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This article considers a two-stage assembly scheduling problem (TSASP) with batch setup times, time-dependent deterioration, and
preventive maintenance activities (PMAs). The objective of this problem is to simultaneously determine the optimal component-
manufacturing sequence (CMS), product-assembly sequence (PAS), number of setups, and number and position of PMAs (PPMA).
First, to determine the optimal solution, a novel mixed integer linear programming model (MILP) for the proposed problem is
derived. Then, a standard genetic algorithm (SGA), hybrid genetic algorithm (HGA), standard harmony search (SHS), hybrid
harmony search (HHS), and harmony-search-based evolutionary algorithm (HSEA) were proposed owing to the intractability of
the optimal solution for large-scale problems. SGA and SHS provide a chromosome to represent a complete solution including
three decisions (CMS, PAS, and PPMA). HGA, HHS, and HSEA provide a chromosome to represent a partial solution including
PAS. CMS and PPMA are found by an effective local search heuristic based on the partial solution. A computational experiment is
then conducted to evaluate the impacts of the factors on the performance of the proposed algorithms.

1. Introduction

The two-stage assembly scheduling problem (TSASP) is one
of the most widely studied scheduling problems in the litera-
ture and has many applications in the industry. This problem
has been determined under many different settings reflecting
a wide range of application environments [1–3]. However,
most previous studies for TSASP did not consider the delay
of tasks due to deterioration and maintenance activities. In
this article, we consider TSASP with batch setup times,
time-dependent deterioration, and preventive maintenance
activity (PMA). In the first stage, a single machining machine
produces components to assemble products. During the
machining process, a batch setup time occurswhenever a new
component is processed, or the component type is switched
on the machining machine. Each component has a differ-
ent deterioration rate and the deterioration is continuously

accumulated during the production of the component. The
PMA restores the deteriorated processing times of tasks to
the original processing time by the cleaning or maintenance
process on the machines. In the second stage, a single
assembly machine can start assembling several required
components for an ordered product when the components
are available from the first stage. The target manufacturing
system is described in Figure 1. In the figure, 𝐼𝑚 and 𝐽𝑛
represent 𝑚 types of products and 𝑛 types of components,
respectively.

TSASP, like the other scheduling problems, has widely
received attention in the literature [4–7]. Due to complex
schemes of the problem, many studies proposed metaheu-
ristic algorithms. Allahverdi and Al-Anzi [3] proposed a
particle-swarm optimization algorithm (PSO), tabu-search
algorithm (TS), and local search heuristic in a two-stage dis-
tributed database application. Their computational analysis
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Figure 1: Overall structure of targeting manufacturing system.

indicates that the difference between the average errors of
PSO is the best. Al-Anzi and Allahverdi [8] proposed a self-
adaptive differential evolution heuristic (SADEH) for TSASP
with respect to maximum lateness criterion where setup
times are treated as separate from processing times. Yan et al.
[9] proposed a hybrid variable neighborhood search (VNS)
algorithm to minimize the weighed sum of the maximum
makespan, earliness, and lateness on parallel-manufacturing
machines and a single assembly machine in TSASP. Komaki
et al. [10] proposed an artificial immune system algorithm
(AIS) to solve a two-stage hybrid flow shop followed by a sin-
gle assembly machine tominimize the makespan andDeng et
al. [11] proposed a competitive memetic algorithm (CMA) to
minimize themakespan in a parallel-manufacturing machine
and a single assembly machine in TSASP. Komaki and Kay-
vanfar [12] proposed a grey wolf optimizer algorithm to solve
the TSASP with release time in a parallel-manufacturing
machine and a single assembly machine. Jung et al. [13]
proposed two hybrid genetic algorithms (HGAs) for two-
stage assembly scheduling problem (TSASP) for processing
products with dynamic-component sizes and a setup time.
They had the same two-stage assembly structure with our
study. The main differences are that they considered no job
deterioration and preventive maintenance activities in the
manufacturing stage.

Meanwhile, many scheduling studies related to single or
parallel machines considered not only a simple manufactur-
ing environment but also various manufacturing environ-
ments such as situations involving deterioration and preven-
tive maintenance [14–18]. According to Gupta and Gupta
[19] and Browne and Yechiali [20], the processing times of
tasks are not constant but increase over time depending

on the sequence of the tasks or their starting times in
many practical environments. This phenomenon is generally
known as the deterioration of resources in the scheduling
problem. Asmentioned earlier, various types of deterioration
occur in practical environments owing to workers’ fatigue,
mal-position of tools, and scraps of operations. Therefore,
scheduling problems with deterioration are universal in a
number of industrial applications. Meanwhile, the deterio-
rated processing times of tasks can be restored to the original
processing times by the cleaning or maintenance process on
the machines. An activity that changes the production effi-
ciency of amachine is called a preventive maintenance activity
(PMA) [21]. According to these previous researches, many
researches were conducted for scheduling problem with
deterioration and PMA. Mosheiov and Sarig [14] considered
a single-machine scheduling and due-window assignment
problem with PMA. The objective of this problem is to
schedule the jobs, due-window and PMA, so as to minimize
the total cost consisting of earliness, tardiness and due-
window starting time and size. Cheng et al. [15] considered
a two-agent scheduling problem in which they assumed that,
given a schedule, the actual processing time of a task of the
first agent is a function of position-based learning, whereas
the actual processing time of a task of the second agent is
a function of position-based deterioration for minimizing
the makespan. Lee et al. [16] considered the total earliness
and tardiness penalty when scheduling simultaneously with
the deterioration effects and maintenance activities on an
unrelated parallel machine setting. Yang [17] considered
the unrelated parallel machines with simultaneous consid-
erations of the deterioration effects and multimaintenance
activities for minimizing the makespan. They examined two
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models of scheduling with the deterioration effect, namely,
the job-dependent and position-dependent deterioration
model and the time-dependent deterioration model. Ji et al.
[18] considered a single-machine scheduling with a common
due-window and a deteriorating PMA. They assumed that
the processing time of a task is a function of the amount
of a resource allocated to it, its position in the processing
sequence, and its aging effect. Cheng [22] introduced a single-
machine two-agent scheduling problem with a truncation
learning effect. The objective is to find an optimal schedule
to minimize the makespan. He used a branch-and-bound
algorithm and three heuristic-based genetic algorithms to
solve the problem. Wu et al. [23] proposed a branch-and-
bound algorithm and some ant colony algorithms for two-
agent single-machine scheduling problem involving with the
sum-of-processing-times-based learning and deteriorating
effects. Wu et al. [24] proposed to integrate the two-agent
and time-dependent processing times scheduling problem
to minimize the total weighted number of tardy jobs of the
first agent with the restriction that the maximum lateness
of a job of the second agent is allowed to have an upper
bound. They also proposed TS for searching near-optimal
solutions. Ruiz-Torres et al. [25] proposed a set of list
scheduling algorithm and simulated annealing algorithm
(SA) for unrelated parallel machines with deterioration
and multimaintenance activities. The results of this paper
indicate that the SA is capable of producing high quality
solutions for a wide range of instances. Joo and Kim [26] and
Chung and Kim [27] considered a single-machine scheduling
problem with various deteriorations and multiple PMAs
for minimizing the makespan. To solve the problem, they
proposed a mathematical model and hybrid genetic algo-
rithms.

To the best of our knowledge, no available effective
metaheuristic algorithms are capable of generating a near-
optimal solution while the TSASP simultaneously consid-
ering batch setup times, time-dependent deterioration, and
PMAs. The remainder of this article is organized as follows.
In Section 2, we describe a mathematical model of this
problem. Section 3 describes five metaheuristic algorithms
that are proposed in this article. First, the standard genetic
algorithm (SGA) and standard harmony search (SHS) are
proposed with a complete solution indicating component-
manufacturing sequence (CMS), product-assembly sequence
(PAS), and position of PMAs (PPMA). Second, hybrid
genetic algorithm (HGA) and hybrid harmony search (HHS)
with local search heuristic are proposed with a partial
solution indicating PAS. The remaining solution of HGA
and HHS indicates CMS and PPMA are provided by local
search heuristic. Finally, a harmony-search-based evolution-
ary algorithm (HSEA) that combines evolutionary algorithm,
harmony search, and local search heuristic is proposed
with a partial solution (CMS and PPMA). In Section 4,
a computational experiment is then conducted to evalu-
ate the impacts of the factors on the performance of the
proposed algorithms using randomly generated instances.
Finally, the conclusion and the future studies are discussed in
Section 5.
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Figure 2: Example for representing dynamic-component size.

2. Mixed Integer Linear
Programming (MILP) Model

In this section, a novel MILPmodel is developed tominimize
the makespan for the TSASP with batch setup times, deterio-
ration, and PMAs.The problem statement of this problemhas
been applied the dynamic-component size. This means that
the kinds and number of components are different for each
product. This is depicted in detail in Figure 2.

According to Figure 2, one unit of component 1, one unit
of component 2, and one unit of component 4 are required
to assemble product 1. One unit of component 3 and one
unit of component 4 are required to assemble product 2.
Finally, one unit of component 1, one unit of component
2, and one unit of component 4 are required to assemble
product 3. As such, various combinations of components for
product types are required. Thus, the size of the components
is dynamically changed according to the associated product,
which is called a dynamic-component size. The TSASP has
a realistic production process with the manufacturing stage
and assembly stage. In the first stage, a single machining
machine produces components to assemble products. During
the machining process, a batch setup time occurs whenever
the machining machine produces a different component of a
new component.

Each component has a different deterioration rate and
the deterioration is continuously accumulated during the
producing the component. The PMA restores the deteriora-
tion when it is most appropriate in order to minimize the
makespan. In the second stage, a single assembly machine
starts to assemble products whenever the required compo-
nents of the corresponding the product are available from the
first stage.

The notations, decision variables, basic assumptions, and
a mathematical model for the proposed problem are as
follows:

(i) Sets

𝐼: product types
𝐽: component types
𝐾: indices of product sequence to be assembled
𝐿: indices of component sequence to bemanufactured

(ii) Parameters

𝜇: batch setup time in the machining machine
𝛼𝑗: manufacturing time for 𝑗 ∈ 𝐽
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𝛽𝑖: assembly time for 𝑖 ∈ 𝐼
𝜌𝑖𝑗: the required number of 𝑐 ∈ 𝐶 for 𝑖 ∈ 𝐼
𝛾𝑗: the deterioration rate for 𝑗 ∈ 𝐽
𝜎: PMA time
𝑀: big number

(iii) Decision Variables

𝑙𝑜𝑐𝑘𝑗𝑙: the required number of 𝑗 ∈ 𝐽 for assembling to𝑘 ∈ 𝐾 at 𝑙 ∈ 𝐿
𝑐𝑛𝑐𝑗𝑙: the cumulated number of 𝑗 ∈ 𝐽 at 𝑙 ∈ 𝐿
𝑐𝑛𝑝𝑗𝑘: the cumulated number of used 𝑗 ∈ 𝐽 for
assembling to 𝑘 ∈ 𝐾
𝑐𝑡𝑐𝑙: completion time of component at 𝑙 ∈ 𝐿
𝑐𝑡𝑝𝑘: completion time of any product assigned to 𝑘 ∈𝐾
𝑎V𝑡𝑘𝑙: available time for assembling any product
assigned to 𝑘 ∈ 𝐾 at 𝑙 ∈ 𝐿
𝑐𝑡𝑠𝑙: cumulative time of setup at 𝑙 ∈ 𝐿
𝑑𝑘: temporary variable for linearization
𝑒𝑘: temporary variable for linearization
𝐶𝑚𝑎𝑥: makespan for the TSASP
V𝑗𝑙 = {1, If 𝑗 ∈ 𝐽 is scheduled at 𝑙 ∈ 𝐿; 0,Otherwise}
𝑤𝑖𝑘 = {1, If 𝑖 ∈ 𝐼 is scheduled at 𝑘 ∈ K; 0,
Otherwise}
𝑥𝑙 = {1, If 𝑙 ∈ 𝐿 and 𝑙 − 1 ∈ 𝐿 are the same;0,Otherwise}
𝑦𝑘𝑙 = {1, If there is at least one required component
for assembling any product assigned to 𝑘 ∈ 𝐾 at 𝑙 ∈𝐿; 0,Otherwise}
𝑧𝑙 = {1, If there is a PMA to 𝑙 ∈ 𝐿; 0,Otherwise}
𝑓𝑗𝑙 ∈ 𝐵: temporary variable for linearization
𝑔𝑘𝑙 ∈ 𝐵: temporary variable for linearization

(iv) Basic Assumptions

(1) All components are available at time zero
(2) The machining machine produces at most one com-

ponent
(3) The deterioration makes only component in machin-

ing machine
(4) The assembly machine assembles at most one assem-

bly operation
(5) All batch setup times are identical
(6) All PMA times are identical
(7) The machining and assembly machines are continu-

ously available
(8) No preemptions are allowed in the machining and

assembly operations

(9) There are unlimited buffers between the machining
machine and assembly machine

(v) Mixed Integer Linear Programming (MILP) Model

min𝐶𝑚𝑎𝑥 (1)

The objective function in (1) is to minimize the makespan
of the TSASP.

∑
𝑐∈𝐶

V𝑗𝑙 = 1, ∀𝑙 ∈ 𝐿 (2)

∑
𝑖∈𝐼

𝑤𝑖𝑘 = 1, ∀𝑘 ∈ 𝐾 (3)

∑
𝑘∈𝐾

𝑤𝑖𝑘 = 1, ∀𝑖 ∈ 𝐼 (4)

The constraints in (2) ensure that the machining machine
must produce only one component at each 𝑙 ∈ 𝐿. The
constraints in (3) and (4) ensure that assembly machine must
produce only one product at each 𝑘 ∈ 𝐾.

∑
𝑙∈𝐿

V𝑗𝑙 = ∑
𝑖∈𝐼

𝜌𝑖𝑗, ∀𝑗 ∈ 𝐽 (5)

𝑥𝑙 = max
𝑗∈𝐽

(V𝑗𝑙−1 + V𝑗𝑙, 1) − 1, ∀𝑙 ∈ 𝐿, 𝑙 > 1 ∀𝑗 ∈ 𝐽 (6)

The constraints in (5) ensure that the amount in which
each component is produced corresponded to the number of
the components required to assemble all the products. The
constraints in (6) define the batch relationship determining
that two consecutive components are the same.

𝑐𝑡𝑐𝑙 ≥ 𝜎 ∙ 𝑧𝑙 + 𝜇 +∑
𝑗∈𝐽

𝛼𝑗 ∙ V𝑗𝑙, 𝑙 = 1 (7)

𝑐𝑡𝑐𝑙 ≥ 𝑐𝑡𝑐𝑙−1 + 𝛾𝑗 ∙ (𝑐𝑡𝑐𝑙−1 − 𝑐𝑡𝑠𝑙−1) + 𝜎 ∙ 𝑧𝑙 + 𝜇
∙ (1 − 𝑥𝑙) + 𝛼𝑗 ∙ V𝑗𝑙 −𝑀 ∙ (1 − V𝑗𝑙) ,

∀𝑙 ∈ 𝐿, 𝑙 > 1, ∀𝑗 ∈ 𝐽
(8)

The constraints in (7) and (8) define the completion time
of each component. The completion time for first 𝑙 ∈ 𝐿 is
calculated by adding the batch setup time, the machining
time for the component assigned to first 𝑙 ∈ 𝐿, and the
PMA time that determines whether PMA is conducted or
not through 𝑧𝑙 as shown in (7). After that, the constraints
in (8) calculate the batch setup time according to different
component added to 𝑙 ∈ 𝐿 compared to the component at 𝑙 −1 ∈ 𝐿 and add a deterioration time of the current component
and the PMA time is determined through whether or not the
PMA is conducted.

𝑐𝑡𝑝𝑘 ≥ min
𝑙∈𝐿

(𝑎V𝑡𝑘𝑙) +∑
𝑖∈𝐼

𝛽𝑖 ∙ 𝑤𝑖𝑘, 𝑘 = 1 (9)

𝑐𝑡𝑝𝑘 ≥ max (𝑐𝑡𝑝𝑘−1,min
𝑙∈𝐿

(𝑎V𝑡𝑘𝑙)) +∑
𝑖∈𝐼

𝛽𝑖 ∙ 𝑤𝑖𝑘,
∀𝑘 ∈ 𝑘, 𝑘 > 1

(10)
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The constraints in (9) and (10) define the completion time
of each product. The completion time for first 𝑘 ∈ 𝐾 is
calculated by adding the minimum available assembly time
for a product and the assembly time for the product as shown
in (9). Following this, the constraints in (10) consider the
completion time of the previous 𝑘 ∈ 𝐾 due to the sufficient
condition for operating the assembly machine.

𝑐𝑛𝑐𝑗𝑙 = 𝑙∑
𝑎=1

V𝑗𝑎, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿 (11)

𝑐𝑛𝑝𝑗𝑘 = ∑
𝑖∈𝐼

(𝜌𝑖𝑗 ∙ 𝑘∑
𝑎=1

𝑤𝑖𝑎) , ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾 (12)

The constraints in (11) and (12) define the number of
manufactured components at each 𝑙 ∈ 𝐿 and the cumulated
number of required components, respectively.

min (𝑀 ∙ 𝑧𝑙 + 𝜇, 𝑐𝑡𝑐𝑙) ≥ 𝑐𝑡𝑠𝑙, 𝑙 = 1 (13)

min (𝑀 ∙ 𝑧𝑙 + 𝑐𝑡𝑠𝑙−1 + 𝜇 ∙ (1 − 𝑥𝑙) , 𝑐𝑡𝑐𝑙 − 𝑐𝑡𝑠𝑙−1)
≥ 𝑐𝑡𝑠𝑙, ∀𝑙 ∈ 𝐿, 𝑙 > 1 (14)

𝑙𝑜𝑐𝑘𝑗𝑙 = max (𝑐𝑛𝑝𝑗𝑘 − 𝑐𝑛𝑐𝑗𝑙, 0) ,
∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝑘, ∀𝑙 ∈ 𝐿 (15)

The constraints in (13) and (14) define the cumulative
batch setup time for calculating pure (without batch setup
time) manufacturing time of component with deterioration.
Both are used to define a lack of components at each 𝑙 ∈ 𝐿
as stated in the constraints in (15). Note that the term for the
lack of components determines whether there is the lack of
components.

𝑎V𝑡𝑘𝑙 = 𝑐𝑡𝑐𝑙 +𝑀 ∙ 𝑦𝑘𝑙, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿 (16)

The constraints in (16) determine the available assembly
time for a product in each 𝑙 ∈ 𝐿 by assuming a significant
penalty value for the lack into account.

𝑀 ∙ 𝑦𝑘𝑙 ≥ ∑
𝑗∈𝐽

𝑙𝑜𝑐𝑘𝑗𝑙, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿 (17)

The constraints in (17) ensure that 𝑦𝑘𝑙 is equal to 1, if sum
of 𝑙𝑜𝑐𝑘𝑗𝑙 is nonnegative value.

𝐶𝑚𝑎𝑥 ≥ 𝑐𝑡𝑝𝑘, ∀𝑘 ∈ 𝐾 (18)

Finally, the constraints in (18) ensure the makespan of
the TSASP. As a result, the optimal solution of component-
manufacturing sequence (CMS), optimal solution of
product-assembly sequence (PAS), and position of preventive
maintenance activity (PPMA) are determined by𝑤𝑖𝑘, V𝑗𝑙, and𝑧𝑙.

For the solving the problem by using CPLEX, some
equations containing nonlinear functions such as min and
max functions in (6), (9), (10), (13), (14), and (15) should
be linearized. Some substitution variables are additionally

defined to linearize the equations. The additional equations
and additional variables related to the linearization are as
follows:

(vi) DecisionVariables andModifiedConstraints for Lineariza-
tion

𝑑𝑘, 𝑒𝑘: substitution variable for calculating the objec-
tive in linearized model

𝑓𝑗𝑙 = {1, specific 𝑗 ∈ 𝐽 is produced continuously in a
specific 𝑙 ∈ 𝐿; 0,Otherwise}
𝑔𝑘𝑙 = {1, specific 𝑘 ∈ 𝐾 is assembled at specific 𝑙 ∈𝐿; 0,Otherwise}

Constraints (6), (9), (10), (13), (14), and (15) can be
modified as follows:

V𝑗𝑙 + V𝑗𝑙−1 ≤ 𝑓𝑗𝑙 + 1, ∀𝑙 ∈ 𝐿, 𝑙 > 1, ∀𝑗 ∈ 𝐽 (6a)
V𝑗𝑙 + V𝑗𝑙−1 ≥ 2𝑓𝑗𝑙, ∀𝑙 ∈ 𝐿, 𝑙 > 1, ∀𝑗 ∈ 𝐽 (6b)

𝑥𝑙 = ∑
𝑗∈𝐽

𝑓𝑗𝑙, ∀𝑙 ∈ 𝐿, 𝑙 > 1 (6c)
Constraints (6a) and (6b) define 𝑓𝑗𝑙 according to whether

a specific 𝑗 ∈ 𝐽 is produced continuously in a specific 𝑙 ∈ 𝐿.
Constraint (6c) defines 𝑥𝑙 to 1 if a specific 𝑗 ∈ 𝐽 is produced
continuously in a specific 𝑙 ∈ 𝐿.

𝑐𝑡𝑝𝑘 ≥ 𝑑𝑘 +∑
𝑖∈𝐼

𝛽𝑖 ∙ 𝑤𝑖𝑘, 𝑘 = 1 (9a)
𝑎V𝑡𝑘𝑙 ≥ 𝑑𝑘, 𝑘 = 1 (9b)

𝑎V𝑡𝑘𝑙 −𝑀(1 − 𝑔𝑘𝑙) ≥ 𝑑𝑘, 𝑘 = 1 (9c)
∑
𝑙∈𝐿

𝑔𝑘𝑙 = 1, 𝑘 = 1 (9d)
Constraint (9a) defines the completion time of each

product for first 𝑘 ∈ 𝐾. Constraint (9b) limits the upper
bound of 𝑑𝑘 as a minimum value of 𝑎V𝑡𝑘𝑙. Furthermore, 𝑑𝑘
is searched by its lower bound in the optimization problem
solving method because 𝑑𝑘 is part of the objective. In order
to let value of 𝑑𝑘 induce as 𝑎V𝑡𝑘𝑙, constraints for matching the
lower bound with the upper bound of 𝑑𝑘 are essential and
it can be conducted through Constraint (9c) and Constraint(9d). Note that the variables, 𝑔𝑘𝑙, will be set as 1 in order for
the feasibility of Constraints (9c) and (9d).

𝑐𝑡𝑝𝑘 ≥ 𝑒𝑘 +∑
𝑖∈𝐼

𝛽𝑖 ∙ 𝑤𝑖𝑘, ∀𝑘 ∈ 𝑘, 𝑘 > 1 (10a)
𝑐𝑡𝑝𝑘−1 ≤ 𝑒𝑘, ∀𝑘 ∈ 𝑘, 𝑘 > 1 (10b)

𝑑𝑘 ≤ 𝑒𝑘, ∀𝑘 ∈ 𝑘, 𝑘 > 1 (10c)
Constraint (10a) represents that 𝑎V𝑡𝑘𝑙 formulated in

Constraint (10) is changed to 𝑒𝑘. Constraints (10b) and (10c)
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Table 1: The production parameter for Example 1.

Product types Batch setup time
(s) PMA time (s) Assembly time

(s)

Required number of components
(processing time, deterioration rate)

𝐽1 (21, 0.05) 𝐽2 (27, 0.10) 𝐽3 (24, 0.15) 𝐽4 (26, 0.20)𝐼1
8 5

36 1 1 - 1
𝐼2 42 - - 1 1
𝐼3 37 1 1 - 1

0 8 32 40 61
62.2

83.2
85.51

90.51
98.51 129.51

124.51

155.51
160.51

186.51
194.51

221.51 251.11
256.67

261.11 297.11224.11166.51

First stage

Second stage

Deterioration by component Jj

 J3 J1J1 J4J4J4 J2J2  

I2 I2 I1

Figure 3: Gantt chart for an example with the optimal schedule.

define the lower bound of 𝑒𝑘 as a larger value between 𝑐𝑡𝑝𝑘−1
and 𝑑𝑘.

𝑐𝑡𝑠𝑙 ≤ 𝑀 ∙ 𝑧𝑙 + 𝜇 𝑙 = 1 (13a)
𝑐𝑡𝑠𝑙 ≤ 𝑐𝑡𝑐𝑙, 𝑙 = 1 (13b)
𝑐𝑡𝑠𝑙 ≤ 𝑀 ∙ 𝑧𝑙 + 𝑐𝑡𝑠𝑙−1 + 𝜇 ∙ (1 − 𝑥𝑙) ,

∀𝑙 ∈ 𝐿, 𝑙 > 1 (14a)
𝑐𝑡𝑠𝑙 ≤ 𝑐𝑡𝑐𝑙 − 𝑐𝑡𝑠𝑙−1, ∀𝑙 ∈ 𝐿, 𝑙 > 1 (14b)

𝑙𝑜𝑐𝑘𝑗𝑙 ≥ 𝑐𝑛𝑝𝑗𝑘 − 𝑐𝑛𝑐𝑗𝑙, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝑘, ∀𝑙 ∈ 𝐿 (15a)
𝑙𝑜𝑐𝑘𝑗𝑙 ≥ 0, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝑘, ∀𝑙 ∈ 𝐿 (15b)
The constraints in Constraints (13a), (13b), (14a), (14b),(15a), and (15b) can be rewritten as the decomposition con-

straints of the max or min function included in Constraints
(13), (14), and (15) for linearization.

To validate the MILP model, an illustrative example
with four components and two product types and detail
parameters are provided in Figure 2 and Table 1, respec-
tively. With the optimal CMS, PAS, and PPMA, component-
manufacturing completion times, product-assembly comple-
tion times, and the makespan are calculated in Figure 3.

The processing times of component 1∼4 are 21, 27, 24,
and 26, respectively. The assembly times of products 1∼3
are 36, 42, and 37, respectively. The batch setup time and
PMA time are 8 and 5, respectively. The optimal CMS in
the first stage calculated by CPLEX Optimization Studio
is 3-1-1-4-4-4-2-2 and the corresponding completion times
of the components are 32, 62.2, 85.51, 124.51, 155.51, 186.51,
224.11, and 256.67, respectively.Theoptimal position of PMAs
in the first stage is 0-0-1-1-1-0-0-0. The PAS in the second
stage is 2-3-1 and the corresponding available assembly time
of the products is 124.51, 224.11, and 261.11, respectively.
According to Figure 1, the first PAS, product 2, is composed

of a unit each of component 3 and component 4. Product
2 can be assembled when component 3 and component 4
are completelymanufactured. In accordance with the optimal
CMS, the latest component between the components of
product 2 is component 3, and it is completely manufactured
at 124.51. Therefore, product 2 can start to be assembled at
124.51.The available assembly time of the remainder products
also follows the same procedure. The completion time of the
final product in PAS is the makespan of the problem, and it
is determined by CPLEX to 297.11. The Gantt chart for the
optimal schedule for the example is illustrated in Figure 3.

3. Metaheuristics

The MILP model proposed in this article is not tractable
for TSASP because it is a typical combinatorial optimization
problem. To solve the large-scale problems, we focus on
developing effective metaheuristic algorithms and propose
SGA, SHS, HGA, HHS, and HSEA.

3.1. Batching Heuristic Reducing Setup Time and Total Dete-
rioration Time. In this section, batching heuristic reducing
the number of setups and total deterioration time (BSD) is
proposed. The heuristic basically groups the same type of
components together to reduce the number of setups and
adds PMAs to reduce the total deterioration time of com-
ponents. Thus, the BSD is guaranteed to minimize the total
assembly time in the second stage by reducing the total
manufacturing time by constructing an effective CMS and
PPMA.

First, BSD is usedwith the predefined PAS to find the nec-
essary components of each product. Then, the first product
in PAS is selected. The component with the highest require-
ments for the first product is selected. If several of the highest
requirements of the components are equal, the component
with the longest processing time is selected. When all the
components are scheduled, the same process is repeated for
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Input: PAS←󳨀 𝑤
Output: complete CMS←󳨀 V and PPMA←󳨀 z
Initialization:

Let requirement of components for each product, 𝜃 ←󳨀 0
Let highest requirement of component for product, 𝜔 ←󳨀 0
Let CMS V ←󳨀 0
Let PPMA z ←󳨀 0

Begin(1) Repeat(2) Repeat(3) Calculate the 𝜃 by requiring number of component types for each product type for 𝑤(4) Select the component with the highest requirement in 𝜃(5) If the number of requirements of component is equal in 𝜃(6) Select the component with the longest processing time(7) End If(8) Insert the selected component to 𝜔(9) Until 𝜃(10) Insert 𝜔 to V(11) Until Length of 𝑤(12) Set V as many as number of 𝜃(13) Repeat(14) If completion time of index for current V with a PMA ≤ completion time of index for current V(15) z ←󳨀 1(16) Else(17) z ←󳨀 0(18) End If(19) Until Length of z
End

Algorithm 1: Pseudocode for BSD.

the next product in PAS. The process is repeated until all
products in PAS are scheduled. As a result, the corresponding
CMS is constructed by the current PAS. Then, to assign
the effective PPMA, the PMA time is compared with the
total deterioration time of the components from the previous
PMA. If PMA time is less than total deterioration time of
the previous components, a PMA is added and the current
component is manufactured after the PMA. Otherwise, the
current component is continuously manufactured without a
PMA.The process is repeated until all PPMA are constructed
in CMS. The pseudocode of BSD is shown in Algorithm 1.

An illustrative example from Figure 2 and Table 1
describes BSD. Suppose that PAS is {𝐼2-𝐼3-𝐼1}, which means
one unit of product 2, one unit of product 3, and one unit of
product 1 are sequentially assembled in the second stage. Let
CMS initially be 0. In order to assemble 𝐼2 at the first position
of PAS in the second stage, one unit of 𝐽4 and one unit of 𝐽3 are
sequentially scheduled in the first stage, because the longest
processing time (LPT) based assignment rule is applied for
the CMS rule. Once all components in 𝐼2 are scheduled in
the first stage, the current CMS is updated as {𝐽4-𝐽3}. Next,
in order to assemble 𝐼3 at the second position of PAS in the
second stage, one unit each of 𝐽2, 𝐽4, and 𝐽1 must be ready
by LPT rule. They are sequentially assigned to a position
behind the same job to reduce the setup time. The resulting
current CMS is updated as {𝐽4-𝐽4-𝐽3-𝐽2-𝐽1}. At last, in order to
assemble 𝐼1 at the third position of PAS in the second stage,
one unit each of 𝐽2, 𝐽4, and 𝐽1 must be ready by LPT rule.

They are also sequentially assigned to a position behind the
same job to reduce the setup time. Thus, the CMS is updated
as {𝐽4-𝐽4-𝐽4-𝐽3-𝐽2-𝐽2-𝐽1-𝐽1}. The PPMA is constructed by
comparing the PMA time and total deterioration time of
the components from the previous PMA. By the CMS, the
corresponding PPMA is 1-1-1-0-1-0-0-0. Each value of PPMA
determines the execution of PMAs according to each value.
According to Table 1, the deterioration rate and processing
time for the first component 𝐽4 are 26 and 0.20, respectively.
The deterioration time caused by 𝐽4 is 26 ∙ 0.20 = 5.2 and the
PMA time is 5. At this time, the PMA is executed because
the deterioration time caused by 𝐽4 is greater than the PMA
time. Then, the first value of the PPMA vector is 1 which
means the execution of PMA. The rest of the values are
determined in the same way. In particular, the 4th value in
PPMA is 0. This value means that it does not execute the
PMA. The deterioration time caused by the 4th component,𝐽3, is 24 ∙ 0.15 = 3.6. At this time, the PMA is not executed
because the deterioration time caused by 𝐽3 is less than
the PMA time. This process is repeated until all PPMA
corresponding to the CMS are constructed.

3.2. Genetic Algorithms. Thegenetic algorithm (GA), initially
developed by Holland [28], is one of the most powerful
and broadly applicable metaheuristic algorithms based on
the principles of evolution theory. GA is generally in an
effective and efficient algorithm for large-scale combinato-
rial optimization problems [29]. In this article, two GAs
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Figure 4: The chromosome structure for genetic algorithms.

with different solution representations (chromosomes) are
compared for the two-stage assembly scheduling problem
(TSASP). First, SGA uses a chromosome with a complete
solution. The SGA using a chromosome with CMS, PAS,
and PPMA has a chromosome to represent a complete
solution. SGA can explore a wide solution area, because the
chromosome of SGA is randomly generated. However, SGA
mayhave a potential vulnerability to find the optimal solution
if the optimization problem has optimality characteristics.
To improve the vulnerability, the BSD in Section 3.1 must
be combined with HGA. Thus, HGA with a partial solution
provides a chromosome representing one partial solution
(PAS). Then other partial solutions (CMS and PPMA) are
determined by BSD using the partial solution decoded from
the chromosome.

The structure of the chromosome in HGA for TSASP in
this article is required to simultaneously represent a CMS and
a PPMA in the first stage, as well as a PAS in the second
stage. The CMS represents the manufacturing sequence of
the components with consideration of deterioration, PAS
represents the assembly sequence of the products, and PPMA
represents the position of PMA. CMS and PAS use the actual
machining and assembly sequence for the chromosome
without additional decoding process. The value of the gene
in PPMA is binary and it determines the execution of PMAs
according to value of genes (0 or 1). The size of PPMA is
equal to size of CMS because the deterioration occurs only
for components in the machining machine according to the
basic assumption of this problem. The detailed structure of
chromosomes is depicted in Figure 4.

According to Figure 4, the PAS is {𝐼3-𝐼4-𝐼1-𝐼2} and the
CMS and PPMA are {𝐽1-𝐽2-𝐽1-𝐽3-𝐽4-𝐽2-𝐽3-𝐽4-𝐽2-𝐽3-𝐽4} and {0-
1-0-1-0-1-0-0-1-1-0}, respectively. An initial population is ran-
domly generated for the first generation. Each chromosome
of the population is evaluated through the makespan. New
chromosomes for the next generation are generated by using
two genetic operations, which are crossover and mutation.
In HGA, the one-point crossover and swap mutation are
proposed as genetic operations. The main advantage of
these operations is able to avoid infeasible solutions during
the genetic operations. The one-point crossover and swap
mutations are used for all chromosomes equally, and they are
illustrated for CMS in Figure 5.

The chromosome of SGA has a three-dimensional string
array that represents the CMS, PAS, and PPMA, as shown in
Figure 4. The chromosome of HGA has a one-dimensional
string array that represents a PAS and the other partial
solutions (CMS and PPMA) are determined by BSD using
the partial solution decoded from the chromosome. In both
SGA and HGA, the chromosomes for the next generation are

Parent 1

Child

Parent 2

Point

J1 J2 J1 J3 J4 J2 J3 J4 J2 J4 J3

J2 J4 J2 J1 J3 J3 J4 J1 J2 J4 J3

J1 J2 J1 J3 J4 J2 J3 J4 J2 J3 J4

(a) One-point crossover for CMS

Point 2Point 1

Parent

Child J1 J2 J1 J2 J4 J2 J3 J4 J3 J3 J4

J1 J2 J1 J3 J4 J2 J3 J4 J2 J3 J4

(b) Swap mutation for CMS

Figure 5: One-point crossover and swap mutation for CMS.

composed of the top 10% of the chromosomes directly copied
from the current generation and the remaining chromosomes
are stochastically selected by the roulette-wheel selection
from the current generation.Thenext generation is evaluated,
and this process is repeated until the termination criterion
is satisfied. The pseudocode of the GA is described in
Algorithm 2.

3.3. Harmony Search Algorithms. The harmony search algo-
rithm (HS) was initially studied by Geem et al. [30]. The
HS algorithm is inspired by the natural musical performance
process, which occurs when a musician searches for a better
state of harmony. In the HS algorithm, each solution is called
a “harmony” which is represented by a 𝑚-dimensional real-
number vector. An initial population of harmony vectors is
randomly generated in the harmony memory (HM). Then
a new candidate harmony is generated by three operators,
namely, HM consideration, pitch adjustment, and random
selection. The new harmony is updated in the memory
through a comparison of the candidate and the worst har-
mony vector.

In this article, two types of HSs with different solution
representations are compared for the proposed TSASP. First,
SHS uses a solution structure with a complete solution that
represents CMS, PAS, and PPMA. Similar to SGA, HHS and
HHES combine a HM algorithm with a local search-batching
algorithm, BSD. Thus, HHS and HHES construct a solution
structure representing one partial solution, PAS. Then other
partial solutions, CMS and PPMA are determined by BSD
using the PAS. In the HS algorithm, a harmony memory
with 𝑛 harmony vectors, in the 𝑗th harmony vector in the
HM, 𝑋𝑗 = {𝑥𝑗(1), 𝑥𝑗(2), ⋅ ⋅ ⋅ , 𝑥𝑗(𝑚)}, is represented by a m-
dimension real-number vector. So, the harmony is necessary
to convert it to a solution to evaluate the objective function.

In this article, three solution structures, PAS, CMS, and
PPMA, are required to evaluate the makespan. To meet the
conversion, a harmony vector is only converted to a PAS.
Similar to HGA, other partial solutions which are a CMS
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Input: crossover probability, mutation probability, population size, and maximum number of generations, 𝑃𝑐,𝑃𝑚,𝑁𝑝, and𝑁𝑔.
Output: makespan, 𝐶𝑚𝑎𝑥
Initialization:
Let PAS, CMS, and PPMA 𝑤, V, 𝑧 ←󳨀 0

Begin(1) If this algorithm is SGA(2) Randomly generate an initial population for the first generation based on three single-dimensional
arrays(3) End If(4) If this algorithm is HGA(5) Randomly generate an initial population for the first generation based on a single-dimensional

array(6) End If(7) Repeat(8) Repeat(9) If this algorithm is SGA(10) Calculate the objective value through 𝑤, V, and 𝑧(11) End If(12) If this algorithm is HGA(13) Calculate the objective value through V and 𝑧 derived by MBR and 𝑤(14) End If(15) Randomly select two chromosomes in the current population(16) If random probability ≤ 𝑃𝑐(17) Do one-point crossover operation(18) End If(19) If random probability ≤ 𝑃𝑚(20) Do swap mutation operation(21) End If(22) Calculate the fitness value(23) Until𝑁𝑝(24) Cloning the value of the top 10% of the chromosomes to the next generation.(25) Generate the next generation(26) Until𝑁𝑔.
End

Algorithm 2: Pseudocode of GAs.

A random PAS

0.2 0.5 -0.4 0.1 0.5 0.2 0.1 -0.4 0.2 0.5 -0.4 -0.1

An initial PAS

Regular intervalNon-increasing orderK1 K2 K3 K4 K2 K4 K4 K3 K2 K4 K4 K3

xk Ak

Figure 6:Theprocedure for generating an initial harmony vectorwith a regular interval between theminimum andmaximum real-numbers.

and a PPMA are determined by BSD using the PAS. Let
each index of the vector represent a typical product index
from 𝐼 = {1, 2, ⋅ ⋅ ⋅ , 𝑚}, where 𝑚 denotes the number of
products assembled in the second stage.Thereafter, the largest
position value (LPV) rule is employed to obtain a PAS 𝜋 ={𝜋(1), 𝜋(2), ⋅ ⋅ ⋅ , 𝜋(𝐾𝑚)} by ordering the products in their
nonincreasing position value of𝑋𝑗 .Then, the harmony vector
with a regular interval between the minimum and maximum
real-numbers, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥, 𝐴𝑗 = {𝑎𝑗(1), 𝑎𝑗(2), ⋅ ⋅ ⋅ , 𝑎𝑗(𝑚)},
is defined by calculating 𝑎(𝐾𝑖) in
𝑎 (𝐾𝑖) = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛𝑚 − 1 × (𝑘 − 1) ,

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚 (19)

According to Figure 6, we have 4 products and an
initial harmony vector is randomly generated as 𝑋4 ={0.2, 0.5, −0.4, 0.1} with, 𝑥𝑚𝑖𝑛 = −0.4 and 𝑥𝑚𝑎𝑥 = 0.5. A PAS
for𝑋4 is constructed as {𝐾2, 𝐾1, 𝐾4, 𝐾3} by the nonincreasing
order of 𝑋4. In accordance with (19), a(2) = 0.5 − [0.9/3 ×(1 − 1)] = 0.5, a(1) = 0.5 − [0.9/3 × (2 − 1)] = 0.2, a(4) =0.5−[0.9/3×(3−1)] = −0.1, and a(3) = 0.5−[0.9/3×(4−1)] =−0.4. As a result, the corresponding initial harmony vector𝐴4 = {0.2, 0.5, −0.4, −0.1}.

The initial HM of the first iteration contains a randomly
generated harmony vector to represent a PAS. The CMS and
PPMA are generated as an actual machining sequence. PAS
conducts the decoding process that reverses the order of the
encoding process for each iteration. The solution structure of
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Figure 7: HM, PA, and RS for PAS.

SHS consists a three-dimensional string array that represents
a CMS, PAS, and PPMA. Each iteration of SHS improvises
a new harmony and an improvising process is composed of
HMC, RS, and PA.

For equal-operator effect, HMC, RS, and PA are used
for SHS and HHS. First, a uniformly random number is
generated. If the random number is less than the operation
probability of HM consideration 𝑃𝐻𝑀𝐶, 𝑎𝑛𝑒𝑤(𝑘) is generated
by the HM consideration and is selected from any harmony
in set of {1, 2, ⋅ ⋅ ⋅ , ℎ𝑚𝑠(size of HM)}. Otherwise, 𝑎𝑛𝑒𝑤 is
generated by the random selection. The random selection is
generated new real number in the search bounds. Second,
if the random number is less than operation probability of
pitch adjustment 𝑃𝑃𝐴, 𝑎𝑛𝑒𝑤 is adjusted by a pitch adjustment.
Otherwise, proceed to the next step. The pitch adjustment
operator is as follows:

𝑎𝑛𝑒𝑤 (𝑘) = 𝑎𝑛𝑒𝑤 (𝑘) ± rand (0, 1) × 𝑏𝑤 (20)

where rand(0, 1) is a uniformly generated random number
between 0 and 1 and 𝑏𝑤 is the bandwidth.

HMC, PA, and RS are illustrated for PAS in Figure 7.
According to Figure 7, the selected harmony is 𝐴2 and

the current variable in the improvising process is 0.5. If the
random number is less than 𝑃𝐻𝑀𝐶, 𝑎𝑛𝑒𝑤(1) is 0.5. Otherwise,𝑎𝑛𝑒𝑤(1) is 0.7, the randomly generated variable thorough RS.
Next, if the random number is less than 𝑃𝑃𝐴, than 𝑎𝑛𝑒𝑤(1)
is adjusted as 0.4 or 0.6 and 0.6 or 0.8. The signs are
determined by a random number (if the random number> 0.5, then PA+; otherwise, PA−).TheHM is updated by the
fitness between 𝐴𝑛𝑒𝑤 and the worst harmony vector 𝐴𝑤 in
the HM. Thereafter, the 𝐴𝑤 is eliminated in HM and 𝐴𝑛𝑒𝑤
is a new member of HM. When the improvement process
is finished, and the process is repeated until the termination
criterion is satisfied.

Similar to HGA, the harmony vector of HHS consists of
a one-dimensional string array that represents a PAS and the
other partial solutions (CMS and PPMA) are determined by
BSD using the partial solution decoded from the solution
structure. The pseudocode of HSs is shown in Algorithm 3.

3.4. Harmony-Search-Based Evolutionary Algorithm. The
harmony-search-based evolutionary algorithm (HSEA) com-
bines the advantages of EAandHS in order to effectively solve
the large-scale problem of TSASP. Similar to HS, the initial
solutions of HSEA (𝑠𝑜𝑙𝑓) for PAS are generated randomly as
real-number vectors. To obtain a PAS, a decoding procedure

is run to change from a real-number vector to a PAS.
Other partial solutions (CMS and PPMA) are determined
by BSD using the partial solution decoded from the solution
structure. Next, the objective value for each initial solution
is calculated by the complete solution. According to random
probability, HSEA performs a harmony operator such as
HMC, PA, or RS and improves a new solution vector (𝑠V𝑛𝑒𝑤).
If 𝑠V𝑛𝑒𝑤 is not applied in HM and the regeneration index
(RGI) is not same as the regeneration point (RGP), then RGI
is increased by 1. Otherwise, update 𝑠𝑜𝑙𝑓 and RGI is 0. This
process is repeated until the termination criterion (HMS) is
satisfied. If RGI is the same as RGP, then the solutions that
yield the objective value of the top 10% for 𝑠𝑜𝑙𝑓 are preserved
and the rest solution for 𝑠𝑜𝑙𝑓 is regenerated randomly.

This process is similar to the selection operator of
GA in this article. For the diversity of solutions, another
randomly generated solution (𝑠𝑜𝑙𝑔) consisting of the actual
sequence and decoded current solution (𝑠𝑜𝑙𝑓) are combined.
It performs the genetic operator for the combined solution
(𝑠𝑜𝑙𝑓𝑔) and calculates the objective value of the combined
solution to evaluate the fitness. Thereafter, the dominant
solutions are preserved in the size of 𝑠𝑜𝑙𝑓 and 𝑠𝑜𝑙𝑓. In order
to continue HSEA, the PAS of the updated 𝑠𝑜𝑙𝑓 is encoded
as real-number vectors. This process is repeated until the
termination criterion is satisfied. A flow chart of HSEA is
illustrated in Figure 8.

4. Computational Results

To evaluate the performance of the metaheuristic algorithms
proposed, computational experiments were conducted by
using randomly generated test problems. The computational
experiments to test the performance of metaheuristic algo-
rithms were executed with a small-sized problem group
and a large-scale problem group. Since the complexity of
a problem highly depends upon the length of CMS |𝐿|,
several instances of two problem groups of small and large-
scale problems are randomly generated according to |𝐿|.
To demonstrate the solvability of the mathematical model,
we evaluated the best solution of metaheuristics with the
optimal solution using |𝐿| as 8, 10, and 12 for small-sized
problem group. The instances were constructed by randomly
generating 8 instances within each |𝐿|. Since the computing
time for CPLEX significantly becomes longer as |𝐿| have
increased, we imposed a 7200 (sec.) limit and a particular
run was simply terminated even if an optimal solution had
not been found. Meanwhile, to evaluate the performance
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Input: harmony memory size, iteration, probability of harmony memory consideration, and probability of
pitch adjustment,𝐻𝑀𝑆, 𝐼𝑡𝑒𝑟, 𝑃𝑝𝑎, and 𝑃ℎ𝑚𝑐 .
Output: makespan, 𝐶𝑚𝑎𝑥
Initialization:
Let solution vectors for PAS 𝑤 ←󳨀 0

Begin(1) If this algorithm is SHS(2) Randomly generate an initial solution for the first iteration based on three single-dimensional
arrays(3) End If(4) If this algorithm is HHS(5) Randomly generate an initial solution for the first iteration based on single-dimensional arrays(6) End If(7) Repeat(8) If this algorithm is SGA(9) Calculate the objective value through 𝑤 and, CMS and PPMA generated by actual sequence(10) End If(11) If this algorithm is HGA(12) Calculate the objective value through CMS and PPMA derived by MBR and 𝑤(13) End If(14) Until𝐻𝑀𝑆(15) Rank by the objective value(16) Repeat(17) Repeat(18) If random probability ≤ 𝑃ℎ𝑚𝑐(19) Let harmony consideration operation(20) End If(21) If random probability ≤ 𝑃𝑝𝑎(22) Let pitch adjustment operation(23) End If(24) Until the size of 𝑤(25) Calculate the objective value of new solution vector(26) If the objective value of new solution vector ≤ the objective value of harmony with lowest rank(27) Update the new solution vector(28) End If(29) Until 𝐼𝑡𝑒𝑟.

End

Algorithm 3: Pseudocode of HSs.

Table 2: The generating conditions of experimental data.

Group Scheduling Period 𝐼 𝐿 𝛼𝑗 𝛽𝑖
Small-sized problems 480

2 8 U[60, 80] U[140, 160]
3 10 U[40, 60] U[90, 110]
4 12 U[30, 50] U[60, 80]

Large-scale problems 3600
40 160 U[10, 16] U[30, 40]
60 400 U[3, 9] U[20, 30]
80 640 U[1, 7] U[15, 25]

between metaheuristic algorithms and gain the insight of
the algorithms by altering the parameter |𝐿|, we relatively
compare the best solution of SGA, SHS, HGA, HHS, and
HSEA using |𝐿| as 160, 400, and 640 for large-scale problem
group.The instances are constructed by randomly generating
8 instances within each |𝐿|.

The generating conditions of the parameters of problem
instances for each group were summarized in Table 2. The
scheduling periods were assumed to 480 (min.) (12 h × 1day)

for the small-sized problem group and 3600 (min.) (12 h× 5day) for large-scale problem group, respectively. The
number of products |𝐼| for each |𝐿| was 2, 3, and 4 for
the small-sized problem group and 40, 60, and 80 for the
large-scale problem group. The batch setup times, preventive
maintenance activity times, and deterioration rates were
generated as two cases, low-case and high-case. The low-case
of batch setup time was fixed as 5 and high-case of batch
setup time was fixed as 20. The low-case and high-case of
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Begin the harmony search based evolutionary algorithm

HS procedure:

Randomly generate an initial
solutions for PAS consisting of

real number, solf

Run decoding procedure
for solf to obtain PAS

Run MBR to derive
CMS and PPMA

Construct a complete solution
bs PAS, CMS and PPMA

Calculate the objective value

Improvise a new solution
vector, snew

No
Add snew to

solf ?

Yes

Update the solf and RGI ← 0

RGI = RGP ?

No
RGI ← RGI + 1

Termination
criteria satisfied?

No

No
Termination

criteria satisfied?

Yes

Yes

Yes

Harmony search based evolutionary algorithm completed

Preserve the solutions with the
objective value of the top

10% for solf

Randomly generate
the rest solutions for solf

Randomly generate solutions
consisting of actual PAS, solg

EA procedure:

Generate new solutions, solfg
by combining decoded solf

and solg

Run genetic operator for solfg

Calculate the objective value
for solfg

Preserve dominant solutions as
much as size of solf

Run encoding procedure for
solf as real number

Figure 8: The flow chart of harmony-search-based evolutionary algorithm.

preventive maintenance activity times were also fixed 5 and
20, respectively. The low-case and high-case of deterioration
rate were uniformly generated in [0.01, 0.05] and [0.1, 0.3],
respectively.

The all metaheuristic algorithms were executed with 30
replications. In order to be equal comparison of SGA, HGA,
SHS, HHS, and HSEA, a population size was set as 2×𝐼 and a
termination time was set as the elapsed time when SGA as a
base heuristic is converged with no-improvement or repeats
until 1,000 generations. The crossover, mutation, harmony
memory consideration, and pitch adjustment rate were 0.8,
0.2, 0.7, and 0.3, respectively. The parameters of proposed
algorithms were predetermined by extensive preliminary
experimentations. The MILP model presented in Section 2
was coded in ILOG CPLEX 12.5 and the all metaheuristic
algorithms were coded by C#. All the experiments solving
each test problemusingCPLEXandmetaheuristic algorithms
were run on a PC with Intel core i7-4770 CPU with 4GB
RAM and Windows 7 operating system. The test results of
small-sized problem group and large-scale problem group
are summarized in Tables 3 and 4. It shows the optimal

solution by CPLEX, mean. For performance measures, the
mean objective function value of all replications (Mean),
the relative percentage deviation (RPD), and mean absolute
deviation (MAD) of each replication are calculated. The RPD
andMAD are expressed in

𝑅𝑃𝐷 (%) = 𝑀𝐻𝑠𝑜𝑙 − 𝐵𝑒𝑠𝑡𝐵𝑒𝑠𝑡 × 100, (21)

𝑀𝐴𝐷 (%) =
󵄨󵄨󵄨󵄨󵄨𝑀𝐻𝑠𝑜𝑙 −𝑀𝐻𝑠𝑜𝑙󵄨󵄨󵄨󵄨󵄨𝑀𝐻𝑠𝑜𝑙 × 100, (22)

where 𝑀𝐻𝑠𝑜𝑙 is the objective function value and 𝑀𝐻𝑠𝑜𝑙 is
the mean objective function value of all replications obtained
by each metaheuristic and Best is the best objective function
value of all experiments (CPLEX, SGA, HGA, SHS, HHS, and
HSEA) for each test problem. Best can be the optimal solution
if CPLEX obtains the optimal solution.

For the tests of small-sized problem group, CPLEX
was unable to derive the optimal solution for most of test
problems with |𝐿| ≥ 12 in 7200 (sec.). We defined the values
of RPDs and MADs of test problems with |𝐿| ≥ 12 unable to
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Figure 9: Mean plots and Turkey HSD intervals at the 95% confidence level of each algorithm.
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Figure 10: The comparison of average RPD value for five metaheuristic algorithms in three significant factors.

derive the optimal solution. Thus, the average values of RPDs
and MADs were calculated all the values of test problems
except for the values of test problems with N/A. For the
small-sized problem group, the low values of RPDs and
MADs in Table 3 indicate that all proposed metaheuristic
algorithms perform well. Especially, HSEA was very close to
the optimal solution with achieving the highest frequency
of finding the optimal solution among other metaheuristic
algorithms. The computational times of all metaheuristics
algorithms for small-sized problem group were small enough
to obtain solutions within reasonable computational times
of 1 (sec.). These results mean that HSEA is very effec-
tive algorithms with low variation for small-sized problem
group.

For large-scale problem group, the RPDs and MADs of
HSEA were much better than the other metaheuristic algo-
rithms in all the test problem groups. The results indicated
thatHSEAcould significantly improve the performance. Both

theRPDs andMADs ofHSEAare 2.2 and 0.9, which are nearly
0.

Figure 9 showed the mean plots and Tukey HSD intervals
at the 95% confidence level for all problems by SGA, HGA,
SHS, HHS, and HSEA in Table 4. It clearly illustrated that
there were statistically significant differences between the
RPD values among SGA, HGA, SHS, HHS, and HSEA.

Figure 10 showed the pattern of the average RPDs in
SGA, HGA, SHS, HHS, and HSEA by changing three sig-
nificant performance factors, batch setup times (𝜇), PMA
time (𝜎), and deterioration rate (𝛾𝑗). In this figure, HSEA
clearly showed a low average RPD in all the combinations
of the factors. This result indicates that HSEA is robust
for various combinations of significant performance factors
of the algorithms. The average RPDs of SGA, HGA, SHS,
and HHS except for HSEA relatively show the highest value
(the worst performance) in the case of high PMA time, low
deterioration rate, and low batch setup time.Themain reason
of the occurrence of this phenomenon is that the makespan
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becomes sensitive to small change of the number of PMAs as
the PMA time is increased.

5. Conclusions

In this article, a novel MILPmodel was developed for TSASP
with batch setup times, time-dependent deterioration, and
preventive maintenance activities in dynamic-component
size and to minimize the makespan. In TSASP, n products
ordered by various customers are scheduled. In the first
stage, |𝐿| required number of components to be assembled
to the corresponding products in the second stage must
be manufactured. When all the required components for
one corresponding product ordered were made, an assembly
machine in second stage can immediately assemble the
components into the product. Since the MILP model was
not tractable for the problems |𝐿| ≥ 12 within a reasonable
computing time, metaheuristic algorithms (SGA, HGA, SHS,
HHS, and HSEA) were proposed. We executed the compu-
tational experiments with two groups, namely, a small-sized
problem group and a large-scale problem group. Based on the
experimental results, we found that HSEA was very effective
algorithmwith lowRPD in reasonable computational time for
the TSASP. Furthermore, HSEA showed that the algorithm is
robust for various combinations of significant performance
factors of the algorithms.

The future research can be divided into three directions.
Firstly, the study can be extended on other kinds of setup and
preventive maintenance activity such as sequence dependent
setup time and position-based preventive maintenance activ-
ity. Secondly, the study should be extended to the deterio-
ration of the assembly process in the second stage, because
the most manual assembly process with human fatigue is
popular. Finally, the study should be extended to apply other
manufacturing process with three-stage assembly scheduling
problem and flexible flow shop scheduling problems.
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