Gearbox bearing temperature 0.049 0.038 0.01 0.048
Rotor speed 0.23 0.14 0.079 0.214
Battery box temperature 0.065 0.057 -0.046 0.076
Hydraulic pressure 0.294 0.1 -0.094 0.27
Shaft bearing temperature 0.315 0.294 0.294 0.114
Top box temperature 0.047 0.038 0.005 0.046

Table 4: Performance criterions of the ELMAN for wind turbine 1.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.257 0.20 0.012 0.257
Generator temperature 0.255 0.221 0.221 0.127
Generator cooling air temperature 0.219 0.192 0.171 0.137
Generator bearing temperature 0.391 0.380 0.380 0.091
Gearbox temperature 0.156 0.095 -0.05 0.148
Gearbox bearing temperature 0.149 0.089 -0.036 0.145
Rotor speed 0.264 0.203 0.01 0.264
Battery box temperature 0.509 0.502 0.502 0.079
Hydraulic pressure 0.130 0.079 -0.045 0.122
Shaft bearing temperature 0.709 0.708 0.708 0.032
Top box temperature 0.18 0.145 0.132 0.123
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Figure 11: The predicted results from the proposed model and
benchmarkmodels for the generator bearing temperature.

To demonstrate the generalization of the forecasting
model, we adopted another wind turbine as the experimental
subject. By taking the training and testing samples having
the same size with wind turbine 1, Figures 19–29 and

0 100 200 300
30

40

50

60

Time (1 hour)

G
ea

rb
ox

 te
m

pe
ra

tu
re

 (∘
C)

actual
ELM
LSTM

ELMAN
the proposed model

Figure 12: The predicted results from the proposed model and
benchmarkmodels for the gearbox temperature.

Tables 6, 7, 8, and 9 describe the generalized capability of the
forecasting model jointly.

Tables 6–9 demonstrate the strong generalized ability of
the proposed model in the numerical view. Same as the first
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Table 5: Performance criterions of the ELM for wind turbine 1.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.28 0.23 0.097 0.287
Generator temperature 0.4 0.34 0.29 0.28
Generator cooling air temperature 0.17 0.13 0.09 0.14
Generator bearing temperature 0.24 0.2 0.2 0.13
Gearbox temperature 0.24 0.2 0.078 0.23
Gearbox bearing temperature 0.22 0.17 0.042 0.212
Rotor speed 0.13 0.017 0.19 0.13
Battery box temperature 0.59 0.57 0.57 0.152
Hydraulic pressure 0.284 0.967 -0.092 0.34
Shaft bearing temperature 0.55 0.54 0.54 0.189
Top box temperature 0.049 0.033 0.01 0.049

Table 6: Performance criterions of the proposed model for wind turbine 2.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.292 0.172 -0.154 0.248
Generator temperature 0.024 0.018 0.012 0.021
Generator cooling air temperature 0.054 0.033 0.017 0.051
Generator bearing temperature 0.031 0.024 0.016 0.026
Gearbox temperature 0.025 0.016 0.005 0.027
Gearbox bearing temperature 0.021 0.014 -0.005 0.02
Rotor speed 0.288 0.173 -0.148 0.246
Battery box temperature 0.062 0.044 -0.009 0.061
Hydraulic pressure 0.037 0.02 -0.001 0.037
Shaft bearing temperature 0.049 0.024 0.003 0.049
Top box temperature 0.016 0.01 0.004 0.016
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Figure 13: The predicted results from the proposed model and
benchmarkmodels for the gearbox bearing temperature.

case, benefiting from the analysis of variance, the proposed
model has improved the RMSE, MAE, BIAS, and SDE by
0.319, 0.289, 0.093, and 0.149 on the eleven SCADA variables
compared to the traditional LSTM model. In addition, the
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Figure 14: The predicted results from the proposed model and
benchmarkmodels for the rotor speed.

ELMAN network and ELM network produced the worst
predicted results on the eleven SCADA variables. As for the
performance criterion, compared with the proposed model,
the ELMANnetwork increases theRMSE from0.899 to 2.752,
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Table 7: Performance criterions of the traditional LSTM neural network for wind turbine 2.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.296 0.173 -0.147 0.256
Generator temperature 0.056 0.037 0.015 0.056
Generator cooling air temperature 0.076 0.045 0.13 0.075
Generator bearing temperature 0.057 0.043 0.019 0.054
Gearbox temperature 0.035 0.028 0.017 0.031
Gearbox bearing temperature 0.066 0.052 -0.02 0.063
Rotor speed 0.3 0.178 -0.151 0.242
Battery box temperature 0.105 0.1 0.1 0.033
Hydraulic pressure 0.087 0.046 -0.015 0.085
Shaft bearing temperature 0.11 0.11 -0.11 0.026
Top box temperature 0.03 0.025 -0.005 0.03

Table 8: Performance criterions of the ELMAN for wind turbine 2.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.314 0.175 -0.151 0.262
Generator temperature 0.088 0.067 0.04 0.088
Generator cooling air temperature 0.126 0.103 0.22 0.124
Generator bearing temperature 0.314 0.288 0.288 0.123
Gearbox temperature 0.21 0.122 0.017 0.031
Gearbox bearing temperature 0.215 0.155 -0.15 0.154
Rotor speed 0.294 0.18 -0.148 0.249
Battery box temperature 0.27 0.262 0.262 0.067
Hydraulic pressure 0.343 0.32 0.32 0.122
Shaft bearing temperature 0.207 0.19 -0.189 0.086
Top box temperature 0.371 0.364 0.364 0.072
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Figure 15: The predicted results from the proposed model and
benchmarkmodels for the battery box temperature.

the MAE from 0.548 to 2.226, the BIAS from -0.26 to 0.873,
and the SDE from 0.802 to 1.378.The ELM network increases
the RMSE from 0.899 to 3.285, the MAE from 0.548 to 2.62,
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Figure 16: The predicted results from the proposed model and
benchmarkmodels for the hydraulic pressure.

the BIAS from -0.26 to -1.204, and the SDE from 0.802 to
2.203.

As drawn in Figures 19–29, dissimilar to wind turbine 1,
the middle and latter parts of the generator speed and rotor
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Table 9: Performance criterions of the ELM for wind turbine 2.

SCADA variables RMSE MAE BIAS SDE
Generator speed 0.351 0.266 -0.248 0.248
Generator temperature 0.415 0.386 -0.376 0.176
Generator cooling air temperature 0.416 0.357 -0.351 0.223
Generator bearing temperature 0.063 0.046 -0.019 0.061
Gearbox temperature 0.264 0.195 -0.01 0.264
Gearbox bearing temperature 0.265 0.168 -0.121 0.235
Rotor speed 0.293 0.175 -0.183 0.266
Battery box temperature 0.251 0.239 -0.235 0.087
Hydraulic pressure 0.507 0.419 0.386 0.33
Shaft bearing temperature 0.204 0.184 -0.181 0.095
Top box temperature 0.256 0.185 0.134 0.218
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Figure 17: The predicted results from the proposed model and
benchmarkmodels for the shaft bearing temperature.
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Figure 18: The predicted results from the proposed model and
benchmarkmodels for the top box temperature.

0 100 200 300
0

400

800

1200

1600

2000

Time (1 hour)

G
en

er
at

or
 sp

ee
d 

(r
pm

)

actual
ELM
LSTM

ELMAN
the proposed model

Figure 19: The predicted results from the proposed model and
benchmarkmodels for the generator speed.
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Figure 20: The predicted results from the proposed model and
benchmarkmodels for the generator temperature.
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Figure 21: The predicted results from the proposed model and
benchmarkmodels for the generator cooling air temperature.
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Figure 22: The predicted results from the proposed model and
benchmarkmodels for the generator bearing temperature.

speed have presented the trend of volatility. However, the
predicted values of the hydraulic pressure are nearly identical
to the actual values, which is totally different from the first
case. It in another view proves the complex structure of the
wind turbine and the necessity of the accurate health state
assessment method.

4.5. Health Degree Assessment of the Wind Turbine. As
observed from the two cases, the proposed model produces
the health degree by employing the weighted assessment
method. Tomake a clear statement, the health degree and the
curve of wind power are all denoted in Figures 30–33.

Figures 30–33 plot the results of assessing the health
degree on two wind turbines and the corresponding wind
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Figure 23: The predicted results from the proposed model and
benchmarkmodels for the gearbox temperature.

0 100 200 300
40

50

60

70

80

Time (1 hour)

actual
ELM
LSTM

ELMAN
the proposed model

G
ea

rb
ox

 b
ea

ri
ng

 te
m

pe
ra

tu
re

 (∘
C)

Figure 24: The predicted results from the proposed model and
benchmarkmodels for the gearbox bearing temperature.

power curves. The health degrees of wind turbine 1 in the
testing time are almost larger than 0.6, except for the front
part in which the health degrees of wind turbine 1 gradually
drop to zero.Meanwhile, in the same interval, thewind power
reduces from 1600 to 0. Combining with Figures 8–18, the
wind turbine may be in fault state in this part, the wind
turbinemay be in fault state. As forwind turbine 2, Figures 32-
33 give a rough estimate of the fluctuant health trend under
the operating environment. As regulated in Section 3.4, in the
middle and latter part of health degree curve of wind turbine
2, the values are around 0.3 which means the wind turbine
would provide “red alerts.” Generally speaking, wind turbine
1 tends to work steadier than wind turbine 2 in the testing
time.
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Figure 25: The predicted results from the proposed model and
benchmarkmodels for the rotor speed.
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Figure 26: The predicted results from the proposed model and
benchmarkmodels for the battery box temperature.

5. Conclusion

In this paper, the analysis of variance is embedded into
the LSTM network to perform the prediction of SCADA
data which is observed as the time-series data. Then, the
weighted assessmentmethod is introduced to evaluate several
significant components and achieve the health degree to
which the wind turbine is belonging. The performance of
the proposed model is considered acceptable owing to the
experimental results. However, to achieve the best assessing
performance, the normal running data should be collected
in the first place which would be a time-consuming task. In
addition, in this paper, the optimal grouping by the analysis of
variance is searched by experience. The further research can
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Figure 27: The predicted results from the proposed model and
benchmarkmodels for the hydraulic pressure.
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Figure 28: The predicted results from the proposed model and
benchmarkmodels for the shaft bearing temperature.

focus on the optimal classification by intelligent algorithms
for producing the best predicted performance.
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Figure 29: The predicted results from the proposed model and
benchmarkmodels for the top box temperature.

0 100 200 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample

H
ea

lth
 d

eg
re

e

Figure 30:The trend of the health degree for wind turbine 1.
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Figure 31: The wind power series in the testing period for wind
turbine 1.
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Figure 32: The trend of the health degree for wind turbine 2.
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Figure 33: The wind power series in the testing period for wind
turbine 2.
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