
Research Article
Distributed Estimation in Periodically Switching
Sensor Networks

Jie Niu 1 and Ya Zhang 2

1School of Electrical and Electronic Engineering, Changzhou College of Information Technology, Changzhou, Jiangsu 213164, China
2School of Automation, Southeast University, Nanjing 210096, China

Correspondence should be addressed to Ya Zhang; yazhang@seu.edu.cn

Received 10 July 2018; Revised 25 October 2018; Accepted 8 November 2018; Published 22 November 2018

Academic Editor: Alessandro Contento

Copyright © 2018 JieNiu andYa Zhang.This is an open access article distributed under theCreative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the distributed estimation problem of sensor networks, in which each node is periodically sensing and
broadcasting in order. A consensus estimation algorithm is applied, and a weight design approach is proposed. The weights are
designed based on an adjusting parameter and the nodes’ lengths of their shortest paths to the target node. By introducing a(𝑇 + 2)-partite graph of the time-varying networks over a time period [0, 𝑇] and studying the relationships between the product of
the time-sequence estimation error system matrices and the sequences of edges in the (𝑇 + 2)-partite graph, a sufficient condition
in terms of the observer gain and the adjusting parameter for the stability of the estimation error system is proposed. A simulation
example is given to illustrate the results.

1. Introduction

Distributed estimation is an important problem in applica-
tions of sensor networks such as healthmonitoring of bridges,
collaborative tracking and positioning, and intelligent trans-
portation. In many cases, although partial sensors may be
unable to get the measurement of the target, cooperation
between neighboring sensors in a network makes it possible
that all sensors can participate in a distributed estimation
process and reach an estimation of the target’s varying state.

Consensus, which means the states of all agents achieve
agreement, is a simple and feasible protocol for cooperation
of sensors [1–3]. Consensus protocol has been commonly
applied in developing distributed estimation algorithms. For
first-order data processing, consensus algorithm was applied
in [4, 5], and topology and weight design were discussed
to optimize the estimators. For general dynamical systems,
distributed estimation algorithms are composed of both con-
sensus protocols and observers. There have been many works
addressing this consensus estimation problem.The literature
includes consensus Kalman filtering [6–9], Luenberger-like
consensus estimation [10–16], and consensus H∞ estimation
[17, 18]. The stability conditions given in the above works are
mainly based on multiple linear matrix inequalities (LMIs).

Matei and Baras [14] combined Luenberger-like observers
with consensus protocol to present distributed estimation
techniques for linear time-invariant systems. They showed
that the weights in consensus algorithms were important for
distributed detectability of networks. However, by the exist-
ing literature, it is not clear how to derive useful guidelines
for weight design from LMIs-based conditions.

The weights play an essential role in the cooperation. In
recent years, the works concerning designing the weights for
the network are limited. Xiao et al. [5] proposed an optimal
weight design for first-order data processing. Jafarizadeh [19]
designed weights to optimize the second largest eigenvalue
modulus of the weighted stochastic matrix. Park et al. [20]
designed two weighted consensus schemes based on the edge
betweenness centrality and the eigenvector centrality of the
topology.Wei et al. [21] allocated the weights to minimize the𝐻∞ norm of the network by solving a semidefinite program
problem. To the best of our knowledge there is no work
providing an explicit weight design approach for consensus
of time-varying networks.

This paper will design a distributed estimator for sensors
over periodically sensing and broadcasting networks and
propose a weight design approach in the consensus protocol.
Firstly, a consensus based estimation algorithm, where the
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weights are designed based on the length of the shortest path
from each sensor to the target and an adjusting parameter,
is proposed. Secondly, by introducing the (𝑇 + 2)-partite
graph of the time-varying network over a time period [0, 𝑇]
to depict the sequences of edges in time-sequence graphs
as paths, and by developing the relationships between the
product of time-sequence network stochastic matrices and
the paths, a lower bound of certain value in the multiplica-
tions of the stochastic matrices in one switching period is
provided. And then, based on the properties of the stochastic
matrices in one switching period, a sufficient condition of
the parameter and estimator gain for the stability of the
networked estimation error system is further given. Themain
contributions of this paper lie in that we provide an explicit
condition on the weight’s parameter and estimation gain for
periodically switching networks, and the condition requires
limited topology information.

Notation. In this paper, 𝐼𝑝 denotes a unit matrix of size 𝑝, and
0 denotes a zero matrix with proper dimension. Re(⋅) and | ⋅ |
denote the real part and modulus of one value, respectively.
For a finite set V, |V| denotes the number of nodes in
this set. 𝜌(⋅) represents the spectral radius of a matrix.
The norm ‖𝐴‖2𝑃 is defined as max𝑥 ̸=0(𝑥𝑇𝐴𝑇𝑃𝐴𝑥/𝑥𝑇𝑃𝑥).
diag{𝐺1, . . . , 𝐺𝑛} denotes a block diagonal matrix with diag-
onal blocks 𝐺1, . . . , 𝐺𝑛. ⊗ denotes the Kronecker product of
matrices. [𝐴]𝑖𝑗 denotes the element in the 𝑖th row and 𝑗th
column of matrix 𝐴.
2. Problem Formulation

Consider a target with linear discrete-time dynamical system

𝑥0 (𝑘 + 1) = 𝐴𝑥0 (𝑘) , (1)

where 𝑥0 ∈ 𝑅𝑝 denotes the state of the target. 𝐴 ∈ 𝑅𝑝×𝑝 is the
system matrix and not necessarily Schur stable.

The target (1) is monitored by a network of 𝑛 homo-
geneous sensors. Not all of the sensors could successfully
measure the target simultaneously. If sensor 𝑖 has access to
the target at time 𝑘, it measures the target with measuring
equation

𝑦𝑖 (𝑘) = 𝐶𝑥0 (𝑘) , (2)

where𝑦𝑖 ∈ 𝑅𝑞 is themeasurement vector at sensor 𝑖, 1 ≤ 𝑖 ≤ 𝑛;𝐶 ∈ 𝑅𝑞×𝑝 is the measurement matrix, and (𝐴, 𝐶) is assumed
to be completely observable.

The sensors in the network detect the target and com-
municate with each other. The communication topology of
the sensors at time 𝑘 is denoted by G(𝑘) = (V,E(𝑘),A(𝑘)),
where V = {1, . . . , 𝑛} denotes the node set, E(𝑘) ={(𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛} denotes the edge set at time 𝑘, and
A(𝑘) = [𝑎𝑖𝑗(𝑘)]𝑛×𝑛 denotes the adjacency matrix at time 𝑘.
The adjacency elements associatedwith the edges of the graph
are defined as (𝑖, 𝑗) ∈ E(𝑘) ⇐⇒ 𝑎𝑖𝑗(𝑘) = 1. Since each
node can always get its own information, for all 𝑖, 𝑎𝑖𝑖(𝑘) ≡ 1.
Neighbor set of sensor 𝑖 is denoted as N𝑖(𝑘) = {𝑗 : 𝑎𝑖𝑗(𝑘) =

1}. The sensing vector of the sensors is denoted by B(𝑘) ={𝑏1(𝑘), . . . , 𝑏𝑛(𝑘)}, where if sensor 𝑖 gets the measurement at
time 𝑘, then 𝑏𝑖(𝑘) = 1; otherwise 𝑏𝑖(𝑘) = 0.

In practical applications, to save sensors’ power and avoid
congestions of communication networks, the sensors work
intermittently and asynchronously. In this paper, we consider
a periodically switching network satisfying the following
assumptions.

Assumption 1. The available communication topology of the
sensors is directed and prior given as Ĝ = (V, Ê, Â), Â =[𝑎𝑖𝑗]𝑛×𝑛. Due to limited sensing range, some sensors cannot
obtain the target’s measurements and the available sensing
vector of the sensors is prior given as B̂ = {�̂�1, . . . , �̂�𝑛}.
Each sensor is periodically activated in order; i.e., if node 𝑖
is activated at time 𝑘, then it will be activated again at time𝑘+𝑛. At each time instant, just one node is activated and other
nodes just receive information from their neighbors. If node 𝑖
is activated at time 𝑘, it measures the target and broadcasts its
information to its neighbors, and correspondingly 𝑏𝑖(𝑘) = �̂�𝑖
and 𝑏𝑗(𝑘) = 0 (𝑗 ̸= 𝑖); for all 𝑗 ∈ {1, . . . , 𝑛}, 𝑠 ̸= 𝑖, 𝑗, there hold𝑎𝑗𝑖(𝑘) = 𝑎𝑗𝑖, 𝑎𝑗𝑠(𝑘) = 0, and 𝑎𝑠𝑠(𝑘) = 1.

By treating the target as one node, define a new topology
G = (V,E,A) being composed of all sensors and the target
node for the given available communication topology and
sensing vector. Without loss of generality, let 𝑛 + 1 be the
number of the target node, and then the node set is V ={1, 2, . . . , 𝑛, 𝑛 + 1}, the adjacency matrix A = [𝑎𝑖𝑗](𝑛+1)×(𝑛+1)
satisfying, for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝑎𝑖𝑗 = 𝑎𝑖𝑗, 𝑎𝑖(𝑛+1) = �̂�𝑖, and𝑎(𝑛+1)𝑖 = 0. Node 𝑖’s neighbor set in G is denoted asN𝑖.

In G, a simple path of length 𝑙 from 𝑖 to 𝑗 is a sequence
of nodes 𝑖1, 𝑖2, . . . , 𝑖𝑙 with 𝑖𝑙 = 𝑗 and each subsequent edge(𝑖, 𝑖1), (𝑖1, 𝑖2), . . . , (𝑖𝑙−1, 𝑖𝑙) ∈ E. If there exists a path inG from
node 𝑖 to another node 𝑗, then 𝑗 is said to be reachable from𝑖. If a node 𝑗 is reachable from every other node inV, then it
is globally reachable.

Assumption 2. For the given available communication topol-
ogy Ĝ and sensing vector B̂, the target node 𝑛+1 in topology
G is globally reachable. Each node knows the length of its
shortest path to node 𝑛 + 1 in topologyG.

FromAssumption 2, denote 𝑙𝑖(1 ≤ 𝑖 ≤ 𝑛) as node 𝑖’s length
of its shortest path from it to 𝑛+1 in topologyG, 1 ≤ 𝑙𝑖 ≤ 𝑚 ≤𝑛, 𝑚 = max𝑖{𝑙𝑖}. Define V𝑠 = {𝑖 ∈ V | 𝑙𝑖 = 𝑠} as the set of
nodes whose shortest path length to node 𝑛+1 is 𝑠, 1 ≤ 𝑙𝑖 ≤ 𝑚.
Then, for 𝑠 ̸= 𝑗,V𝑠 ∩ V𝑗 = ⌀, and V = ∪𝑚𝑠=1V𝑠. Obviously,
for each node inV𝑠, 𝑠 ≥ 1, it has at least one neighbor inV𝑠−1
and no neighbors inV𝑠−𝑗, 𝑗 ≥ 2.
Assumption 3. During any one period [𝑡𝑛, (𝑡 + 1)𝑛)(𝑡 ≥ 0), all
nodes in V𝑠+1 are activated after the nodes in V𝑠, 1 ≤ 𝑠 ≤𝑚 − 1.

This paper focuses on designing a distributed estimator
for the time-varying network satisfying Assumptions 1–3
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such that each sensor can asymptotically estimate the state
of the target.

3. Main Results

In this section, we firstly propose a consensus based estima-
tion algorithm. Then, we analyse the property of the stochas-
tic matrices over the periodically switching network. Finally,
we investigate the stability conditions of the estimation error
system.

3.1. A Consensus Based Estimation Algorithm. In this paper
we apply a distributed estimation algorithm based on the
consensus strategy.

From Assumptions 1–3, when sensor 𝑗 ∈ {1, . . . , 𝑛} is
activated to measure the target and broadcast its information
to its neighbor sensors at time 𝑘, it computes its estimation by
using its own available measurement information:

𝑥𝑗 (𝑘 + 1) = 𝐴𝑥𝑗 (𝑘) + �̂�𝑗𝐹 (𝑦𝑗 (𝑘) − 𝐶𝑥𝑗 (𝑘)) , (3)

and for other sensor 𝑖, it computes its estimation using
the network information based on the weighted average
consensus protocol:

𝑥𝑖 (𝑘 + 1) = 𝑎𝑖𝑗𝑤𝑖𝑗 [𝐴𝑥𝑗 (𝑘) + �̂�𝑗𝐹 (𝑦𝑗 (𝑘) − 𝐶𝑥𝑗 (𝑘))]
+ (1 − 𝑎𝑖𝑗𝑤𝑖𝑗)𝐴𝑥𝑖 (𝑘) , (4)

where 𝑥𝑖 ∈ 𝑅𝑝 denotes the estimation state made by sensor 𝑖,
and 𝐹 ∈ 𝑅𝑝×𝑞 is the estimation gain to be designed.

From (4), if sensor 𝑖 is not sensor 𝑗’s out-neighbor, i.e.,𝑎𝑖𝑗 = 0, it updates its estimation based on its own information

𝑥𝑖 (𝑘 + 1) = 𝐴𝑥𝑖 (𝑘) . (5)

It is well known that the weights of the network play an
essential role in the stability of the estimation errors [10–18].
In the following, we will propose a weight design approach
based on the nodes’ lengths of their shortest paths to node𝑛 + 1 in G, i.e., 𝑙𝑖, 1 ≤ 𝑖 ≤ 𝑛, and an adjusting parameter 𝜇. If
sensor 𝑗 ∈ {1, . . . , 𝑛} is activated at time 𝑘, for 𝑖 ̸= 𝑗 satisfying𝑎𝑖𝑗 = 1,

𝑤𝑖𝑗 (𝑘) = 𝜇𝑙𝑗−𝑙𝑖𝑗𝜇𝑙𝑖−𝑙𝑖𝑗 + 𝜇𝑙𝑗−𝑙𝑖𝑗 , (6)

𝑤𝑖𝑖 (𝑘) = 𝜇𝑙𝑖−𝑙𝑖𝑗𝜇𝑙𝑖−𝑙𝑖𝑗 + 𝜇𝑙𝑗−𝑙𝑖𝑗 . (7)

where 𝜇 ≥ 0 is an adjusting parameter to be designed, 𝑙𝑖𝑗 =
min{𝑙𝑖, 𝑙𝑗}. If 𝜇 = 0, 𝜇0 = 1, and 𝜇𝑙 = 0, 𝑙 > 0. Since for 𝑖 ∈
V𝑠, 𝑠 ≥ 1, node 𝑖 has no neighbors inV𝑠−2; thus 𝑙𝑗 − 𝑙𝑖 +1 ≥ 0
for all 𝑗 ∈ N𝑖.

For 𝑖 ̸= 𝑗 satisfying 𝑎𝑖𝑗 = 0,
𝑤𝑖𝑗 (𝑘) = 0, (8)

𝑤𝑖𝑖 (𝑘) = 1. (9)

Define 𝑒𝑖(𝑘) = 𝑥𝑖(𝑘) − 𝑥0(𝑘) as the estimation error of
sensor 𝑖, 1 ≤ 𝑖 ≤ 𝑛. Then if sensor 𝑗 ∈ {1, . . . , 𝑛} is activated at
time 𝑘,

𝑒𝑗 (𝑘 + 1) = (𝐴 − �̂�𝑗𝐹𝐶) 𝑒𝑗 (𝑘) . (10)

For other sensors, the estimation errors are given by

𝑒𝑖 (𝑘 + 1) = 𝑎𝑖𝑗𝑤𝑖𝑗 (𝑘) (𝐴 − �̂�𝑗𝐹𝐶) 𝑒𝑗 (𝑘)
+ (1 − 𝑎𝑖𝑗𝑤𝑖𝑗 (𝑘)) 𝐴𝑒𝑖 (𝑘) , (11)

Here we use 𝑏𝑖(𝑘) and 𝑎𝑖𝑗(𝑘)𝑤𝑖𝑗(𝑘) to uniformly depict the
time-varying sensing topology and communication topology,
respectively. They are defined as follows: if sensor 𝑗 ∈{1, . . . , 𝑛} is activated at time 𝑘, then (1) 𝑏𝑗(𝑘) = �̂�𝑗 and 𝑏𝑖(𝑘) =0 (𝑖 ̸= 𝑗); (2) 𝑎𝑗𝑗(𝑘)𝑤𝑗𝑗(𝑘) = 1, 𝑎𝑗𝑠(𝑘)𝑤𝑗𝑠(𝑘) = 0 (𝑠 ̸= 𝑗); (3)
for 𝑖 ̸= 𝑗, 𝑎𝑖𝑗(𝑘)𝑤𝑖𝑗(𝑘) = 𝑎𝑖𝑗𝑤𝑖𝑗(𝑘), 𝑎𝑖𝑖(𝑘)𝑤𝑖𝑖(𝑘) = 1 − 𝑎𝑖𝑗𝑤𝑖𝑗(𝑘),
and for 𝑠 ̸= 𝑗, 𝑖, 𝑎𝑖𝑠(𝑘)𝑤𝑖𝑠(𝑘) = 0. Then, the estimation error
system (11) of each sensor 𝑖 can be formulated as a uniform
equation

𝑒𝑖 (𝑘 + 1) = 𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑘) 𝑤𝑖𝑗 (𝑘) (𝐴 − 𝑏𝑗 (𝑘) 𝐹𝐶) 𝑒𝑗 (𝑘) . (12)

Let 𝑒(𝑘) = [𝑒𝑇1 (𝑘), . . . , 𝑒𝑇𝑛 (𝑘)]𝑇. Then, from (12), the
estimation error system is

𝑒 (𝑘 + 1) = Ξ (𝑘) 𝑒 (𝑘) , (13)

whereΞ(𝑘) = (𝑊(𝑘)⊗𝐼𝑝)diag{𝐴−𝑏𝑖(𝑘)𝐹𝐶, 1 ≤ 𝑖 ≤ 𝑛},𝑊(𝑘) =[𝑎𝑖𝑗(𝑘)𝑤𝑖𝑗(𝑘)]𝑛×𝑛.
If the periodically switching system (13) is asymptotically

stable, the estimation errors of sensors converge to zero. In the
following, we discuss under what conditions system (13) in
periodically switching networks satisfying Assumptions 1–3
is asymptotically stable.

3.2. Stochastic Matrices for Periodically Switching Networks.
To analyse the stability of the estimation error system, in this
subsection, we will investigate the properties of the stochastic
matrices over the periodically switching networks satisfying
Assumptions 1–3 and give important lemmas.

To begin with, we introduce some important notions.

Definition 4. (V+∪V−,E+) is said to be a bipartite graph [22]
of a given 𝑛-vertex topology (V,E,A), ifV+ = {1+, . . . , 𝑛+}
andV− = {1−, . . . , 𝑛−} are two disjoint vertex sets, and E+ ={(𝑖−, 𝑗+) : (𝑖, 𝑗) ∈ E} is an arc set.

Definition 5. (⋃𝑇+1𝑘=0 V𝑘, ⋃𝑇𝑘=0E𝑘) is said to be (𝑇 + 2)-partite
graph for a time-varying topology G(𝑘) = (V,E(𝑘),W(𝑘))
over a time period [0, 𝑇] with 𝑇 ≥ 0, if V𝑘(0 ≤ 𝑘 ≤ 𝑇 + 1)
are 𝑇 + 2 disjoint vertex sets and E𝑘(0 ≤ 𝑘 ≤ 𝑇) are 𝑇 + 1 arc
sets. For 0 ≤ 𝑘 ≤ 𝑇 + 1, the vertex setV𝑘 with 𝑛 vertex nodes
is denoted by {V1𝑘, . . . , V𝑛𝑘}. For 0 ≤ 𝑘 ≤ 𝑇, the arc set E𝑘 is
defined as E𝑘 = {(V𝑖(𝑘+1), V𝑗𝑘) | 1 ≤ 𝑖, 𝑗 ≤ 𝑛, (𝑖, 𝑗) ∈ E(𝑘)}.
And for each edge (V𝑖(𝑘+1), V𝑗𝑘) ∈ E𝑘, its weight 𝑤V𝑖(𝑘+1)V𝑗𝑘 =𝑤𝑖𝑗(𝑘).
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Figure 1: Given communication topology.
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Figure 2: Bipartite graph of topology in Figure 1.

Obviously, by the above definition, there are (𝑇 + 2)𝑛
nodes in the (𝑇 + 2)-partite graph. When 𝑇 = 0, the (𝑇 + 2)-
partite graph is equivalent to the bipartite graph of topology
G(0); each pair (V𝑘⋃V𝑘+1,E𝑘) can be seen as the bipartite
graph of topology G(𝑘).
Example 6. Consider a network with 4 nodes. The available
communication topology is prior given by Figure 1 and its
bipartite graph is given in Figure 2.

If the topology is varying andE(0) = {(2, 1), (3, 2), (4, 3)},
E(1) = {(3, 1), (4, 2), (2, 4)}. The 3-partite graph over a time
period [0, 1] is given in Figure 3.

For analysis simplicity, renumber the nodes such that for
all nodes inV𝑠+1 their numbers are larger than those inV𝑠,1 ≤ 𝑠 ≤ 𝑚−1. By Assumptions 1–3, without loss of generality
we can assume that node 𝑗(1 ≤ 𝑗 ≤ 𝑛) is activated in order at
times 𝑘𝑛 + 𝑗 − 1, 𝑘 ≥ 0. Here we introduce the (𝑛 + 1)-partite
graph of the time-varying networks.The (𝑛+1)-partite graph
of the time-varying networks during time 0 to time 𝑛 − 1 is0 ≤ 𝑡 ≤ 𝑛 − 1, when 𝜇 = 0, E𝑡 = {(V𝑗(𝑡+1), V(𝑡+1)𝑡) | (𝑗, 𝑡 +1) ∈ Ê, 𝑙𝑗 ≥ 𝑙𝑡+1} ∪ {(V𝑗(𝑡+1), V𝑗𝑡) | (𝑗, 𝑡 + 1) ̸⊆ Ê, 𝑗 ∈ V},
and when 𝜇 > 0, E𝑡 = {(V𝑗(𝑡+1), V(𝑡+1)𝑡) | (𝑗, 𝑡 + 1) ∈ Ê, 𝑗 ∈
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Figure 3: 3-Partite graph.

V} ∪ {(V𝑗(𝑡+1), V𝑗𝑡) | 𝑗 ∈ V}, where Ê is the edge set of the
prior given communication topology.

Lemma 7. 𝑊(𝑘) is a periodically switching stochastic matrix
with period 𝑛, and for 𝑘 ≥ 0, 1 ≤ 𝑗 ≤ 𝑛, 𝑊(𝑘𝑛 + 𝑗 − 1) = 𝑊𝑗,
where (1) [𝑊𝑗]𝑗𝑗 = 1 and [𝑊𝑗]𝑗𝑠 = 0, 𝑠 ̸= 𝑗; (2) for 𝑖 ̸= 𝑗,[𝑊𝑗]𝑖𝑗 = 𝑎𝑖𝑗(𝜇𝑙𝑗−𝑙𝑖𝑗/(𝜇𝑙𝑖−𝑙𝑖𝑗 + 𝜇𝑙𝑗−𝑙𝑖𝑗)), [𝑊𝑗]𝑖𝑖 = 1 − [𝑊𝑗]𝑖𝑗, and[𝑊𝑗]𝑖𝑠 = 0, 𝑠 ̸= 𝑗, 𝑖.
Proof. Firstly, from the above definition of 𝑎𝑖𝑗(𝑘)𝑤𝑖𝑗(𝑘), we
have that ∑𝑛𝑗=1 𝑎𝑖𝑗(𝑘)𝑤𝑖𝑗(𝑘) = 1, which means that 𝑊(𝑘) is
a stochastic matrix.

Since node 𝑗(1 ≤ 𝑗 ≤ 𝑛) is activated in order at times𝑘𝑛 + 𝑗 − 1, 𝑘 ≥ 0, then the stochastic matrix in system (13)
satisfies (1) [𝑊(𝑘𝑛 + 𝑗 − 1)]𝑗𝑗 = 1 and [𝑊(𝑘𝑛 + 𝑗 − 1)]𝑗𝑠 = 0,𝑠 ̸= 𝑗; (2) for 𝑖 ̸= 𝑗, [𝑊(𝑘𝑛+𝑗−1)]𝑖𝑗 = 𝑎𝑖𝑗(𝜇𝑙𝑗−𝑙𝑖𝑗/(𝜇𝑙𝑖−𝑙𝑖𝑗+𝜇𝑙𝑗−𝑙𝑖𝑗)),[𝑊(𝑘𝑛+𝑗−1)]𝑖𝑖 = 1−[𝑊(𝑘𝑛+𝑗−1)]𝑖𝑗, and [𝑊(𝑘𝑛+𝑗−1)]𝑖𝑠 = 0,𝑠 ̸= 𝑗, 𝑖. Denote 𝑊𝑗 as the weight matrix of the network when
node 𝑗 is activated; then𝑊(𝑘𝑛+𝑗−1) = 𝑊𝑗 and it is stochastic.
This completes the proof of this lemma.

To investigate the properties of the stochastic matrix𝑊(𝑘) in system (13), we introduce following system:

𝜃 ((𝑘 + 1) 𝑛) = 𝑊𝜃 (𝑘𝑛) , (14)

where𝑊 = [𝑊𝑖𝑗]𝑛×𝑛 = 𝑊𝑛𝑊𝑛−1 ⋅ ⋅ ⋅𝑊1,
In the following, we discuss the property of the stochastic

matrix 𝑊. To begin with, we give two important lemmas
regarding the property of the network.

Lemma8. Consider periodically switching networks satisfying
Assumptions 1–3. In the (𝑛 + 1)-partite graph of the time-
varying networks among one period 𝑛, i.e., (⋃𝑛𝑡=0V𝑡, ⋃𝑛−1𝑖=0 E𝑡),
for any node V𝑖𝑛, 1 ≤ 𝑖 ≤ 𝑛, there exists at least one sequence
of edges (V𝑖𝑛𝑛, V𝑖𝑛−1(𝑛−1)), (V𝑖𝑛−1(𝑛−1), V𝑖𝑛−2(𝑛−2)), . . . , (V𝑖11, V𝑖00) sat-
isfying the following three conditions: (1) V𝑖𝑛𝑛 = V𝑖𝑛; (2)(V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)) ∈ E𝑠−1, 1 ≤ 𝑠 ≤ 𝑛; (3) in node set {V𝑖𝑠𝑠, 1 ≤ 𝑠 ≤𝑛}, there exists at least one node V𝑖𝑠0 𝑠0 , 𝑖𝑠0 ∈ V1 and 𝑖𝑠0 = 𝑠0 +1.
Proof. Denote 𝑘1 = |V1|, 𝑘2 = 𝑘1 + |V2|, 𝑘𝑠+1 = 𝑘𝑠 + |V𝑠+1|,1 ≤ 𝑠 ≤ 𝑚 − 1; then 𝑘𝑚 = 𝑛. From Assumption 3, in time
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interval [𝑘𝑛, 𝑘𝑛 + 𝑘1) just the nodes in V1 are activated in
order, and in any time interval [𝑘𝑛 + 𝑘𝑠, 𝑘𝑛 + 𝑘𝑠+1), just the
nodes inV𝑠+1 are activated in order, 𝑘 ≥ 0.

For 𝑖 ∈ V1, from the weight design approach we have
that, for all 𝜇 and for 1 ≤ 𝑠 ≤ 𝑛, (V𝑖𝑠, V𝑖(𝑠−1)) ∈ E𝑠−1, and then
there exists a sequence satisfying the conditions in Lemma 8
as long as V𝑖𝑠−1(𝑠−1) = V𝑖(𝑠−1) for all 𝑠.

For 𝑖 ∈ V𝑙, 2 ≤ 𝑙 ≤ 𝑚, in G there exists a path of length𝑙 − 1 from 𝑖 to one node 𝑖1 ∈ V1. Here we denote the path
as (𝑖, 𝑖𝑙−1), (𝑖𝑙−1, 𝑖𝑙−2), . . . , (𝑖2, 𝑖1), 𝑖𝑠 ∈ V𝑠, 1 ≤ 𝑠 ≤ 𝑙 − 1.
From the weight design approach we have that, for all 𝜇,(𝑖, 𝑖) ∈ E(𝑡) for 𝑡 ∈ [𝑘𝑙, 𝑛). Thus in the (𝑛 + 1)-partite graph(⋃𝑛𝑡=0V𝑡, ⋃𝑛−1𝑡=0 E𝑡), for 𝑘𝑙 ≤ 𝑡 < 𝑛, (V𝑖(𝑡+1), V𝑖𝑡) ∈ E𝑡. In time
interval [𝑘𝑙−1, 𝑘𝑙), denote 𝑡𝑖𝑙−1 = 𝑖𝑙−1 − 1 as the time when𝑖𝑙−1 ∈ V𝑙−1 ∩ N𝑖 is activated, and there is no else node in
V𝑙−1 ∩ N𝑖 being activated in (𝑡𝑖𝑙−1 , 𝑘𝑙). Then for 𝑡 = 𝑡𝑖𝑙−1 ,(𝑖, 𝑖𝑙−1) ∈ E(𝑡𝑖𝑙−1); for 𝑡𝑖𝑙−1 < 𝑡 < 𝑘𝑙, (𝑖, 𝑖) ∈ E(𝑡); and for𝑘𝑙−1 ≤ 𝑡 < 𝑡𝑖𝑙−1 , (𝑖𝑙−1, 𝑖𝑙−1) ∈ E(𝑡). Thus in (⋃𝑛𝑡=0V𝑡, ⋃𝑛−1𝑡=0 E𝑡),
for 𝑡𝑖𝑙−1 < 𝑡 < 𝑘𝑙, (V𝑖(𝑡+1), V𝑖𝑡) ∈ E𝑡; (V𝑖(𝑡𝑖𝑙−1+1), V𝑖𝑙−1𝑡𝑖𝑙−1 ) ∈ E

𝑡𝑖𝑙−1 ;
and for 𝑘𝑙−1 ≤ 𝑡 < 𝑡𝑖𝑙−1 , (V𝑖𝑙−1(𝑡+1), V𝑖𝑙−1𝑡) ∈ E𝑡. In the same
way, in time interval [0, 𝑘1), denote 𝑡𝑖0 = 𝑖0 − 1 as the time
when 𝑖0 ∈ V1 ∩ N𝑖1 is activated, and there is no else node in
V1 ∩ N𝑖1

being activated in (𝑡𝑖0 , 𝑘1). Then (𝑖1, 𝑖0) ∈ E(𝑡𝑖0);
for 𝑡𝑖0 < 𝑡 < 𝑘1, (𝑖1, 𝑖1) ∈ E(𝑡); and for 0 ≤ 𝑡 < 𝑡𝑖0 ,(𝑖0, 𝑖0) ∈ E(𝑡). Thus in (⋃𝑛𝑡=0V𝑡, ⋃𝑛−1𝑡=0 E𝑡), for 𝑖0 − 1 < 𝑡 < 𝑘1,(V𝑖1(𝑡+1), V𝑖1𝑡) ∈ E𝑡; (V𝑖1𝑖0 , V𝑖0(𝑖0−1)) ∈ E𝑖0−1; and for 0 ≤ 𝑡 <𝑖0 − 1, (V𝑖0(𝑡+1), V𝑖0𝑡) ∈ E𝑡.

Therefore, in the (𝑛+1)-partite graph (⋃𝑛𝑡=0V𝑡, ⋃𝑛−1𝑡=0 E𝑡),
there exists a sequence of edges ⋃𝑖𝑙−1𝑡=𝑛−1(V𝑖(𝑡+1), V𝑖𝑡), (V𝑖𝑖𝑙−1 ,
V𝑖𝑙−1(𝑖𝑙−1−1)), . . . , (V𝑖1𝑖0 , V𝑖0(𝑖0−1)), ⋃0𝑡=𝑖0−2(V𝑖0(𝑡+1), V𝑖0𝑡), where 𝑖0 ∈
V1. This lemma has been proved.

Remark 9. Lemma 8 implies that, in the network satisfying
Assumptions 1–3, during each switching period [𝑡𝑛, (𝑡 +1)𝑛)(𝑡 ≥ 0), any sensor node can receive the information of
some node inV1.

Remark 10. In this paper, we apply Assumption 3 to make
sure that Lemma 8 holds. If the sensors’ activated order does
not satisfy Assumption 3, the conditions in Lemma 8 cannot
be guaranteed. For example, if the communication graph is a
path, the edge set is denoted by {(4, 3), (3, 2), (2, 1)}, and the
activated order is 4, 3, 2, 1, then, in the 5-partite graph of the
time-varying topology over any period [4𝑡 + 𝑠, 4(𝑡 + 1) + 𝑠)
(0 ≤ 𝑠 ≤ 3, 𝑡 ≥ 0), node 1 is not reachable; i.e., the conditions
in Lemma 8 cannot be satisfied.

In the following, we use a simple example to illustrate the
result in Lemma 8.

Example 11. Consider a network with 4 nodes. Just node 1
can get the information of the leader, i.e., �̂�1 = 1 and �̂�𝑖 =

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44
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2
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Figure 4: Time-sequence bipartite graphs of the network in one
period.

0, 𝑖 > 1. The available communication topology is prior given
by Figure 1 and, for all 𝑖, (𝑖, 𝑖) ∈ E.The network is periodically
switching and satisfies Assumptions 1–3. We know thatV1 ={1},V2 = {2, 3}, and V3 = {4}. The order of working sensor
in one period is 1,2,3,4.

When 𝜇 in weights is 0, the 5-partite graphs of the
network in one period are, respectively, given in Figure 4.
Here the solid black nodes denote the activated nodes in the
time instants. For the case 𝜇 = 0, there are 2 sequences of
edges from V44 to V10, and from V34 to V10, and there is one
sequence of edges from V24 to V10, and from V14 to V10. In
these sequences, there exist edges containing working node
V10, 1 ∈ V0. For the case 𝜇 > 0, there is one sequence of
edges from V14 to V10, there are 2 sequences of edges from V34
to V10, 3 sequences of edges from V44 to V10, and 4 sequences
of edges from V24 to V10. In these sequences, there exist edges
containing working node V10, 1 ∈ V0.

Lemma 12. Consider a periodically switching network sat-
isfying Assumptions 1–3 with weights given by (6)-(8). For𝑖, 1 ≤ 𝑖 ≤ 𝑛, denote P𝑖 as the set of sequences of
edges (V𝑖𝑛𝑛, V𝑖𝑛−1(𝑛−1)), (V𝑖𝑛−1(𝑛−1), V𝑖𝑛−2(𝑛−2)), . . . , (V𝑖11, V𝑖00) satis-
fying the conditions in Lemma 8. Then the weights 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
of the edges (V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)), 𝑠 = 1, 2, . . . , 𝑛, in (𝑛 + 1)-partite
graph satisfy the following inequality:
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∑
{(V𝑖𝑛,V𝑖𝑛−1(𝑛−1)),...,(V𝑖11,V𝑖00)}∈P𝑖

𝑛∏
𝑠=1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

≥ 1
(1 + 𝜇)𝑙𝑖+𝑟𝑖−1 ,

(15)

where 𝑟𝑖 = |N𝑖⋂{V𝑙𝑖 , . . . ,V𝑚}|.
Proof. For notation simplicity, we let 𝑘1 = |V1|, 𝑘2 = 𝑘1 +|V2|, 𝑘𝑠+1 = 𝑘𝑠 + |V𝑠+1|, 1 ≤ 𝑠 ≤ 𝑚 − 1.

Firstly we discuss the case when 𝜇 = 0. Under the weight
design approach, for any edge (V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)) ∈ E𝑠−1 in a
sequence in P𝑖, there has 𝑙𝑖𝑠 ≥ 𝑙𝑖𝑠−1 . If 𝑙𝑖𝑠 > 𝑙𝑖𝑠−1 , then𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

= 1, and if 𝑙𝑖𝑠 = 𝑙𝑖𝑠−1 , then 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
equals 1

or 1/2. For 𝑖 ∈ V𝑙, when 𝑘𝑙 < 𝑠 ≤ 𝑛, 𝑤𝑖𝑖(𝑠 − 1) ≡ 1, and
then 𝑖𝑠−1 = 𝑖, 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

= 𝑤V𝑖𝑠V𝑖(𝑠−1) = 1. If, in the time-
varying network (V,E(𝑘),A(𝑘)), node 𝑠𝑙 ∈ V𝑙 is activated to
transmit its information to node 𝑖 at 𝑠𝑙 − 1(𝑘𝑙−1 ≤ 𝑠𝑙 − 1 < 𝑘𝑙),
and there is no else node in V𝑙 ∩ N𝑖 being activated in time[𝑠𝑙, 𝑘𝑙), then 𝑤𝑖𝑖(𝑠 − 1) = 1 for 𝑠 ∈ (𝑠𝑙, 𝑘𝑙], and 𝑤𝑖𝑖(𝑠𝑙 − 1) =𝑤𝑖𝑠𝑙(𝑠𝑙 − 1) = 1/2. Thus in (⋃𝑛𝑠=0V𝑠, ⋃𝑛−1𝑠=0 E𝑠), for 𝑠 ∈ (𝑠𝑙, 𝑘𝑙],
V𝑖𝑠−1(𝑠−1) = V𝑖(𝑠−1) and 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

= 1. For 𝑠 = 𝑠𝑙, there are two
edges in E𝑠−1 satisfying the conditions for P𝑖. One is with
V𝑖𝑠𝑙−1(𝑠𝑙−1) = V𝑖(𝑠𝑙−1) and 𝑤V𝑖𝑠𝑙 𝑠𝑙V𝑖(𝑠𝑙−1)

= 1/2. The other is with
V𝑖𝑠𝑙−1(𝑠𝑙−1) = V𝑠𝑙(𝑠𝑙−1) and 𝑤V𝑖𝑠𝑙 𝑠𝑙 V𝑠𝑙(𝑠𝑙−1)

= 1/2. Then,

∑
{(V𝑖𝑛,V𝑖𝑛−1(𝑛−1)),...,(V𝑖11 ,V𝑖00)}∈P𝑖

𝑛∏
𝑠=1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

= 12∑̂
P𝑖

𝑠𝑙−1∏
𝑠=1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
+ 12 ∑̂

P𝑠𝑙

𝑠𝑙−1∏
𝑠=1

𝑤V𝑗𝑠𝑠V𝑗𝑠−1(𝑠−1)
. (16)

where P̂𝑖 = {(V𝑖𝑛, V𝑖(𝑛−1)), . . . , (V𝑖(𝑠𝑙+1), V𝑖𝑠𝑙), (V𝑖𝑠𝑙 , V𝑖(𝑠𝑙−1)),(V𝑖(𝑠𝑙−1), V𝑖𝑠𝑙−2(𝑠𝑙−2)), . . . , (V𝑖11, V𝑖00)} ∈ P𝑖, P̂𝑠𝑙 = {(V𝑖𝑛, V𝑖(𝑛−1)),. . . , (V𝑖(𝑠𝑙+1), V𝑖𝑠𝑙), (V𝑖𝑠𝑙 , V𝑠𝑙(𝑠𝑙−1)), (V𝑠𝑙(𝑠𝑙−1), V𝑗𝑠𝑙−2(𝑠𝑙−2)), . . . , (V𝑗11,
V𝑗00)} ∈ P𝑖.

Similarly, we have that

∑
{(V𝑖𝑛,V𝑖𝑛−1(𝑛−1)),...,(V𝑖11,V𝑖00)}∈P𝑖

𝑛∏
𝑠=1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
= 1. (17)

Secondly we discuss the case when 𝜇 > 0. Under the
weight design approach, for any edge (V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)) ∈ E𝑠−1,
we have𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

11 + 𝜇 , if 𝑙𝑖𝑠 > 𝑙𝑖𝑠−1 ;𝜇𝑙𝑖𝑠−1𝜇𝑙𝑖𝑠 + 𝜇𝑙𝑖𝑠−1 ≤ 𝜇1 + 𝜇 , if 𝑙𝑖𝑠 < 𝑙𝑖𝑠−1 ;12 , if 𝑙𝑖𝑠 = 𝑙𝑖𝑠−1 and 𝑖𝑠 ̸= 𝑖𝑠−1;1, if 𝑖𝑠 = 𝑖𝑠−1 = 𝑠 or 𝑠 ∉ N𝑖𝑠 ;12 , if 𝑖𝑠 = 𝑖𝑠−1 ̸= 𝑠, 𝑠 ∈ N𝑖𝑠 , and 𝑙𝑖𝑠 = 𝑙𝑠;𝜇𝑙𝑖𝑠𝜇𝑙𝑠 + 𝜇𝑙𝑖𝑠 ≥ 11 + 𝜇 , if 𝑖𝑠 = 𝑖𝑠−1 ̸= 𝑠, 𝑠 ∈ N𝑖𝑠 , and 𝑙𝑖𝑠 < 𝑙𝑠;
𝜇𝑙𝑖𝑠𝜇𝑙𝑠 + 𝜇𝑙𝑖𝑠 ≤ 𝜇1 + 𝜇 , if 𝑖𝑠 = 𝑖𝑠−1 ̸= 𝑠, 𝑠 ∈ N𝑖𝑠 , and 𝑙𝑖𝑠 > 𝑙𝑠.

(18)

DefineP𝑖 as the set of sequences inP𝑖 inwhich each edge(V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)) satisfies 𝑙𝑖𝑠 ≥ 𝑙𝑖𝑠−1 and 𝑙𝑖𝑠 ≤ 𝑙𝑠. Then for 𝑙𝑖𝑠 > 𝑙𝑖𝑠−1 ,𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
= 1/(1 + 𝜇), and for other cases, 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

equals1/2, 1, or larger than 1/(1 + 𝜇).
For 𝑖 ∈ V𝑙 and {(V𝑖𝑛, V𝑖𝑛−1(𝑛−1)), . . . , (V𝑖11, V𝑖00)} in P𝑖.

Consider 𝑠, 𝑘𝑙 < 𝑠 ≤ 𝑛; then 𝑙𝑠 > 𝑙𝑖𝑠 and V𝑖𝑠−1(𝑠−1) must be
V𝑖(𝑠−1), 𝑖𝑠−1 = 𝑖. If 𝑠 ∈ N𝑖𝑠 = N𝑖, then 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

≥ 1/(1 + 𝜇),
otherwise 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

= 1. Thus

∑
{(V𝑖𝑛,V𝑖𝑛−1(𝑛−1)),...,(V𝑖11,V𝑖00)}∈P𝑖

𝑛∏
𝑠=𝑘𝑙+1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
≥ 1(1 + 𝜇)𝑟𝑖 , (19)

where 𝑟𝑖 = |N𝑖⋂{V𝑙, . . . ,V𝑚}|.
Consider 𝑘𝑙−1 < 𝑠 ≤ 𝑘𝑙. If, in the time-varying network(V,E(𝑘),A(𝑘)), node 𝑠𝑙 ∈ V𝑙/{𝑖} is activated to transmit

its information to node 𝑖 at 𝑠𝑙 − 1(𝑘𝑙−1 ≤ 𝑠𝑙 − 1 < 𝑘𝑙),
and there is no other node in V𝑙 ∩ N𝑖 being sensing and
broadcasting in time [𝑠𝑙, 𝑘𝑙), then 𝑤𝑖𝑖(𝑠𝑙 − 1) = 𝑤𝑖𝑠𝑙(𝑠𝑙 −1) = 1/2, and for 𝑡 ∈ [𝑠𝑙, 𝑘𝑙), 𝑤𝑖𝑖(𝑡) = 1. Thus for𝑠 ∈ (𝑠𝑙, 𝑘𝑙], V𝑖𝑠−1(𝑠−1) = V𝑖(𝑠−1), 𝑖𝑠−1 = 𝑖, and 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

=1. For 𝑠 = 𝑠𝑙, there are two edges in E𝑠−1 satisfying the
conditions for P𝑖. One is with V𝑖𝑠𝑙−1(𝑠𝑙−1) = V𝑖(𝑠𝑙−1) and𝑤V𝑖𝑠𝑙 𝑠𝑙 V𝑖𝑠𝑙−1(𝑠𝑙−1)

= 1/2. The other is with V𝑖𝑠𝑙−1(𝑠𝑙−1) = V𝑠𝑙(𝑠𝑙−1)
and 𝑤V𝑖𝑠𝑙 𝑠𝑙V𝑖𝑠𝑙−1(𝑠𝑙−1)

= 1/2. For edges {(V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)), 𝑘𝑙−1 ≤
𝑠 < 𝑠𝑙} with V𝑖𝑠𝑙−1(𝑠𝑙−1) = V𝑖(𝑠𝑙−1) in sequences in P𝑖,𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

equals 1/2 or 1. If for some edge (V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)),𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
equals 1/2, then there are also two paths from

node V𝑖𝑠−1(𝑠−1). Then,∑Ê𝑖
∏𝑠𝑙−1
𝑠=𝑘𝑙−1+1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
= 1, where Ê𝑖 ={(V𝑖𝑠𝑙 , V𝑖(𝑠𝑙−1)), (V𝑖(𝑠𝑙−1), V𝑖𝑠𝑙−2(𝑠𝑙−2)), . . ., (V𝑖𝑘𝑙−1+1(𝑘𝑙−1+1), V𝑖𝑘𝑙−1 𝑘𝑙−1)}.

Similarly, ∑Ê𝑠𝑙
∏𝑠𝑙−1
𝑠=𝑘𝑙−1+1

𝑤V𝑗𝑠𝑠V𝑗𝑠−1 (𝑠−1)
= 1, where Ê𝑠𝑙 ={(V𝑖𝑠𝑙 , V𝑠𝑙(𝑠𝑙−1)), (V𝑠𝑙(𝑠𝑙−1), V𝑗𝑠𝑙−2(𝑠𝑙−2)), . . ., (V𝑗𝑘𝑙−1+1(𝑘𝑙−1+1), V𝑗𝑘𝑙−1𝑘𝑙−1)}.

Thus,

∑
{(V𝑖𝑛,V𝑖𝑛−1(𝑛−1)),...,(V𝑖11,V𝑖00)}∈P𝑖

𝑛∏
𝑠=𝑘𝑙−1+1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

≥ 1(1 + 𝜇)𝑟𝑖 .
(20)

Consider 𝑘𝑙−2 < 𝑠 ≤ 𝑘𝑙−1. For a path (V𝑖𝑛𝑛, V𝑖𝑛−1(𝑛−1)),. . . , (V𝑖𝑘𝑙−1+1(𝑘𝑙−1+1), V𝑖𝑘𝑙−1 𝑘𝑙−1) in one of sequence inP𝑖, for node𝑖𝑘𝑙−1 ∈ V𝑙 in the time-varying network (V,E(𝑘),A(𝑘)), if
node 𝑠𝑙−1 ∈ V𝑙−1 is activated to transmit its information to
node 𝑖𝑘𝑙−1 at 𝑠𝑙−1 − 1(𝑘𝑙−2 ≤ 𝑠𝑙−1 − 1 < 𝑘𝑙−1), and there is
no other node inV𝑙−1 ∩ N𝑖𝑘𝑙−1

being activated in [𝑠𝑙−1, 𝑘𝑙−1),
then 𝑤𝑖𝑘𝑙−1 ,𝑠𝑙−1(𝑠𝑙−1 − 1) = 1/(1 + 𝜇), and for 𝑡 ∈ [𝑠𝑙−1, 𝑘𝑙−1),𝑤𝑖𝑘𝑙−1 𝑖𝑘𝑙−1 (𝑡) = 1. Thus for 𝑠 ∈ (𝑠𝑙−1, 𝑘𝑙−1], V𝑖𝑠−1(𝑠−1) = V𝑖𝑘𝑙−1 (𝑠−1)
and 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

= 1; for 𝑠 = 𝑠𝑙−1, V𝑖𝑠−1(𝑠−1) = V𝑠𝑙−1(𝑠−1) and𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
= 1/(1 + 𝜇). For edges (V𝑖𝑠𝑙−1−1(𝑠𝑙−1−1), V𝑖𝑠𝑙−1−2(𝑠𝑙−1−2)),
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. . . , (V𝑖𝑘𝑙−2+1(𝑘𝑙−2+1), V𝑖𝑘𝑙−2 𝑘𝑙−2), applying the similar analysis for
edges {(V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)), 𝑘𝑙−1 ≤ 𝑠 < 𝑠𝑙}, we have that

∑̂
E𝑘𝑙−1

𝑘𝑙−1∏
𝑠=𝑘𝑙−2+1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
= 11 + 𝜇 , (21)

where Ê𝑘𝑙−1 = {(V𝑖𝑛, V𝑖𝑛−1(𝑛−1)), . . ., (V𝑖𝑘𝑙−1+1(𝑘𝑙−1+1), V𝑖𝑘𝑙−1 𝑘𝑙−1),. . . , (V𝑗11, V𝑗00)} ∈ P𝑖
In the same way, for 2 ≤ 𝑔 ≤ 𝑙, 𝑘0 = 0, we have that

∑
Ê𝑘𝑔−1

𝑘𝑔−1∏
𝑠=𝑘𝑔−2+1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
= 11 + 𝜇 , (22)

where Ê𝑘𝑔−1 = {(V𝑖𝑛, V𝑖𝑛−1(𝑛−1)), . . ., (V𝑖𝑘𝑔−1+1(𝑘𝑔−1+1), V𝑖𝑘𝑔−1 𝑘𝑔−1),. . . , (V𝑗11, V𝑗00)} ∈ P𝑖. Therefore, for 𝑖 ∈ V𝑙,

∑
{(V𝑖𝑛,V𝑖𝑛−1(𝑛−1)),...,(V𝑖11,V𝑖00)}∈P𝑖

𝑛∏
𝑠=1

𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

≥ 1
(1 + 𝜇)𝑙+𝑟𝑖−1 .

(23)

SinceP𝑖 is a subset ofP𝑖, this lemma has been proved.

Back to Example 11, we have ∑P1
∏𝑛𝑠=1𝑤V1𝑠𝑠V1𝑠−1(𝑠−1)

= 1,
∑P2

∏𝑛𝑠=1𝑤V2𝑠𝑠V2𝑠−1(𝑠−1)
= 1/(1 +𝜇)2 + (1 +𝜇)/(1 +𝜇)3 +𝜇2/(1 +

𝜇)4,∑P3
∏𝑛𝑠=1𝑤V3𝑠𝑠V3𝑠−1(𝑠−1)

= 1/(1+𝜇),∑P4
∏𝑛𝑠=1𝑤V4𝑠𝑠V4𝑠−1(𝑠−1)

=
1/(1+𝜇)2+(1−𝜇𝐷𝐷)/(1+𝜇)3.These values satisfy the condition
in Lemma 12.

Lemma 13. Consider a periodically switching network satis-
fying Assumptions 1–3, and the weights are given by (6)-(8).
For 𝑖, 1 ≤ 𝑖 ≤ 𝑛, there exists a nonempty set P𝑖 consisting of
time-sequences of edges {(𝑖𝑛, 𝑖𝑛−1), . . . , (𝑖1, 𝑖0)}, where (𝑖𝑠, 𝑖𝑠−1) ∈
E(𝑠−1), 𝑖𝑛 = 𝑖, and there is at least one edge (𝑖𝑠0 , 𝑖𝑠0) ∈ E(𝑖𝑠0−1)
and 𝑖𝑠0 ∈ V1. And moreover,

∑
{(𝑖𝑛,𝑖𝑛−1),...,(𝑖1,𝑖0)}∈P𝑖

𝑛∏
𝑠=1

𝑤𝑖𝑠𝑖𝑠−1 (𝑠 − 1) ≥ 1
(1 + 𝜇)𝑙𝑖+𝑟𝑖−1 , (24)

where 𝑟𝑖 = |N𝑖⋂{V𝑙𝑖 , . . . ,V𝑚}|.
Proof. If, in the time-varying networks, during time interval[𝑘𝑛, (𝑘 + 1)𝑛) there exist 𝑔 > 0 time-sequences of edges(𝑖𝑛, 𝑖𝑛−1), (𝑖𝑛−1, 𝑖𝑛−2), . . . , (𝑖1, 𝑖0) with 𝑖𝑛 = 𝑖, 𝑖0 = 𝑗, each
edge (𝑖𝑠, 𝑖𝑠−1) ∈ E(𝑘𝑛 + 𝑠 − 1) with positive weights, 𝑠 =1, 2, . . . , 𝑛, then 𝑊𝑖𝑗 is nonzero and equals the sum of 𝑔
elements ∏𝑛𝑠=1𝑤𝑖𝑠 𝑖𝑠−1(𝑠 − 1).

From the definition of the (𝑛+1)-partite graph of the time-
varying networks from time 0 to time 𝑛 − 1, we have that the
sequence of edges (𝑖𝑛, 𝑖𝑛−1), . . . , (𝑖1, 𝑖0)with (𝑖𝑠, 𝑖𝑠−1) ∈ E(𝑠−1)
in the time-varying networks is equivalent to the sequence of
edges (V𝑖𝑛𝑛, V𝑖𝑛−1(𝑛−1)), . . . , (V𝑖11, V𝑖00)with (V𝑖𝑠𝑠, V𝑖𝑠−1(𝑠−1)) ∈ E𝑠−1

in the (𝑛+ 1)-partite graph (⋃𝑛𝑠=0V𝑠, ⋃𝑛−1𝑠=0 E𝑠), and 𝑤𝑖𝑠𝑖𝑠−1(𝑠 −1) = 𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)
. Thus ∏𝑛𝑠=1𝑤𝑖𝑠𝑖𝑠−1 (𝑠 − 1) = ∏𝑛𝑠=1𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

.
For a network satisfying Assumptions 1–3, from

Lemma 8 we have that, for all 𝑖, in the sequence of edges{(𝑖𝑛, 𝑖𝑛−1), . . . , (𝑖1, 𝑖0)} with (𝑖𝑠, 𝑖𝑠−1) ∈ E(𝑠 − 1) and 𝑖𝑛 = 𝑖,
there exists at least one sequence of edges (𝑖𝑠0 , 𝑖𝑠0) ∈ E(𝑖𝑠0 −1)
and 𝑖𝑠0 ∈ V1. And by applying Lemma 12, this lemma can be
proved.

3.3. Stability Condition. In this subsection, we discuss how
to select 𝜇 and observer gain such that in periodically
working sensor networks the estimation error system (13) can
asymptotically converge to zero.

From system (13), when 𝑗 is activated at time 𝑘 we have

𝑒 (𝑘 + 1) = Ξ𝑗𝑒 (𝑘) , (25)

where Ξ𝑗 is a matrix in which the 𝑖𝑡ℎ(𝑖 ̸= 𝑗) diagonal block
matrices are (1 − 𝑎𝑖𝑗(𝜇𝑙𝑗−𝑙𝑖𝑗/(𝜇𝑙𝑖−𝑙𝑖𝑗 + 𝜇𝑙𝑗−𝑙𝑖𝑗)))𝐴𝑒𝑖(𝑘) and the 𝑗𝑡ℎ
diagonal block matrix is (𝐴 − �̂�𝑗𝐹𝐶), the 𝑗𝑡ℎ column block
matrices are 𝑎𝑖𝑗(𝜇𝑙𝑗−𝑙𝑖𝑗/(𝜇𝑙𝑖−𝑙𝑖𝑗+𝜇𝑙𝑗−𝑙𝑖𝑗))(𝐴−𝑏𝑗𝐹𝐶), and the other
column block matrices are 0.

It is obvious that in almost all cases system (25) is not
stable, which means that each subsystem of the switching
system is not asymptotically stable. However, through peri-
odic switching, the whole system can still achieve stability.
From Assumptions 1–3, the estimation error system has the
following equation:

𝑒 ((𝑘 + 1) 𝑛) = Ξ𝑒 (𝑘𝑛) , (26)

where Ξ = Ξ𝑛Ξ𝑛−1 ⋅ ⋅ ⋅ Ξ1.
Theorem 14. For periodically switching networks satisfying
Assumptions 1–3, and the weights are given by (6)-(8). If there
exists a symmetric definite matrix 𝑃 ∈ 𝑅𝑝×𝑝 and a gain matrix𝐹 ∈ 𝑅𝑝×𝑞 such that

(𝐴𝑛−1 (𝐴 − 𝐹𝐶)𝐴𝑘0−1)𝑇 𝑃 (𝐴𝑛−1 (𝐴 − 𝐹𝐶) 𝐴𝑘0−1)
< 𝑃, (27)

and

𝜇 < (𝐴𝑛𝑃 − 𝐴𝑛−1 (𝐴 − 𝐹𝐶)𝐴𝑘0−1𝑃‖𝐴𝑛‖𝑃 − 1 )
1/𝑀

− 1, (28)

then the estimation error of the sensor network asymptotically
converges to zero, where 𝑘0 = |V0|, 𝑀 = max𝑖{𝑙𝑖 + 𝑟𝑖 − 1},𝑟𝑖 = |N𝑖⋂{V𝑙𝑖 , . . . ,V𝑚}|.
Proof. Denote Ξ = [Ξ𝑖𝑗]𝑛×𝑛 as a block matrix with blocksΞ𝑖𝑗 ∈ 𝑅𝑝×𝑝. In the time-varying networks if, during each time
interval [𝑘𝑛, (𝑘 + 1)𝑛), there exist 𝑔 > 0 sequences of edges(𝑖𝑛, 𝑖𝑛−1), (𝑖𝑛−1, 𝑖𝑛−2), . . . , (𝑖1, 𝑖0) with 𝑖𝑛 = 𝑖, 𝑖0 = 𝑗, each edge(𝑖𝑠, 𝑖𝑠−1) ∈ E(𝑘𝑛 + 𝑠 − 1) with positive weights, 𝑠 = 1, 2, . . . , 𝑛,
then Ξ𝑖𝑗 is nonzero and is a sum of 𝑔 matrices. Each addition
part is a multiplication of 𝑛 matrices and weights and has the
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form ∏𝑛𝑠=1𝑤𝑖𝑠𝑖𝑠−1 (𝑠 − 1)𝐴 𝑖𝑠−1 . Define 𝑘0 = |V0|. Obviously, for𝑖𝑠 > 𝑘0, 𝐴 𝑖𝑠−1 = 𝐴, and for 1 ≤ 𝑖𝑠 ≤ 𝑘0, 𝐴 𝑖𝑠−1 is either 𝐴 or𝐴 − 𝐹𝐶.
For a network satisfying Assumptions 1–3, from

Lemma 12 we have that, for each 𝑖 (1 ≤ 𝑖 ≤ 𝑛),
there exists at least one nonzero block matrixΞ𝑖𝑖0 = ∑{(𝑖𝑠,𝑖𝑠−1)∈E(𝑠−1),1≤𝑠≤𝑛∏𝑛𝑠=1𝑤𝑖𝑠𝑖𝑠−1(𝑠 − 1)𝐴𝑛−𝑘0𝐴 𝑖𝑘0−1 ⋅ ⋅ ⋅ 𝐴 𝑖0
having at least one addition part with at least one multiplied
matrix 𝐴 − 𝐹𝐶 and the corresponding weight being larger
than 1/(1 + 𝜇)𝑙𝑖+𝑟𝑖−1. That is to say, there exists at least one
matrix ∏𝑛𝑠=1𝑤𝑖𝑠 𝑖𝑠−1(𝑠 − 1)𝐴𝑛−𝑘0𝐴 𝑖𝑘0−1 ⋅ ⋅ ⋅ 𝐴 𝑖0 where there is at
least one matrix in 𝐴 𝑖𝑘0−1 , . . . , 𝐴 𝑖0 being equal to 𝐴 − 𝐹𝐶,
and ∏𝑛𝑠=1𝑤𝑖𝑠𝑖𝑠−1 (𝑠 − 1) ≤ 1/(1 + 𝜇)𝑙𝑖+𝑟𝑖−1. Thus, if there exists
a matrix 𝑃 > 0 such that (27) holds, then for the matrix𝐴𝑛−𝑘0𝐴 𝑖𝑘0−1 ⋅ ⋅ ⋅ 𝐴 𝑖0 containing multiplied matrix 𝐴 − 𝐹𝐶,
‖𝐴𝑛−𝑘0𝐴 𝑖𝑘0−1 ⋅ ⋅ ⋅ 𝐴 𝑖0‖𝑃 ≤ ‖𝐴𝑛−1(𝐴 − 𝐹𝐶)𝐴𝑘0−1‖𝑃 < 1, where
‖𝐴‖2𝑃 = max𝑥 ̸=0(𝑥𝑇𝐴𝑇𝑃𝐴𝑥/𝑥𝑇𝑃𝑥).

Since
𝑛∑
𝑗=1

Ξ𝑖𝑗𝑃
≤ 𝑛∑
𝑗=1

∑
{(𝑖𝑠,𝑖𝑠−1)∈E(𝑠−1),1≤𝑠≤𝑛,𝑖0=𝑗}

𝑛∏
𝑠=1

𝑤𝑖𝑠 𝑖𝑠−1 (𝑠 − 1)
⋅ 𝐴𝑛−𝑘0𝐴 𝑖𝑘0−1 ⋅ ⋅ ⋅ 𝐴 𝑖0𝑃

≤ 1
(1 + 𝜇)𝑀

𝐴𝑛−1 (𝐴 − 𝐹𝐶) 𝐴𝑘0−1𝑃 + (1
− 1

(1 + 𝜇)𝑀)𝐴𝑛𝑃 ,

(29)

if the condition (28) holds, then 𝜌(Ξ) ≤ max𝑖{∑𝑛𝑗=1 ‖Ξ𝑖𝑗‖𝑃} <1, and then system (26) is asymptotically stable.This theorem
has been proved.

Remark 15. If𝐴 is nonsingular, the LMI (27) can be converted
to the following LMI:

[
[

𝑃 (𝑃𝐴𝑛+𝑘0−1 − 𝑌𝐶𝐴𝑘0−1)𝑇
𝑃𝐴𝑛+𝑘0−1 − 𝑌𝐶𝐴𝑘0−1 𝑃 ]

]
> 0,

(30)

where the gain 𝐹 can be obtained by 𝐹 = (𝐴−1)𝑛−1𝑃−1𝑌. Since(𝐴, 𝐶) is observable, the LMI must be feasible and thus 𝜇 can
be computed from inequality (28). If the prior given extended
topologyG is a tree, then 𝑀 = 𝑚, there is only one sequence
inP𝑖, and∑{(V𝑖𝑛,V𝑖𝑛−1(𝑛−1)),...,(V𝑖11,V𝑖00)}∈P𝑖∏𝑛𝑠=1𝑤V𝑖𝑠𝑠V𝑖𝑠−1(𝑠−1)

= 1/(1+
𝜇)𝑙𝑖 . Ξ is a lower triangular block matrix with diagonal blocks𝐴𝑛−1(𝐴 − 𝐹𝐶) and (𝜇/(1 + 𝜇))𝐴𝑛. Thus the estimation error
system is asymptotically stable if and only if 𝜌(𝐴𝑛−1(𝐴 −𝐹𝐶)) < 1 and 𝜇 < 1/(𝜌𝑛(𝐴) − 1).
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Figure 5: Estimation errors of periodically switching network when𝜇 = 0.01.

4. Numerical Examples

To verify the validity of the proposed consensus based
estimation algorithm, a case where there is one mobile target
to be monitored by the network is applied and MATLAB is
employed for numerical simulation.

The target is moving with second-order system

𝑝0 (𝑘 + 1) = 𝑝0 (𝑘) + V0 (𝑘) ,
V0 (𝑘 + 1) = √2V0 (𝑘) . (31)

There are 4 sensors in the network trying to measure the
target’s position; i.e., the sensing matrix is 𝐶 = [1 0].
Due to limited sensing capacity, just sensor 1 can get the
measurement of the target. The available communication
topology is given by Figure 1 as illustrated in Example 6.

According to the topology we have that 𝑀 = 2. By
applying Theorem 14 we choose 𝐹 = [1.5432 0.768]𝑇, 𝑃 =[ 2.747 −4.8433−4.8433 8.9409 ]; then as long as 𝜇 < 0.0131, the condition in
Theorem 14 holds. Selecting 𝜇 = 0.01, the estimation error of
the network∑4𝑖=1 ‖𝑒𝑖(𝑘)‖22 is given in Figure 5. It is shown that
the estimation error of the network converges to 0, and thus
the design approach is feasible.

5. Conclusion

In this paper we propose a distributed estimation algorithm
with a path length based weighted consensus protocol for
sensor networks with periodically sensing and broadcasting
scheme. (𝑇 + 2)-partite graph of the time-varying networks
over a time period [0, 𝑇] is introduced and three lemmas
specifying the properties of themultiplications of the stochas-
tic matrices under the periodically switching networks are
given. Based on the lemmas, a sufficient condition of the
stability of the estimation error is provided.The sensing mod-
els considered in this paper are all observable. Individually
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unobservable while collaboratively observable case is of our
interest in future.
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